Study of Dyes and Methods of Their Removal, with a Focus on Studying Their Removal using Photocatalysts Based on Polyoxometalates: Review

Authors

  • Wisam Abdalhusain Jabbar Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Marwa F. Abdul Jabbar Department of Chemical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq.

DOI:

https://doi.org/10.29194/NJES.27040422

Keywords:

Dyes, Photocatalyst, Phosphotungstic Acid, Phosphomoldpic Acid

Abstract

Dyes are important chemicals in industrial uses; however, they are considered hazardous materials because they accompany sewage and are one of the causes of serious diseases such as cancer if not treated properly. The aim of this study is to specify the effect of dyes on the environment and human health and to remove them from water using the photochemical agent (polyoxometalate). By studying two types of Phosphotungstic acid (PTA) and phosphomolybdic acid (PMA) due to the good possibility of loading these acids on other materials using mixing and precipitation ways and without the need for high temperatures, as they are prepared at room temperature. They are also solid materials that are easy to separate, quickly dissolve in water, non-toxic, and do not release dangerous gases, which led to the need to use them in removing dyes, as they gave high efficiency. The research explains a comprehensive review of the use of PTA and PMA acid in Visible light-enhanced degradation of organic dye pollutants for three dyes: methylene blue, methyl orange and chromium B. Previous research is reviewed, with special emphasis on the performance of the photocatalyst, conditions that increase its efficiency, and the proposed mechanisms for the combined photocatalysts of PTA and PMA acids in developing the photocatalytic process. Finally, recent findings in this area are discussed, and possible future research continuations are suggested.

Downloads

Download data is not yet available.

References

P. B. P. Griffith et al., “Historical Group,” 2024.

B. Said, R. Souad M’, and E. H. Ahmed, “A review on classifications, recent synthesis and applications of textile dyes,” Inorg. Chem. Commun., vol. 3, no. March, p. 107891, 2020. DOI: https://doi.org/10.1016/j.inoche.2020.107891

E. Silveira, P. P. Marques, S. S. Silva, J. L. Lima-Filho, A. L. F. Porto, and E. B. Tambourgi, “Selection of Pseudomonas for industrial textile dyes decolourization,” Int. Biodeterior. Biodegrad., vol. 63, no. 2, pp. 230–235, 2009, doi: 10.1016/j.ibiod.2008.09.007. DOI: https://doi.org/10.1016/j.ibiod.2008.09.007

N. Mathur, P. Bhatnagar, and P. Bakre, “Assessing mutagenicity of textile dyes from pali (Rajasthan) using ames bioassay,” Appl. Ecol. Environ. Res., vol. 4, no. 1, pp. 111–118, 2006, doi: 10.15666/aeer/0401_111118. DOI: https://doi.org/10.15666/aeer/0401_111118

Y. Hsu, Y.-H. Chi, T.-F. Chang, C. YiChen, and M. Sone, “Mechanistic Insights into Photodegradation of Organic Dyes Using Heterostructure Photocatalysts,” Catalysts, vol. 9, no. 430, pp. 1–32, 2019. DOI: https://doi.org/10.3390/catal9050430

X. J. Zhou, Y. X. Ji, J. F. Cao, and Z. F. Xin, “Polyoxometalate encapsulated in metal-organic gel as an efficient catalyst for visible-light-driven dye degradation applications,” Appl. Organomet. Chem., vol. 32, no. 3, pp. 1–10, 2018, doi: 10.1002/aoc.4206. DOI: https://doi.org/10.1002/aoc.4206

G. Guidetti et al., “Photocatalytic activity of exfoliated graphite-TiO2 nanoparticle composites,” Nanoscale, vol. 11, no. 41, pp. 19301–19314, 2019, doi: 10.1039/c9nr06760d. DOI: https://doi.org/10.1039/C9NR06760D

F. D. Mai, C. S. Lu, C. W. Wu, C. H. Huang, J. Y. Chen, and C. C. Chen, “Mechanisms of photocatalytic degradation of Victoria Blue R using nano-TiO2,” Sep. Purif. Technol., vol. 62, no. 2, pp. 423–436, Sep. 2008, doi: 10.1016/j.seppur.2008.02.006. DOI: https://doi.org/10.1016/j.seppur.2008.02.006

V. C., M. N. C. Prabha, and M. A. L. A. Raj, “Green mediated synthesis of zinc oxide nanoparticles for the photocatalytic degradation of Rose Bengal dye,” Environ. Nanotechnology, Monit. Manag., vol. 6, pp. 134–138, Dec. 2016, doi: 10.1016/j.enmm.2016.09.004. DOI: https://doi.org/10.1016/j.enmm.2016.09.004

M. F. Chowdhury, S. Khandaker, F. Sarker, A. Islam, M. T. Rahman, and M. R. Awual, “Current treatment technologies and mechanisms for removal of indigo carmine dyes from wastewater: A review,” J. Mol. Liq., vol. 318, 2020, doi: 10.1016/j.molliq.2020.114061. DOI: https://doi.org/10.1016/j.molliq.2020.114061

V. K. Saharan, M. P. Badve, and A. B. Pandit, “Degradation of Reactive Red 120 dye using hydrodynamic cavitation,” Chem. Eng. J., vol. 178, pp. 100–107, 2011, doi: 10.1016/j.cej.2011.10.018. DOI: https://doi.org/10.1016/j.cej.2011.10.018

R. H. Waghchaure, V. A. Adole, and B. S. Jagdale, “Photocatalytic degradation of methylene blue, rhodamine B, methyl orange and Eriochrome black T dyes by modified ZnO nanocatalysts: A concise review,” Inorg. Chem. Commun., vol. 143, p. 109764, Sep. 2022, doi: 10.1016/j.inoche.2022.109764. DOI: https://doi.org/10.1016/j.inoche.2022.109764

M. F. Lanjwani et al., “Photocatalytic Degradation of Eriochrome Black T Dye by ZnO Nanoparticles Using Multivariate Factorial, Kinetics and Isotherm Models,” J. Clust. Sci., vol. 34, no. 2, pp. 1121–1132, 2023, doi: 10.1007/s10876-022-02293-8. DOI: https://doi.org/10.1007/s10876-022-02293-8

A. Rafiq et al., “Photocatalytic degradation of dyes using semiconductor photocatalysts to clean industrial water pollution,” J. Ind. Eng. Chem., vol. 97, pp. 111–128, 2021, doi: 10.1016/j.jiec.2021.02.017. DOI: https://doi.org/10.1016/j.jiec.2021.02.017

E. Routoula and S. V. Patwardhan, “Degradation of Anthraquinone Dyes from Effluents: A Review Focusing on Enzymatic Dye Degradation with Industrial Potential,” Environ. Sci. Technol., vol. 54, no. 2, pp. 647–664, 2020, doi: 10.1021/acs.est.9b03737. DOI: https://doi.org/10.1021/acs.est.9b03737

