An Overview of Medical Image Segmentation Methods
DOI:
https://doi.org/10.29194/NJES.28030420Keywords:
Thresholding Based Technique, Region-Based Segmentation, Edge-Based Segmentation, Machine Learning-Based MethodsAbstract
Medical image segmentation plays a crucial role in the realm of medical imaging. The process involves the division of an image to obtain a comprehensive view and ensure precise diagnostics. There are various methods that are employed, ranging from traditional approaches to the more advanced deep learning techniques. Both play a significant role in enhancing healthcare. With the continuous advancement in technology, there is a growing need for accurate segmentation. While traditional methods such as thresholding and region growing are effective, they may require human intervention for complex cases. Deep learning techniques, particularly Convolutional Neural Networks (CNNs), have significantly improved the process by learning intricate details and accurately segmenting the image. When these methods are combined, healthcare professionals can achieve high-quality, precise results. Furthermore, with the advancements in hardware and technology, real-time segmentation is now possible. Generally, the process of dividing medical images into segments is extremely important for the progress of healthcare with the help of artificial intelligence and the most recent advancements in the industry, such as explainable AI and multimodal learning. However, this meticulously detailed and in-depth review provides an all-encompassing and extensive analysis of the current methods utilized, their multitude of applications across various fields, and the promising emerging advancements that have the potential to pave the way for remarkable future improvements and innovations.
Downloads
References
J. Wang, H. Zhu, S. H. Wang, and Y. D. Zhang, "A review of deep learning on medical image analysis," Mobile Netw. Appl., 2021.
R. Wang, T. Lei, R. Cui, B. Zhang, and H. Meng, "Medical image segmentation using deep learning: A survey," in Image Processing, Wiley, 2022. DOI: 10.1049/ipr2.12419 DOI: https://doi.org/10.1049/ipr2.12419
X. Liu, L. Song, S. Liu, and Y. Zhang, "A review of deep-learning-based medical image segmentation methods," Sustainability, 2021. DOI: 10.3390/su13031224
R. Obuchowicz, M. Strzelecki, and A. Piórkowski, "Clinical applications of artificial intelligence in medical imaging and image processing-A review," Cancers, 2024. DOI: 10.3390/books978-3-7258-1260-8 DOI: https://doi.org/10.3390/books978-3-7258-1260-8
M. Tsuneki, "Deep learning models in medical image analysis," J. Oral Biosci., 2022. DOI: 10.1016/j.job.2022.03.003 DOI: https://doi.org/10.1016/j.job.2022.03.003
M. Sollini, F. Bartoli, A. Marciano, and R. Zanca, "Artificial intelligence and hybrid imaging: The best match for personalized medicine in oncology," J. Hybrid Imaging, Springer, 2020. DOI: 10.1186/s41824-020-00094-8 DOI: https://doi.org/10.1186/s41824-020-00094-8
K. K. L. Wong, M. Ayoub, Z. Cao, C. Chen, and W. Chen, "The synergy of cybernetical intelligence with medical image analysis for deep medicine: A methodological perspective," Comput. Methods Programs Biomed., 2023. DOI: 10.1016/j.cmpb.2023.107677 DOI: https://doi.org/10.1016/j.cmpb.2023.107677
Y. Fu, Y. Lei, T. Wang, and W. J. Curran, "A review of deep learning based methods for medical image multi-organ segmentation," Physica Medica, 2021. DOI: 10.1016/j.ejmp.2021.05.003 DOI: https://doi.org/10.1016/j.ejmp.2021.05.003
X. X. Yin, L. Sun, Y. Fu, and R. Lu, "U-Net-based medical image segmentation," J. Healthc., 2022. DOI: 10.1155/2022/4189781 DOI: https://doi.org/10.1155/2022/4189781
Q. Hu, B. Yang, S. Khalid, and W. Xiao, "Towards semantic segmentation of urban-scale 3D point clouds: A dataset, benchmarks and challenges," in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2021. DOI: 10.1109/CVPR46437.2021.00494 DOI: https://doi.org/10.1109/CVPR46437.2021.00494
W. Tian, X. Cheng, Q. Liu, and C. Yu, "Meso-structure segmentation of concrete CT image based on mask and regional convolution neural network," Mater. Des., 2021. DOI: 10.1016/j.matdes.2021.109919 DOI: https://doi.org/10.1016/j.matdes.2021.109919
Z. Ren, F. Fang, N. Yan, and Y. Wu, "State of the art in defect detection based on machine vision," J. Precis. Eng., 2022.