S. Velusamy, A. Roy, S. Sundaram, and T. Kumar Mallick, “A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment,” Chem. Rec., vol. 21, no. 7, pp. 1570–1610, 2021, doi: 10.1002/tcr.202000153. DOI: https://doi.org/10.1002/tcr.202000153

G. A. Ismail and H. Sakai, “Review on effect of different type of dyes on advanced oxidation processes (AOPs) for textile color removal,” Chemosphere, vol. 291, 2022, doi: 10.1016/j.chemosphere.2021.132906. DOI: https://doi.org/10.1016/j.chemosphere.2021.132906

C. Document and W. N. Standard, “Wastewater Guidelines,” no. July, 2016.

M. Berradi et al., “Textile finishing dyes and their impact on aquatic environs,” Heliyon, vol. 5, no. 11, 2019, doi: 10.1016/j.heliyon.2019.e02711. DOI: https://doi.org/10.1016/j.heliyon.2019.e02711

S. M. Burkinshaw and G. Salihu, “The role of auxiliaries in the immersion dyeing of textile fibres: Part 10 the influence of inorganic electrolyte on the wash-off of reactive dyes,” Dye. Pigment., vol. 149, no. September 2017, pp. 652–661, 2018, doi: 10.1016/j.dyepig.2017.11.034. DOI: https://doi.org/10.1016/j.dyepig.2017.11.034

M. L. Gulrajani, Disperse dyes, vol. 1. Woodhead Publishing Limited, 2011. doi: 10.1533/9780857093974.2.365. DOI: https://doi.org/10.1533/9780857093974.2.365

D. P. Chattopadhyay, Chemistry of dyeing, vol. 1. Woodhead Publishing Limited, 2011. doi: 10.1533/9780857093974.1.150. DOI: https://doi.org/10.1533/9780857093974.1.150

N. Sekar, Acid dyes, vol. 1. Woodhead Publishing Limited, 2011. doi: 10.1533/9780857093974.2.486. DOI: https://doi.org/10.1533/9780857093974.2.486

J. N. Chakraborty, “Dyeing with basic dye,” Fundam. Pract. Colouration Text., no. Ici, pp. 184–191, 2010, doi: 10.1533/9780857092823.184. DOI: https://doi.org/10.1533/9780857092823.184

S. Sahu, S. Pahi, J. K. Sahu, U. K. Sahu, and R. K. Patel, “Kendu (Diospyros melanoxylon Roxb) fruit peel activated carbon—an efficient bioadsorbent for methylene blue dye: equilibrium, kinetic, and thermodynamic study,” Environ. Sci. Pollut. Res., vol. 27, no. 18, pp. 22579–22592, 2020, doi: 10.1007/s11356-020-08561-2. DOI: https://doi.org/10.1007/s11356-020-08561-2

B. Chakraborty, L. Ray, and S. Basu, “Biochemical degradation of Methylene Blue using a continuous reactor packed with solid waste by E. coli and Bacillus subtilis isolated from wetland soil,” Desalin. Water Treat., vol. 57, no. 30, pp. 14077–14082, 2016, doi: 10.1080/19443994.2015.1063089. DOI: https://doi.org/10.1080/19443994.2015.1063089

A. Nasrullah et al., “Potential biosorbent derived from Calligonum polygonoides for removal of methylene blue dye from aqueous solution,” Sci. World J., vol. 2015, 2015, doi: 10.1155/2015/562693. DOI: https://doi.org/10.1155/2015/562693

C. Yang et al., “Highly efficient photocatalytic degradation of methylene blue by P2ABSA-modified TiO2 nanocomposite due to the photosensitization synergetic effect of TiO2 and P2ABSA,” RSC Adv., vol. 7, no. 38, pp. 23699–23708, 2017, doi: 10.1039/c7ra02423a. DOI: https://doi.org/10.1039/C7RA02423A

S. Mondal, M. E. De Anda Reyes, and U. Pal, “Plasmon induced enhanced photocatalytic activity of gold loaded hydroxyapatite nanoparticles for methylene blue degradation under visible light,” RSC Adv., vol. 7, no. 14, pp. 8633–8645, 2017, doi: 10.1039/C6RA28640B. DOI: https://doi.org/10.1039/C6RA28640B

J. Lin, Z. Luo, J. Liu, and P. Li, “Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites,” Mater. Sci. Semicond. Process., vol. 87, no. 20, pp. 24–31, 2018, doi: 10.1016/j.mssp.2018.07.003. DOI: https://doi.org/10.1016/j.mssp.2018.07.003

M. Rashad, N. M. Shaalan, and A. M. Abd-Elnaiem, “Degradation enhancement of methylene blue on ZnO nanocombs synthesized by thermal evaporation technique,” Desalin. Water Treat., vol. 57, no. 54, pp. 26267–26273, 2016, doi: 10.1080/19443994.2016.1163511. DOI: https://doi.org/10.1080/19443994.2016.1163511

V. L. E. Siong, K. M. Lee, J. C. Juan, C. W. Lai, X. H. Tai, and C. S. Khe, “Removal of methylene blue dye by solvothermally reduced graphene oxide: A metal-free adsorption and photodegradation method,” RSC Adv., vol. 9, no. 64, pp. 37686–37695, 2019, doi: 10.1039/c9ra05793e. DOI: https://doi.org/10.1039/C9RA05793E

E. R. León, E. L. Rodríguez, C. R. Beas, G. Plascencia-Villa, and R. A. I. Palomares, “Study of Methylene Blue Degradation by Gold Nanoparticles Synthesized within Natural Zeolites,” J. Nanomater., vol. 2016, 2016, doi: 10.1155/2016/9541683. DOI: https://doi.org/10.1155/2016/9541683

T. Soltani and M. H. Entezari, “Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation,” J. Mol. Catal. A Chem., vol. 377, no. 3, pp. 197–203, 2013, doi: 10.1016/j.molcata.2013.05.004. DOI: https://doi.org/10.1016/j.molcata.2013.05.004

S. Rajendran, M. M. Khan, F. Gracia, J. Qin, V. K. Gupta, and S. Arumainathan, “Ce3+-ion-induced visible-light photocatalytic degradation and electrochemical activity of ZnO/CeO2 nanocomposite,” Sci. Rep., vol. 6, no. July, pp. 1–11, 2016, doi: 10.1038/srep31641. DOI: https://doi.org/10.1038/srep31641

A. Sáenz-Trevizo et al., “On the Discoloration of Methylene Blue by Visible Light,” J. Fluoresc., vol. 29, no. 1, pp. 15–25, 2019, doi: 10.1007/s10895-018-2304-6. DOI: https://doi.org/10.1007/s10895-018-2304-6

S. Shahabuddin, N. M. Sarih, S. Mohamad, and J. J. Ching, “SrTiO3 nanocube-doped polyaniline nanocomposites with enhanced photocatalytic degradation of methylene blue under visible light,” Polymers (Basel)., vol. 8, no. 2, 2016, doi: 10.3390/polym8020027. DOI: https://doi.org/10.3390/polym8020027