Z. Wang, E. Wang, and Y. Zhu, "Image segmentation evaluation: A survey of methods," Artif. Intell. Rev., 2020. DOI: 10.1007/s10462-020-09830-9 DOI: https://doi.org/10.1007/s10462-020-09830-9
I. Kotaridis and M. Lazaridou, "Remote sensing image segmentation advances: A meta-analysis," ISPRS J. Photogramm. Remote Sens., 2021. DOI: 10.1016/j.isprsjprs.2021.01.020 DOI: https://doi.org/10.1016/j.isprsjprs.2021.01.020
A. Oulefki, S. Agaian, T. Trongtirakul, and A. K. Laouar, "Automatic COVID-19 lung infected region segmentation and measurement using CT-scan images," Pattern Recognit., 2021. DOI: 10.1016/j.patcog.2020.107747 DOI: https://doi.org/10.1016/j.patcog.2020.107747
Y. Song, S. Ren, Y. Lu, X. Fu, and K. K. L. Wong, "Deep learning-based automatic segmentation of images in cardiac radiography: A promising challenge," Comput. Methods Programs Biomed., 2022. DOI: 10.1016/j.cmpb.2022.106821 DOI: https://doi.org/10.1016/j.cmpb.2022.106821
L. Liu, J. M. Wolterink, and C. Brune, "Anatomy-aided deep learning for medical image segmentation: A review," Phys. Med. Biol., 2021. DOI: 10.1088/1361-6560/abfbf4 DOI: https://doi.org/10.1088/1361-6560/abfbf4
S. Bhattacharya, P. K. R. Maddikunta, and Q. V. Pham, "Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey," Sustain. Cities Soc., 2021. DOI: 10.1016/j.scs.2020.102589 DOI: https://doi.org/10.1016/j.scs.2020.102589
S. Zhang and D. Metaxas, "On the challenges and perspectives of foundation models for medical image analysis," Med. Image Anal., 2024. DOI: 10.1016/j.media.2023.102996 DOI: https://doi.org/10.1016/j.media.2023.102996
X. Li, C. Li, M. M. Rahaman, H. Sun, X. Li, and J. Wu, "A comprehensive review of computer-aided whole-slide image analysis: From datasets to feature extraction, segmentation, classification and detection approaches," Artif. Intell. Rev., 2022. DOI: 10.1007/s10462-021-10121-0 DOI: https://doi.org/10.1007/s10462-021-10121-0
C. L. Chowdhary and D. P. Acharjya, "Segmentation and feature extraction in medical imaging: A systematic review," Procedia Comput. Sci., 2020. DOI: 10.1016/j.procs.2020.03.179 DOI: https://doi.org/10.1016/j.procs.2020.03.179
D. Hong, B. Zhang, H. Li, Y. Li, J. Yao, and C. Li, "Cross-city matters: A multimodal remote sensing benchmark dataset for cross-city semantic segmentation using high-resolution domain adaptation networks," Remote Sens. Environ., 2023. DOI: 10.1016/j.rse.2023.113856 DOI: https://doi.org/10.1016/j.rse.2023.113856
N. Yamanakkanavar, J. Y. Choi, and B. Lee, "MRI segmentation and classification of human brain using deep learning for diagnosis of Alzheimer's disease: A survey," Sensors, 2020. DOI: 10.3390/s20113243 DOI: https://doi.org/10.3390/s20113243
W. Yao, Z. Gao, L. Wang, H. Zhou, and Y. Jin, "From CNN to Transformer: A review of medical image segmentation models," 2023. [Online]. Available: https://arxiv.org/abs/2308.05305.
Y. Xu, Y. Zhang, Z. Liu, L. Chen, and J. Li, "Advances in medical image segmentation: A comprehensive review," Bioengineering, vol. 11, no. 10, p. 1034, 2023. DOI: 10.3390/bioengineering11101034 DOI: https://doi.org/10.3390/bioengineering11101034
X. Liu, L. Song, S. Liu, and Y. Zhang, "A review of deep learning-based medical image segmentation methods," Sustainability, vol. 13, no. 3, p. 1224, 2021. DOI: 10.3390/su13031224 DOI: https://doi.org/10.3390/su13031224
J. Liu and X. Wang, "Plant diseases and pests detection based on deep learning: A review," Plant Methods, 2021.
DOI: 10.1186/s13007-021-00722-9 DOI: https://doi.org/10.1186/s13007-021-00722-9
Y. Liu, Z. Zhang, X. Liu, and L. Wang, "Efficient image segmentation based on deep learning for mineral image classification," Adv. Powder Technol., 2021. DOI: 10.1016/j.apt.2021.08.038 DOI: https://doi.org/10.1016/j.apt.2021.08.038
B. Qiu, H. van der Wel, J. Kraeima, and H. H. Glas, "Automatic segmentation of mandible from conventional methods to deep learning-A review," J. Pers. Med., 2021. DOI: 10.3390/jpm11070629 DOI: https://doi.org/10.3390/jpm11070629
S. Nikolov, S. Blackwell, A. Zverovitch, and R. Mendes, "Clinically applicable segmentation of head and neck anatomy for radiotherapy: Deep learning algorithm development and validation study," J. Med. Internet Res., 2021. DOI: 10.2196/26151 DOI: https://doi.org/10.2196/26151
X. Yuan, J. Shi, and L. Gu, "A review of deep learning methods for semantic segmentation of remote sensing imagery," Expert Syst. Appl., 2021. DOI: 10.1016/j.eswa.2020.114417 DOI: https://doi.org/10.1016/j.eswa.2020.114417
Y. Mansouri and M. A. Babar, "A review of edge computing: Features and resource virtualization," J. Parallel Distrib. Comput., 2021. DOI: 10.1016/j.jpdc.2020.12.015 DOI: https://doi.org/10.1016/j.jpdc.2020.12.015
S. Pare, A. Kumar, G. K. Singh, and V. Bajaj, "Image segmentation using multilevel thresholding: A research review," Iran. J. Sci. Technol., 2020. DOI: 10.1007/s40998-019-00251-1 DOI: https://doi.org/10.1007/s40998-019-00251-1
K. G. Dhal, A. Das, S. Ray, J. Gálvez, and S. Das, "Nature-inspired optimization algorithms and their application in multi-thresholding image segmentation," in Computational Methods in Engineering and Science, Springer, 2020. DOI: 10.1007/s11831-019-09334-y DOI: https://doi.org/10.1007/s11831-019-09334-y
M. O. Khairandish, M. Sharma, V. Jain, and J. M. Chatterjee, "A hybrid CNN-SVM threshold segmentation approach for tumor detection and classification of MRI brain images," IRBM, 2022. DOI: 10.1016/j.irbm.2021.06.003 DOI: https://doi.org/10.1016/j.irbm.2021.06.003
M. A. Iqbal and K. H. Talukder, "Detection of potato disease using image segmentation and machine learning," in Proc. Int. Conf. Wireless Comm., 2020.
DOI: 10.1109/WiSPNET48689.2020.9198563 DOI: https://doi.org/10.1109/WiSPNET48689.2020.9198563
D. A. Zebari, D. Q. Zeebaree, and A. M. Abdulazeez, "Improved threshold-based and trainable fully automated segmentation for breast cancer boundary and pectoral muscle in mammogram images," in Proc. IEEE Conf., 2020. DOI: 10.1109/ACCESS.2020.3036072 DOI: https://doi.org/10.1109/ACCESS.2020.3036072
E. H. Houssein, M. M. Emam, and A. A. Ali, "An efficient multilevel thresholding segmentation method for thermography breast cancer imaging based on improved chimp optimization algorithm," Expert Syst. Appl., 2021. DOI: 10.1016/j.eswa.2021.115651 DOI: https://doi.org/10.1016/j.eswa.2021.115651
K. Ramesh, G. Kumar, and K. Swapna, "A review of medical image segmentation algorithms," in Proc. EAI Conf. Pervasive Health, 2021. DOI: 10.4108/eai.12-4-2021.169184 DOI: https://doi.org/10.4108/eai.12-4-2021.169184