Y. Liu et al., “Preparation of Polyaniline/Emulsion Microsphere Composite for Efficient Adsorption of Organic Dyes,” Polymers (Basel)., vol. 12, no. 1, p. 167, Jan. 2020, doi: 10.3390/polym12010167. DOI: https://doi.org/10.3390/polym12010167

C. F. Carolin, P. S. Kumar, and G. J. Joshiba, “Sustainable approach to decolourize methyl orange dye from aqueous solution using novel bacterial strain and its metabolites characterization,” Clean Technol. Environ. Policy, vol. 23, no. 1, pp. 173–181, Jan. 2021, doi: 10.1007/s10098-020-01934-8. DOI: https://doi.org/10.1007/s10098-020-01934-8

N. A. Youssef, S. A. Shaban, F. A. Ibrahim, and A. S. Mahmoud, “Degradation of methyl orange using Fenton catalytic reaction,” Egypt. J. Pet., vol. 25, no. 3, pp. 317–321, 2016, doi: 10.1016/j.ejpe.2015.07.017. DOI: https://doi.org/10.1016/j.ejpe.2015.07.017

J.-H. Huang, K.-L. Huang, S.-Q. Liu, A.-T. Wang, and C. Yan, “Adsorption of Rhodamine B and methyl orange on a hypercrosslinked polymeric adsorbent in aqueous solution,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 330, no. 1, pp. 55–61, Nov. 2008, doi: 10.1016/j.colsurfa.2008.07.050. DOI: https://doi.org/10.1016/j.colsurfa.2008.07.050

M. Farhan Hanafi and N. Sapawe, “A review on the water problem associate with organic pollutants derived from phenol, methyl orange, and remazol brilliant blue dyes,” Mater. Today Proc., vol. 31, pp. A141–A150, 2020, doi: 10.1016/j.matpr.2021.01.258. DOI: https://doi.org/10.1016/j.matpr.2021.01.258

A. Yadav, A. Kumar, A. Tripathi, and M. Das, “Sunset yellow FCF, a permitted food dye, alters functional responses of splenocytes at non-cytotoxic dose,” Toxicol. Lett., vol. 217, no. 3, pp. 197–204, Mar. 2013, doi: 10.1016/j.toxlet.2012.12.016. DOI: https://doi.org/10.1016/j.toxlet.2012.12.016

S. Rohilla et al., “Excellent uv‐light triggered photocatalytic performance of zno.Sio2 nanocomposite for water pollutant compound methyl orange dye,” Nanomaterials, vol. 11, no. 10, 2021, doi: 10.3390/nano11102548. DOI: https://doi.org/10.3390/nano11102548

V. A. Gómez-Obando, A.-M. García-Mora, J. S. Basante, A. Hidalgo, and L.-A. Galeano, “CWPO Degradation of Methyl Orange at Circumneutral pH: Multi-Response Statistical Optimization, Main Intermediates and by-Products,” Front. Chem., vol. 7, Nov. 2019, doi: 10.3389/fchem.2019.00772. DOI: https://doi.org/10.3389/fchem.2019.00772

R. S. Masarbo, M. Ismailsab, T. R. Monisha, A. S. Nayak, and T. B. Karegoudar, “Enhanced decolorization of sulfonated azo dye methyl orange by single and mixed bacterial strains AK1, AK2 and VKY1,” Bioremediat. J., vol. 22, no. 3–4, pp. 136–146, Oct. 2018, doi: 10.1080/10889868.2018.1516612. DOI: https://doi.org/10.1080/10889868.2018.1516612

M. Ahmad, A. R. A. Aziz, S. A. Mazari, A. G. Baloch, and S. Nizamuddin, “Photocatalytic degradation of methyl orange from wastewater using a newly developed Fe-Cu-Zn-ZSM-5 catalyst,” Environ. Sci. Pollut. Res., vol. 27, no. 21, pp. 26239–26248, Jul. 2020, doi: 10.1007/s11356-020-08940-9. DOI: https://doi.org/10.1007/s11356-020-08940-9

M. Ismail, S. Gul, M. I. Khan, M. A. Khan, A. M. Asiri, and S. B. Khan, “Medicago polymorpha-mediated antibacterial silver nanoparticles in the reduction of methyl orange,” Green Process. Synth., vol. 8, no. 1, pp. 118–127, 2019, doi: 10.1515/gps-2018-0030. DOI: https://doi.org/10.1515/gps-2018-0030

E. Oyarce, B. Butter, P. Santander, and J. Sánchez, “Polyelectrolytes applied to remove methylene blue and methyl orange dyes from water via polymer-enhanced ultrafiltration,” J. Environ. Chem. Eng., vol. 9, no. 6, p. 106297, Dec. 2021, doi: 10.1016/j.jece.2021.106297. DOI: https://doi.org/10.1016/j.jece.2021.106297

I. Khan, K. Saeed, N. Ali, I. Khan, B. Zhang, and M. Sadiq, “Heterogeneous photodegradation of industrial dyes: An insight to different mechanisms and rate affecting parameters,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104364, Oct. 2020, doi: 10.1016/j.jece.2020.104364. DOI: https://doi.org/10.1016/j.jece.2020.104364

A. C. Mecha and M. N. Chollom, “Photocatalytic ozonation of wastewater: a review,” Environ. Chem. Lett., vol. 18, no. 5, pp. 1491–1507, Sep. 2020, doi: 10.1007/s10311-020-01020-x. DOI: https://doi.org/10.1007/s10311-020-01020-x

M. Tuzen, A. Sarı, and T. A. Saleh, “Response surface optimization, kinetic and thermodynamic studies for effective removal of rhodamine B by magnetic AC/CeO2 nanocomposite,” J. Environ. Manage., vol. 206, pp. 170–177, Jan. 2018, doi: 10.1016/j.jenvman.2017.10.016. DOI: https://doi.org/10.1016/j.jenvman.2017.10.016

O. Üner, Ü. Geçgel, H. Kolancilar, and Y. Bayrak, “Adsorptive Removal of Rhodamine B with Activated Carbon Obtained from Okra Wastes,” Chem. Eng. Commun., vol. 204, no. 7, pp. 772–783, 2017, doi: 10.1080/00986445.2017.1319361. DOI: https://doi.org/10.1080/00986445.2017.1319361

E. Birtalan et al., “Investigating rhodamine B‐labeled peptoids: Scopes and limitations of its applications,” Pept. Sci., vol. 96, no. 5, pp. 694–701, Jan. 2011, doi: 10.1002/bip.21617. DOI: https://doi.org/10.1002/bip.21617

S. Singh, A. Kumar, and H. Gupta, “Activated banana peel carbon: a potential adsorbent for Rhodamine B decontamination from aqueous system,” Appl. Water Sci., vol. 10, no. 8, pp. 1–8, 2020, doi: 10.1007/s13201-020-01274-4. DOI: https://doi.org/10.1007/s13201-020-01274-4

V. K. Garg, R. Gupta, and T. Juneja, “Removal of a basic dye (rhodamine-b) from aqueous solution by adsorption using timber industry waste,” Chem. Biochem. Eng. Q., vol. 19, no. 1, pp. 75–80, 2005.

K. A. Adegoke, O. R. Adegoke, A. O. Araoye, J. Ogunmodede, O. S. Agboola, and O. S. Bello, “Engineered raw, carbonaceous, and modified biomass-based adsorbents for Rhodamine B dye removal from water and wastewater,” Bioresour. Technol. Reports, vol. 18, p. 101082, Jun. 2022, doi: 10.1016/j.biteb.2022.101082. DOI: https://doi.org/10.1016/j.biteb.2022.101082

X. Wang et al., “Fabrication of graphene oxide/polydopamine adsorptive membrane by stepwise in-situ growth for removal of rhodamine B from water,” Desalination, vol. 516, p. 115220, Nov. 2021, doi: 10.1016/j.desal.2021.115220. DOI: https://doi.org/10.1016/j.desal.2021.115220

S. Harish et al., “Interface enriched highly interlaced layered MoS2/NiS2nanocomposites for the photocatalytic degradation of rhodamine B dye,” RSC Adv., vol. 11, no. 31, pp. 19283–19293, 2021, doi: 10.1039/d1ra01941d. DOI: https://doi.org/10.1039/D1RA01941D

L. Todd, “Accepted manuscript Development Accepted manuscript,” no. June, pp. 1–33, 2015.

D. Bhatia, N. R. Sharma, J. Singh, and R. S. Kanwar, “Biological methods for textile dye removal from wastewater: A review,” Crit. Rev. Environ. Sci. Technol., vol. 47, no. 19, pp. 1836–1876, 2017, doi: 10.1080/10643389.2017.1393263. DOI: https://doi.org/10.1080/10643389.2017.1393263

W. Ruan, J. Hu, J. Qi, Y. Hou, C. Zhou, and X. Wei, “Removal of dyes from wastewater by nanomaterials : A review,” Adv. Mater. Lett., vol. 10, no. 1, pp. 9–20, 2019, doi: 10.5185/amlett.2019.2148. DOI: https://doi.org/10.5185/amlett.2019.2148

C. Taylor, M. Matzke, A. Kroll, D. S. Read, C. Svendsen, and A. Crossley, “Toxic interactions of different silver forms with freshwater green algae and cyanobacteria and their effects on mechanistic endpoints and the production of extracellular polymeric substances,” Environ. Sci. Nano, vol. 3, no. 2, pp. 396–408, 2016, doi: 10.1039/c5en00183h. DOI: https://doi.org/10.1039/C5EN00183H

E. Alventosa-De Lara, S. Barredo-Damas, M. I. Alcaina-Miranda, and M. I. Iborra-Clar, “Evolution of membrane performance during the ultrafiltration of reactive black 5 solutions: Effect of feed characteristics and operating pressure,” Chem. Eng. Trans., vol. 29, pp. 1285–1290, 2012, doi: 10.3303/CET1229215.

S. Cheng, D. L. Oatley, P. M. Williams, and C. J. Wright, “Characterisation and application of a novel positively charged nanofiltration membrane for the treatment of textile industry wastewaters,” Water Res., vol. 46, no. 1, pp. 33–42, 2012, doi: 10.1016/j.watres.2011.10.011. DOI: https://doi.org/10.1016/j.watres.2011.10.011

T. Xu, “Ion exchange membranes: State of their development and perspective,” J. Memb. Sci., vol. 263, no. 1–2, pp. 1–29, 2005, doi: 10.1016/j.memsci.2005.05.002. DOI: https://doi.org/10.1016/j.memsci.2005.05.002

S. Sharma and A. Kaur, “Various methods for removal of dyes from industrial effluents - a review,” Indian J. Sci. Technol., vol. 11, no. 12, pp. 1–21, 2018, doi: 10.17485/ijst/2018/v11i12/120847. DOI: https://doi.org/10.17485/ijst/2018/v11i12/120847

C. Kathing and G. Saini, “A Review of Various Treatment Methods for the Removal of Dyes from Textile Effluent,” Recent Prog. Mater., vol. 04, no. 04, pp. 1–15, 2022, doi: 10.21926/rpm.2204028. DOI: https://doi.org/10.21926/rpm.2204028

K. Y. Foo and B. H. Hameed, “An overview of dye removal via activated carbon adsorption process,” Desalin. Water Treat., vol. 19, no. 1–3, pp. 255–274, 2010, doi: 10.5004/dwt.2010.1214. DOI: https://doi.org/10.5004/dwt.2010.1214

S. Dawood and T. K. Sen, “Review on Dye Removal from Its Aqueous Solution into Alternative Cost Ef-fective and Non-Conventional Adsorbents Citation: Tushar K Sen, et al. (2014) Review on Dye Removal from Its Aqueous Solution into Alternative Cost Effective and Non-Conventional Ads,” J Chem Proc Eng, vol. 1, p. 104, 2014.

A. E. Ali et al., “Removal of Azo Dyes from Aqueous Effluent Using Bio-Based Activated Carbons: Toxicity Aspects and Environmental Impact,” Separations, vol. 10, no. 9, 2023, doi: 10.3390/separations10090506. DOI: https://doi.org/10.3390/separations10090506

M. G. El-Desouky, M. A. G. Khalil, M. A. M. El-Afify, A. A. El-Bindary, and M. A. El-Bindary, Effective methods for removing different types of dyes – modelling analysisstatistical physics treatment and DFT calculations: a review, vol. 280, no. January. 2022. doi: 10.5004/dwt.2022.29029. DOI: https://doi.org/10.5004/dwt.2022.29029

V. Golob, A. Vinder, and M. Simonič, “Efficiency of the coagulation/flocculation method for the treatment of dyebath effluents,” Dye. Pigment., vol. 67, no. 2, pp. 93–97, 2005, doi: 10.1016/j.dyepig.2004.11.003. DOI: https://doi.org/10.1016/j.dyepig.2004.11.003

P. W. THOMPSON, Homogeneous Catalysis, vol. 13, no. 10. 1965. doi: 10.1111/j.1532-5415.1965.tb00182.x. DOI: https://doi.org/10.1111/j.1532-5415.1965.tb00182.x

Y. Zhao, K. Lu, H. Xu, L. Zhu, and S. Wang, “A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion,” Renew. Sustain. Energy Rev., vol. 139, no. December 2020, p. 110706, 2021, doi: 10.1016/j.rser.2021.110706. DOI: https://doi.org/10.1016/j.rser.2021.110706

M. Ramos, A. P. S. Dias, J. F. Puna, J. Gomes, and J. C. Bordado, “Biodiesel production processes and sustainable raw materials,” Energies, vol. 12, no. 23, 2019, doi: 10.3390/en12234408. DOI: https://doi.org/10.3390/en12234408