M. Abdel-Basset, V. Chang, and R. Mohamed, "A novel equilibrium optimization algorithm for multi-thresholding image segmentation problems," Neural Comput. Appl., 2021. DOI: 10.1007/s00521-020-04820-y DOI: https://doi.org/10.1007/s00521-020-04820-y
S. Deenan and S. Janakiraman, "Image segmentation algorithms for banana leaf disease diagnosis," J. Inst., 2020. DOI: 10.1007/s40032-020-00592-5 DOI: https://doi.org/10.1007/s40032-020-00592-5
M. Yogeshwari and G. Thailambal, "Automatic feature extraction and detection of plant leaf disease using GLCM features and convolutional neural networks," Mater. Today: Proc., 2023. DOI: 10.1016/j.matpr.2021.03.700 DOI: https://doi.org/10.1016/j.matpr.2021.03.700
J. Zhang, C. Li, M. M. Rahaman, Y. Yao, and P. Ma, "A comprehensive review of image analysis methods for microorganism counting: From classical image processing to deep learning approaches," Artif. Intell., Springer, 2022. DOI: 10.1007/s10462-021-10082-4 DOI: https://doi.org/10.1007/s10462-021-10082-4
K. K. Anilkumar, V. J. Manoj, and T. M. Sagi, "A survey on image segmentation of blood and bone marrow smear images with emphasis on automated detection of leukemia," Biocybern. Biomed. Eng., Elsevier, 2020. DOI: 10.1016/j.bbe.2020.08.010 DOI: https://doi.org/10.1016/j.bbe.2020.08.010
D. A. Khalilov and N. A. K. Jumaboyeva, "Advantages and applications of neural networks," Acad. Res., 2021.
H. Cui, W. Dai, Y. Zhu, X. Kan, and A. A. C. Gu, "Braingb: A benchmark for brain network analysis with graph neural networks," IEEE Trans. Med. Imaging, 2022. DOI: 10.1109/BigData55660.2022.10020992 DOI: https://doi.org/10.1109/BigData55660.2022.10020992
D. Indira, R. K. Ganiya, and P. A. Babu, "Improved artificial neural network with state order dataset estimation for brain cancer cell diagnosis," Biomed. Res. Int., 2022. DOI: 10.1155/2022/7799812 DOI: https://doi.org/10.1155/2022/7799812
S. Ebrahimkhani, M. H. Jaward, and F. M. Cicuttini, "A review on segmentation of knee articular cartilage: From conventional methods towards deep learning," Artif. Intell. Med., Elsevier, 2020. DOI: 10.1016/j.artmed.2020.101851 DOI: https://doi.org/10.1016/j.artmed.2020.101851
S. M. Ahmed and R. J. Mstafa, "A comprehensive survey on bone segmentation techniques in knee osteoarthritis research: From conventional methods to deep learning," Diagnostics, 2022. DOI: 10.3390/diagnostics12030611 DOI: https://doi.org/10.3390/diagnostics12030611
V. M. Di Mucci, A. Cardellicchio, and S. Ruggieri, "Artificial intelligence in structural health management of existing bridges," Autom. Constr., 2024. DOI: 10.1016/j.autcon.2024.105719 DOI: https://doi.org/10.1016/j.autcon.2024.105719
R. A. Dar, M. Rasool, and A. Assad, "Breast cancer detection using deep learning: Datasets, methods, and challenges ahead," Comput. Biol. Med., 2022.
K. Bayoudh, R. Knani, F. Hamdaoui, and A. Mtibaa, "A survey on deep multimodal learning for computer vision: Advances, trends, applications, and datasets," Vis. Comput., 2022. DOI: 10.1007/s00371-021-02166-7 DOI: https://doi.org/10.1007/s00371-021-02166-7
K. Choudhary, B. DeCost, C. Chen, and A. Jain, "Recent advances and applications of deep learning methods in materials science," NPJ Comput. Mater., 2022. DOI: 10.1038/s41524-022-00734-6 DOI: https://doi.org/10.1038/s41524-022-00734-6
Z. Marinov, P. F. Jäger, J. Egger, and J. Kleesiek, "Deep interactive segmentation of medical images: A systematic review and taxonomy," IEEE Trans. Pattern Anal. Mach. Intell., 2024.