I. A. Balcioglu, I. Arslan, and M. T. Sacan, “Homogenous and heterogenous advanced oxidation of two commercial reactive dyes,” Environ. Technol. (United Kingdom), vol. 22, no. 7, pp. 813–822, 2001, doi: 10.1080/095933322086180323. DOI: https://doi.org/10.1080/095933322086180323

J. M. Rosa, A. M. F. Fileti, E. B. Tambourgi, and J. C. C. Santana, “Dyeing of cotton with reactive dyestuffs: The continuous reuse of textile wastewater effluent treated by Ultraviolet / Hydrogen peroxide homogeneous photocatalysis,” J. Clean. Prod., vol. 90, pp. 60–65, 2015, doi: 10.1016/j.jclepro.2014.11.043. DOI: https://doi.org/10.1016/j.jclepro.2014.11.043

N. A. Mohd Fadzil, Z. Zainal, and A. H. Abdullah, “Ozone-assisted decolorization of methyl orange via homogeneous and heterogeneous photocatalysis,” Int. J. Electrochem. Sci., vol. 7, no. 12, pp. 11993–12003, 2012, doi: 10.1016/s1452-3981(23)16520-5. DOI: https://doi.org/10.1016/S1452-3981(23)16520-5

S. N. Ahmed and W. Haider, “Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review,” Nanotechnology, vol. 29, no. 34, 2018, doi: 10.1088/1361-6528/aac6ea. DOI: https://doi.org/10.1088/1361-6528/aac6ea

Y. Liu et al., “Metal or metal-containing nanoparticle@MOF nanocomposites as a promising type of photocatalyst,” Coord. Chem. Rev., vol. 388, pp. 63–78, 2019, doi: 10.1016/j.ccr.2019.02.031. DOI: https://doi.org/10.1016/j.ccr.2019.02.031

H. Kumari, S. Suman, R. Ranga, and S. Chahal, A Review on Photocatalysis Used For Wastewater Treatment : Dye Degradation, vol. 234, no. 6. Springer International Publishing, 2023. doi: 10.1007/s11270-023-06359-9. DOI: https://doi.org/10.1007/s11270-023-06359-9

M. A. Rauf, S. B. Bukallah, A. Hamadi, A. Sulaiman, and F. Hammadi, “The effect of operational parameters on the photoinduced decoloration of dyes using a hybrid catalyst V2O5/TiO2,” Chem. Eng. J., vol. 129, no. 1–3, pp. 167–172, May 2007, doi: 10.1016/j.cej.2006.10.031. DOI: https://doi.org/10.1016/j.cej.2006.10.031

N. M. Mahmoodi, M. Arami, N. Y. Limaee, and N. S. Tabrizi, “Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor,” J. Colloid Interface Sci., vol. 295, no. 1, pp. 159–164, Mar. 2006, doi: 10.1016/j.jcis.2005.08.007. DOI: https://doi.org/10.1016/j.jcis.2005.08.007

M. A. Rauf and S. S. Ashraf, “Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution,” Chem. Eng. J., vol. 151, no. 1–3, pp. 10–18, 2009, doi: 10.1016/j.cej.2009.02.026. DOI: https://doi.org/10.1016/j.cej.2009.02.026

H. M. Coleman, V. Vimonses, G. Leslie, and R. Amal, “Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes,” J. Hazard. Mater., vol. 146, no. 3, pp. 496–501, Jul. 2007, doi: 10.1016/j.jhazmat.2007.04.049. DOI: https://doi.org/10.1016/j.jhazmat.2007.04.049

A. Y. Zhang, W. K. Wang, D. N. Pei, and H. Q. Yu, “Degradation of refractory pollutants under solar light irradiation by a robust and self-protected ZnO/CdS/TiO2 hybrid photocatalyst,” Water Res., vol. 92, pp. 78–86, 2016, doi: 10.1016/j.watres.2016.01.045. DOI: https://doi.org/10.1016/j.watres.2016.01.045

A. Kumar, “A Review on the Factors Affecting the Photocatalytic Degradation of Hazardous Materials,” Mater. Sci. Eng. Int. J., vol. 1, no. 3, pp. 106–114, 2017, doi: 10.15406/mseij.2017.01.00018. DOI: https://doi.org/10.15406/mseij.2017.01.00018

H. Zangeneh, A. A. L. Zinatizadeh, M. Habibi, M. Akia, and M. Hasnain Isa, “Photocatalytic oxidation of organic dyes and pollutants in wastewater using different modified titanium dioxides: A comparative review,” J. Ind. Eng. Chem., vol. 26, pp. 1–36, 2015, doi: 10.1016/j.jiec.2014.10.043. DOI: https://doi.org/10.1016/j.jiec.2014.10.043

C. Guillard, H. Lachheb, A. Houas, M. Ksibi, E. Elaloui, and J. M. Herrmann, “Influence of chemical structure of dyes, of pH and of inorganic salts on their photocatalytic degradation by TiO2 comparison of the efficiency of powder and supported TiO2,” J. Photochem. Photobiol. A Chem., vol. 158, no. 1, pp. 27–36, 2003, doi: 10.1016/S1010-6030(03)00016-9. DOI: https://doi.org/10.1016/S1010-6030(03)00016-9

P. Li, S. Ouyang, Y. Zhang, T. Kako, and J. Ye, “Surface-coordination-induced selective synthesis of cubic and orthorhombic NaNbO 3 and their photocatalytic properties,” J. Mater. Chem. A, vol. 1, no. 4, pp. 1185–1191, 2013, doi: 10.1039/C2TA00260D. DOI: https://doi.org/10.1039/C2TA00260D

S. Sinha Ray Editor, Springer Series in Materials Science 277 Processing of Polymer-based Nanocomposites. 2020. [Online]. Available: http://www.springer.com/series/856

F. Azeez et al., “The effect of surface charge on photocatalytic degradation of methylene blue dye using chargeable titania nanoparticles,” Sci. Rep., vol. 8, no. 1, pp. 1–9, 2018, doi: 10.1038/s41598-018-25673-5. DOI: https://doi.org/10.1038/s41598-018-25673-5

S.-L. Chiam, S.-Y. Pung, and F.-Y. Yeoh, “Recent developments in MnO2-based photocatalysts for organic dye removal: a review,” Environ. Sci. Pollut. Res., vol. 27, no. 6, pp. 5759–5778, Feb. 2020, doi: 10.1007/s11356-019-07568-8. DOI: https://doi.org/10.1007/s11356-019-07568-8

K. M. Reza, A. Kurny, and F. Gulshan, “Parameters affecting the photocatalytic degradation of dyes using TiO2: a review,” Appl. Water Sci., vol. 7, no. 4, pp. 1569–1578, 2017, doi: 10.1007/s13201-015-0367-y. DOI: https://doi.org/10.1007/s13201-015-0367-y