DOI: 10.1109/TPAMI.2024.3452629 DOI: https://doi.org/10.1109/TPAMI.2024.3452629
V. Andrearczyk, V. Oreiller, M. Jreige, and M. Vallieres, "Overview of the HECKTOR challenge at MICCAI 2020: Automatic head and neck tumor segmentation in PET/CT," Tumor Segmentation, Springer, 2021. DOI: 10.1007/978-3-030-67194-5 DOI: https://doi.org/10.1007/978-3-030-67194-5
Q. Da, X. Huang, Z. Li, Y. Zuo, C. Zhang, and J. Liu, "DigestPath: A benchmark dataset with challenge review for pathological detection and segmentation of the digestive system," Med. Image Anal., 2022. DOI: 10.1016/j.media.2022.102485 DOI: https://doi.org/10.1016/j.media.2022.102485
H. Mittal, A. C. Pandey, M. Saraswat, and S. Kumar, "A comprehensive survey of image segmentation: Clustering methods, performance parameters, and benchmark datasets," Multimed. Tools Appl., Springer, 2022. DOI: 10.1007/s11042-021-10594-9 DOI: https://doi.org/10.1007/s11042-021-10594-9
W. Gu, S. Bai, and L. Kong, "A review on 2D instance segmentation based on deep neural networks," Image Vis. Comput., 2022. DOI: 10.1016/j.imavis.2022.104401 DOI: https://doi.org/10.1016/j.imavis.2022.104401
T. A. Soomro, L. Zheng, A. J. Afifi, and A. Ali, "Image segmentation for MR brain tumor detection using machine learning: A review," IEEE Rev. Biomed. Eng., 2022. DOI: 10.1109/RBME.2022.3185292 DOI: https://doi.org/10.1109/RBME.2022.3185292
J. Luengo, R. Moreno, I. Sevillano, and D. Charte, "A tutorial on the segmentation of metallographic images: Taxonomy, new MetalDAM dataset, deep learning-based ensemble model, experimental analysis," Inf., 2022. DOI: 10.1016/j.inffus.2021.09.018 DOI: https://doi.org/10.1016/j.inffus.2021.09.018
E. S. Biratu, F. Schwenker, Y. M. Ayano, and T. G. Debelee, "A survey of brain tumor segmentation and classification algorithms," J. Imaging, 2021.
DOI: 10.3390/jimaging7090179 DOI: https://doi.org/10.3390/jimaging7090179
P. Malhotra, S. Gupta, and D. Koundal, "Deep neural networks for medical image segmentation," J. Healthc. Eng., 2022. DOI: 10.1155/2022/9580991 DOI: https://doi.org/10.1155/2022/9580991
H. Huang and X. Yang, "Automatic detection of pulmonary nodules in CT images using improved thresholding and region growing algorithms," J. Med. Imaging Health Inform., vol. 9, no. 5, pp. 1060-1067, 2019. DOI: 10.1166/jmihi.2019.2672 DOI: https://doi.org/10.1166/jmihi.2019.2672
C. Liu and L. Xu, "Lung nodule detection and segmentation in CT images using hybrid thresholding and region growing," Int. J. Comput. Assist. Radiol. Surg., vol. 10, no. 2, pp. 239-247, 2015. DOI: 10.1007/s11548-014-1037-3.
M. Hosseini and G. Saeed, "Lung nodule segmentation in CT scans: A comparative study of thresholding methods and region growing techniques," IEEE Access, vol. 5, pp. 14372-14383, 2017. DOI: 10.1109/ACCESS.2017.2746194.