M. Adeel, M. Saeed, I. Khan, M. Muneer, and N. Akram, “Synthesis and Characterization of Co-ZnO and Evaluation of Its Photocatalytic Activity for Photodegradation of Methyl Orange,” ACS Omega, vol. 6, no. 2, pp. 1426–1435, 2021, doi: 10.1021/acsomega.0c05092. DOI: https://doi.org/10.1021/acsomega.0c05092

K. Saeed, I. Khan, and S.-Y. Park, “TiO 2 /amidoxime-modified polyacrylonitrile nanofibers and its application for the photodegradation of methyl blue in aqueous medium,” Desalin. Water Treat., vol. 54, no. 11, pp. 3146–3151, Jun. 2015, doi: 10.1080/19443994.2014.912157. DOI: https://doi.org/10.1080/19443994.2014.912157

H. Lachheb et al., “Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania,” Appl. Catal. B Environ., vol. 39, no. 1, pp. 75–90, 2002, doi: 10.1016/S0926-3373(02)00078-4. DOI: https://doi.org/10.1016/S0926-3373(02)00078-4

S. Tamilselvi, M. Asaithambi, and P. Sivakumar, “Nano-TiO2-loaded activated carbon fiber composite for photodegradation of a textile dye,” Desalin. Water Treat., vol. 57, no. 33, pp. 15495–15502, 2016, doi: 10.1080/19443994.2015.1071684. DOI: https://doi.org/10.1080/19443994.2015.1071684

A. Setyo Purnomo et al., “Anionic dye removal by immobilized bacteria into alginate-polyvinyl alcohol-bentonite matrix,” Heliyon, vol. 10, no. 6, p. e27871, 2024, doi: 10.1016/j.heliyon.2024.e27871. DOI: https://doi.org/10.1016/j.heliyon.2024.e27871

K. Saeed, I. Khan, T. Shah, and S. Y. Park, “Synthesis, characterization and photocatalytic activity of silver nanoparticles/amidoxime-modified polyacrylonitrile nanofibers,” Fibers Polym., vol. 16, no. 9, pp. 1870–1875, 2015, doi: 10.1007/s12221-015-5373-z. DOI: https://doi.org/10.1007/s12221-015-5373-z

R. Malik, V. Chaudhary, V. K. Tomer, P. S. Rana, S. P. Nehra, and S. Duhan, “Visible light-driven mesoporous Au–TiO2/SiO2 photocatalysts for advanced oxidation process,” Ceram. Int., vol. 42, no. 9, pp. 10892–10901, Jul. 2016, doi: 10.1016/j.ceramint.2016.03.222. DOI: https://doi.org/10.1016/j.ceramint.2016.03.222

S. M. Yakout, “New efficient sunlight photocatalysts based on Gd, Nb, V and Mn doped alpha-Bi2O3 phase,” J. Environ. Chem. Eng., vol. 8, no. 1, p. 103644, Feb. 2020, doi: 10.1016/j.jece.2019.103644. DOI: https://doi.org/10.1016/j.jece.2019.103644

E. N. Zare et al., “An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants,” Chemosphere, vol. 280, p. 130907, Oct. 2021, doi: 10.1016/j.chemosphere.2021.130907. DOI: https://doi.org/10.1016/j.chemosphere.2021.130907

M. Makeswari and P. Saraswathi, “Photo catalytic degradation of methylene blue and methyl orange from aqueous solution using solar light onto chitosan bi-metal oxide composite,” SN Appl. Sci., vol. 2, no. 3, pp. 1–12, 2020, doi: 10.1007/s42452-020-1980-4. DOI: https://doi.org/10.1007/s42452-020-1980-4

S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy, and V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2,” Sol. Energy Mater. Sol. Cells, vol. 77, no. 1, pp. 65–82, Apr. 2003, doi: 10.1016/S0927-0248(02)00255-6. DOI: https://doi.org/10.1016/S0927-0248(02)00255-6

Z. A. Che Ramli et al., “Photocatalytic Degradation of Methylene Blue under UV Light Irradiation on Prepared Carbonaceous TiO 2 ,” Sci. World J., vol. 2014, no. C, pp. 1–8, 2014, [Online]. Available: http://www.hindawi.com/journals/tswj/2014/415136/

A. P. Aziztyana, S. Wardhani, Y. P. Prananto, D. Purwonugroho, and Darjito, “Optimisation of Methyl Orange Photodegradation Using TiO2-Zeolite Photocatalyst and H2O2 in Acid Condition,” IOP Conf. Ser. Mater. Sci. Eng., vol. 546, no. 4, 2019, doi: 10.1088/1757-899X/546/4/042047. DOI: https://doi.org/10.1088/1757-899X/546/4/042047

R. Abdel-Aziz, M. A. Ahmed, and M. F. Abdel-Messih, “A novel UV and visible light driven photocatalyst AgIO4/ZnO nanoparticles with highly enhanced photocatalytic performance for removal of rhodamine B and indigo carmine dyes,” J. Photochem. Photobiol. A Chem., vol. 389, p. 112245, Feb. 2020, doi: 10.1016/j.jphotochem.2019.112245. DOI: https://doi.org/10.1016/j.jphotochem.2019.112245

D. Wu, K. Xia, C. Fang, X. Chen, and Y. Ye, “Rapid Removal of Azophloxine via Catalytic Degradation by a Novel Heterogeneous Catalyst under Visible Light,” Catalysts, vol. 10, no. 1, p. 138, Jan. 2020, doi: 10.3390/catal10010138. DOI: https://doi.org/10.3390/catal10010138

A. Jamil, T. H. Bokhari, M. Iqbal, M. Zuber, and I. H. Bukhari, “ZnO/UV/H 2 O 2 Based Advanced Oxidation of Disperse Red Dye,” Zeitschrift für Phys. Chemie, vol. 234, no. 1, pp. 129–143, Jan. 2020, doi: 10.1515/zpch-2019-0006. DOI: https://doi.org/10.1515/zpch-2019-0006

M. Rahmat et al., “Highly efficient removal of crystal violet dye from water by MnO2 based nanofibrous mesh/photocatalytic process,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 5149–5159, Nov. 2019, doi: 10.1016/j.jmrt.2019.08.038. DOI: https://doi.org/10.1016/j.jmrt.2019.08.038

A. R. Shah, H. Tahir, and TahiraYasmeen, “Optimization and modeling of photooxidative process for the degradation of reactive Red223,” J. Chem. Soc. Pakistan, vol. 42, no. 1, pp. 42–56, 2020, doi: 10.52568/000619/jcsp/42.01.2020. DOI: https://doi.org/10.52568/000619/JCSP/42.01.2020

A. Tabaï, O. Bechiri, and M. Abbessi, “Degradation of organic dye using a new homogeneous Fenton-like system based on hydrogen peroxide and a recyclable Dawson-type heteropolyanion,” Int. J. Ind. Chem., vol. 8, no. 1, pp. 83–89, 2017, doi: 10.1007/s40090-016-0104-x. DOI: https://doi.org/10.1007/s40090-016-0104-x