S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, and C. Davatzikos, "Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels," in Proc. MICCAI, 2018, pp. 117-127. DOI: 10.1007/978-3-030-00928-1_13 DOI: https://doi.org/10.1038/sdata.2017.117
Ö. Çiçek, A. Abdulkadir, S. S. Lienkamp, T. Brox, and O. Ronneberger, "3D U-Net: Learning dense volumetric segmentation from sparse annotation," in Proc. MICCAI, 2016, pp. 424-432. DOI: 10.1007/978-3-319-46723-8_49 DOI: https://doi.org/10.1007/978-3-319-46723-8_49
F. Isensee, J. Petersen, A. Klein, D. Zimmerer, P. F. Jäger, and K. Maier-Hein, "Automated labeling of brain tumors in MRI with deep learning," Comput. Biol. Med., vol. 108, pp. 118-126, 2020. DOI: 10.1016/j.compbiomed.2019.03.007 DOI: https://doi.org/10.1016/j.compbiomed.2019.03.007
S. C. Liew and E. E. Ooi, "Retinal vessel segmentation using graph cuts," in Proc. IEEE Int. Conf. Image Process. (ICIP), 2012, pp. 3757-3760. DOI: 10.1109/ICIP.2012.6466871 DOI: https://doi.org/10.1109/ICIP.2012.6466871
J. Staal, M. D. Abramoff, M. Niemeijer, M. A. Viergever, and B. van Ginneken, "Ridge-based vessel segmentation in color images of the retina," in Proc. MICCAI, 2004, pp. 426-433. DOI: 10.1007/978-3-540-30136-3_55 DOI: https://doi.org/10.1109/TMI.2004.825627
A. M. Mendonça and C. A. Silva, "Retinal vessel segmentation using graph cuts," in Proc. Eur. Signal Process. Conf. (EUSIPCO), 2006, pp. 1-5. DOI: 10.1109/EUSIPCO.2006.4432953.
D. Müller and F. Kramer, "MIScnn: A framework for medical image segmentation with convolutional neural networks and deep learning," BMC Med. Imaging, 2021. DOI: 10.1186/s12880-020-00543-7 DOI: https://doi.org/10.1186/s12880-020-00543-7
A. R. Groendahl, I. S. Knudtsen, and B. N. Huynh, "Comparison of methods for fully automatic segmentation of tumors and involved nodes
Z. Sims, L. Strgar, D. Thirumalaisamy, and R. Heussner, "SEG: Segmentation evaluation in absence of ground truth labels," bioRxiv, 2023. DOI: 10.1101/2023.02.23.529809 DOI: https://doi.org/10.1101/2023.02.23.529809
M. Yaqub, F. Jinchao, K. Arshid, and S. Ahmed, "Deep learning-based image reconstruction for different medical imaging modalities," Methods Med., 2022. DOI: 10.1155/2022/8750648 DOI: https://doi.org/10.1155/2022/8750648
F. Turk, "RNGU-NET: A novel efficient approach in segmenting tuberculosis using chest X-ray images," PeerJ Comput. Sci., 2024. DOI: 10.7717/peerj-cs.1780 DOI: https://doi.org/10.7717/peerj-cs.1780
Y. Zhu, X. Yin, and E. Meijering, "A compound loss function with shape aware weight map for microscopy cell segmentation," IEEE Trans. Med. Imaging, 2022. DOI: 10.1109/TMI.2022.3226226 DOI: https://doi.org/10.1109/TMI.2022.3226226
D. Müller, I. Soto-Rey, and F. Kramer, "Towards a guideline for evaluation metrics in medical image segmentation," BMC Res. Notes, 2022. DOI: 10.1186/s13104-022-06096-y DOI: https://doi.org/10.1186/s13104-022-06096-y
F. Kofler, I. Ezhov, F. Isensee, and F. Balsiger, "Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient," arXiv, 2021. [Online]. Available: https://arxiv.org/abs/2105.06175
P. Furtado, "Testing segmentation popular loss and variations in three multiclass medical imaging problems," J. Imaging, 2021. DOI: 10.3390/jimaging7020016 DOI: https://doi.org/10.3390/jimaging7020016
I. M. Sheikh and M. A. Chachoo, "A hybrid cell image segmentation method based on the multilevel improvement of data," Tissue Cell, 2023. DOI: 10.1016/j.tice.2023.102169 DOI: https://doi.org/10.1016/j.tice.2023.102169
Z. Lambert and C. Le Guyader, "About the incorporation of topological prescriptions in CNNs for medical image semantic segmentation," J. Math. Imaging Vis., 2024. DOI: 10.1007/s10851-024-01172-3 DOI: https://doi.org/10.1007/s10851-024-01172-3
X. Luo and X. Zhuang, "Metric: An N-dimensional information-theoretic framework for groupwise registration and deep combined computing," IEEE Trans. Pattern Anal. Mach. Intell., 2022. DOI: 10.1109/TPAMI.2022.3225418 DOI: https://doi.org/10.1109/TPAMI.2022.3225418
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hussain A. Jaber, Basma A. Al-Ghali, Muna M. Kareem, Ilyas Çankaya, Oktay Algin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.