A. Inderyas et al., “Synthesis of immobilized ZnO over polyurethane and photocatalytic activity evaluation for the degradation of azo dye under UV and solar light irardiation,” Mater. Res. Express, vol. 7, no. 2, p. 025033, Feb. 2020, doi: 10.1088/2053-1591/ab715f. DOI: https://doi.org/10.1088/2053-1591/ab715f

M. Ashraf et al., “Hematite and Magnetite Nanostructures for Green and Sustainable Energy Harnessing and Environmental Pollution Control: A Review,” Chem. Res. Toxicol., vol. 33, no. 6, pp. 1292–1311, Jun. 2020, doi: 10.1021/acs.chemrestox.9b00308. DOI: https://doi.org/10.1021/acs.chemrestox.9b00308

T. H. Bokhari et al., “UV/H 2 O 2 , UV/H 2 O 2 /SnO 2 and Fe/H 2 O 2 based advanced oxidation processes for the degradation of disperse violet 63 in aqueous medium,” Mater. Res. Express, vol. 7, no. 1, p. 015531, Jan. 2020, doi: 10.1088/2053-1591/ab6c15. DOI: https://doi.org/10.1088/2053-1591/ab6c15

X. Li, H. Xue, and H. Pang, “Facile synthesis and shape evolution of well-defined phosphotungstic acid potassium nanocrystals as a highly efficient visible-light-driven photocatalyst,” Nanoscale, vol. 9, no. 1, pp. 216–222, 2017, doi: 10.1039/c6nr07680g. DOI: https://doi.org/10.1039/C6NR07680G

S. Omwoma, C. T. Gore, Y. Ji, C. Hu, and Y. F. Song, “Environmentally benign polyoxometalate materials,” Coord. Chem. Rev., vol. 286, pp. 17–29, 2015, doi: 10.1016/j.ccr.2014.11.013. DOI: https://doi.org/10.1016/j.ccr.2014.11.013

Y. Hou, J. Ma, T. Wang, and Q. Fu, “Phosphotungstic acid supported on magnetic core-shell nanoparticles with high photocatalytic activity,” Mater. Sci. Semicond. Process., vol. 39, pp. 229–234, 2015, doi: 10.1016/j.mssp.2015.05.015. DOI: https://doi.org/10.1016/j.mssp.2015.05.015

R. Dehghani, S. Aber, and F. Mahdizadeh, “Polyoxometalates and Their Composites as Photocatalysts for Organic Pollutants Degradation in Aqueous Media—A Review,” Clean - Soil, Air, Water, vol. 46, no. 12, 2018, doi: 10.1002/clen.201800413. DOI: https://doi.org/10.1002/clen.201800413

M. J. Janik, K. A. Campbell, B. B. Bardin, R. J. Davis, and M. Neurock, “A computational and experimental study of anhydrous phosphotungstic acid and its interaction with water molecules,” Appl. Catal. A Gen., vol. 256, no. 1–2, pp. 51–68, 2003, doi: 10.1016/S0926-860X(03)00388-0. DOI: https://doi.org/10.1016/S0926-860X(03)00388-0

P. Li, Q. Chen, B. Chen, and Z. Liu, “Preparation of phosphotungstic acid/SiC and their photocatalytic activity for rhodamine B,” Micro Nano Lett., vol. 15, no. 11, pp. 779–783, 2020, doi: 10.1049/mnl.2019.0734. DOI: https://doi.org/10.1049/mnl.2019.0734

B. Zhang, H. Asakura, J. Zhang, J. Zhang, S. De, and N. Yan, “ Stabilizing a Platinum 1 Single‐Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity ,” Angew. Chemie, vol. 128, no. 29, pp. 8459–8463, 2016, doi: 10.1002/ange.201602801. DOI: https://doi.org/10.1002/ange.201602801

M. A. Zanjanchi, H. Golmojdeh, and M. Arvand, “Enhanced adsorptive and photocatalytic achievements in removal of methylene blue by incorporating tungstophosphoric acid-TiO2 into MCM-41,” J. Hazard. Mater., vol. 169, no. 1–3, pp. 233–239, 2009, doi: 10.1016/j.jhazmat.2009.03.080. DOI: https://doi.org/10.1016/j.jhazmat.2009.03.080

W. Wang and S. Yang, “Photocatalytic Degradation of Organic Dye Methyl Orange with Phosphotungstic Acid,” J. Water Resour. Prot., vol. 02, no. 11, pp. 979–983, 2010, doi: 10.4236/jwarp.2010.211116. DOI: https://doi.org/10.4236/jwarp.2010.211116

S. Song, L. Fan, S. Xie, J. Liu, and L. Duan, “Photocatalytic Heteropolyacid/CdS (HPA/CdS) Composite for Degradation of Safranine T (ST),” pp. 257–262, 2015, doi: 10.2991/aeece-15.2015.52. DOI: https://doi.org/10.2991/aeece-15.2015.52

S. Farhadi, M. M. Amini, and F. Mahmoudi, “Phosphotungstic acid supported on aminosilica functionalized perovskite-type LaFeO3 nanoparticles: A novel recyclable and excellent visible-light photocatalyst,” RSC Adv., vol. 6, no. 105, pp. 102984–102996, 2016, doi: 10.1039/c6ra24627c. DOI: https://doi.org/10.1039/C6RA24627C

J. Joseph, R. C. Radhakrishnan, J. K. Johnson, S. P. Joy, and J. Thomas, “Ion-exchange mediated removal of cationic dye-stuffs from water using ammonium phosphomolybdate,” Mater. Chem. Phys., vol. 242, p. 122488, 2020, doi: 10.1016/j.matchemphys.2019.122488. DOI: https://doi.org/10.1016/j.matchemphys.2019.122488

J. Li et al., “The comparative study of two reusable phosphotungstic acid salts/reduced graphene oxides composites with enhanced photocatalytic activity,” Environ. Sci. Pollut. Res., vol. 26, no. 33, pp. 34248–34260, 2019, doi: 10.1007/s11356-018-4047-y. DOI: https://doi.org/10.1007/s11356-018-4047-y

M. Taghdiri, F. Ghanei, M. Ardakani, and S. H. Banitaba, “Hybridization of Phosphomolybdic Acid with Hexamine and Hexamine-Nickel for Improving of Activity in Photodegradation of Dyes Under Sunlight Irradiation,” Iran. J. Anal. Chem., vol. 8, no. 2, pp. 80–89, 2021, doi: 10.30473/ijac.2022.62496.1219.

S. Wei, J. Wu, P. Chen, B. Fu, X. Zhu, and M. Chen, “Integration of Phosphotungstic Acid into Zeolitic Imidazole Framework-67 for Efficient Methylene Blue Adsorption,” ACS Omega, vol. 7, no. 11, pp. 9900–9908, 2022, doi: 10.1021/acsomega.2c00377. DOI: https://doi.org/10.1021/acsomega.2c00377

M. Praveendaniel and R. A. Selvan, “Synthesis and Application of TiO2-Phosphomolybdic acid nanocomposite,” J. Chem. Lett, vol. 4, pp. 117–129, 2023, [Online]. Available: https://doi.org/

Y. Yang, Q. Wu, Y. Guo, C. Hu, and E. Wang, “Efficient degradation of dye pollutants on nanoporous pol[1] Y. Yang, Q. Wu, Y. Guo, C. Hu, and E. Wang, ‘Efficient degradation of dye pollutants on nanoporous polyoxotungstate- anatase composite under visible-light irradiation,’ J. Mol. Catal. A Chem., v,” J. Mol. Catal. A Chem., vol. 225, no. 2, pp. 203–212, 2005, doi: 10.1016/j.molcata.2004.08.031. DOI: https://doi.org/10.1016/j.molcata.2004.08.031

X. Qu, Y. Guo, and C. Hu, “Preparation and heterogeneous photocatalytic activity of mesoporous H3PW12O40/ZrO2 composites,” J. Mol. Catal. A Chem., vol. 262, no. 1–2, pp. 128–135, Feb. 2007, doi: 10.1016/j.molcata.2006.08.026. DOI: https://doi.org/10.1016/j.molcata.2006.08.026

Y. H. Zhang, J. X. Su, X. P. Wang, Q. Pan, and W. Qu, “Photocatalytic Performance of Polyoxometallate Intercalated Layered Double Hydroxide,” Mater. Sci. Forum, vol. 663–665, pp. 187–190, Nov. 2010, doi: 10.4028/www.scientific.net/MSF.663-665.187. DOI: https://doi.org/10.4028/www.scientific.net/MSF.663-665.187

R. Kannan, S. Gouse Peera, A. Obadiah, and S. Vasanthkumar, “MnO2 supported POM-a novel nanocomposite for dye degradation,” Dig. J. Nanomater. Biostructures, vol. 6, no. 2, pp. 829–835, 2011.

Y. WANG, K. LU, and C. FENG, “Photocatalytic degradation of methyl orange by polyoxometalates supported on yttrium-doped TiO2,” J. Rare Earths, vol. 29, no. 9, pp. 866–871, Sep. 2011, doi: 10.1016/S1002-0721(10)60557-1. DOI: https://doi.org/10.1016/S1002-0721(10)60557-1

H. Shi, T. Zhang, T. An, B. Li, and X. Wang, “Enhancement of photocatalytic activity of nano-scale TiO2 particles co-doped by rare earth elements and heteropolyacids,” J. Colloid Interface Sci., vol. 380, no. 1, pp. 121–127, Aug. 2012, doi: 10.1016/j.jcis.2012.04.069. DOI: https://doi.org/10.1016/j.jcis.2012.04.069

S. Yang, Y. Huang, Y. Wang, Y. Yang, M. Xu, and G. Wang, “Photocatalytic Degradation of Rhodamine B with H 3 PW 12 O 40 /SiO 2 Sensitized by H 2 O 2,” Int. J. Photoenergy, vol. 2012, pp. 1–6, 2012, doi: 10.1155/2012/927132. DOI: https://doi.org/10.1155/2012/927132

G. Wei, L. Zhang, T. Wei, Q. Luo, and Z. Tong, “UV-H2O2 degradation of methyl orange catalysed by H3PW12O40/activated clay,” Environ. Technol. (United Kingdom), vol. 33, no. 14, pp. 1589–1595, 2012, doi: 10.1080/09593330.2011.639395. DOI: https://doi.org/10.1080/09593330.2011.639395

J. Zhang, C. Li, B. Wang, H. Cui, J. Zhai, and Q. Li, “Synthesis, characterization and photocatalytic application of H3PW12O40/BiVO4 composite photocatalyst,” Sci. China Chem., vol. 56, no. 9, pp. 1285–1292, Sep. 2013, doi: 10.1007/s11426-013-4889-6. DOI: https://doi.org/10.1007/s11426-013-4889-6

W. Zhou, N. Li, M. Cao, and C. Hu, “Three-dimensional Ag/POM/Cu2O tricomponent nanohybrids with enhanced visible-light photocatalytic activity,” Mater. Lett., vol. 99, pp. 68–71, May 2013, doi: 10.1016/j.matlet.2013.02.073. DOI: https://doi.org/10.1016/j.matlet.2013.02.073

R. Fazaeli, H. Aliyan, S. Tangestaninejad, and S. Parishani Foroushani, “Photocatalytic degradation of RhB, MG, MB, Roz.B, 3-BL and CI-50 by PW12-APTES@MCF as nanosized mesoporous photocatalyst,” J. Iran. Chem. Soc., vol. 11, no. 6, pp. 1687–1701, Dec. 2014, doi: 10.1007/s13738-014-0442-6. DOI: https://doi.org/10.1007/s13738-014-0442-6

J. He, H. Sun, S. Indrawirawan, X. Duan, M. O. Tade, and S. Wang, “Novel polyoxometalate@g-C3N4 hybrid photocatalysts for degradation of dyes and phenolics,” J. Colloid Interface Sci., vol. 456, pp. 15–21, Oct. 2015, doi: 10.1016/j.jcis.2015.06.003. DOI: https://doi.org/10.1016/j.jcis.2015.06.003

C. Leal, S. Gomez, C. Saux, L. B. Pierella, and L. R. Pizzio, “Quim. Nova,” vol. 38, no. 4, pp. 518–525, 2015.

L.-Y. Zhang et al., “Study on the Preparation of H 3 PW 12 O 40 –TiO 2 /Bentonite Composite Material,” Mater. Manuf. Process., vol. 30, no. 3, pp. 279–284, Mar. 2015, doi: 10.1080/10426914.2013.872273. DOI: https://doi.org/10.1080/10426914.2013.872273

W. Li et al., “Greatly enhanced photocatalytic activity and mechanism of H 3 PW 12 O 40 /polymethylmethacrylate/polycaprolactam sandwich nanofibrous membrane prepared by electrospinning,” J. Mater. Res., vol. 31, no. 19, pp. 3060–3068, Oct. 2016, doi: 10.1557/jmr.2016.313. DOI: https://doi.org/10.1557/jmr.2016.313

S.-J. Yang et al., “Photocatalytic degradation of organic dyes with H3PW12O40/TiO2–SiO2,” Rare Met., vol. 35, no. 10, pp. 797–803, Oct. 2016, doi: 10.1007/s12598-015-0521-6. DOI: https://doi.org/10.1007/s12598-015-0521-6

H. F. Shi et al., “Ag/AgxH3-xPMo12O40 nanowires with enhanced visible-light-driven photocatalytic performance,” ACS Appl. Mater. Interfaces, vol. 9, no. 1, pp. 422–430, 2017, doi: 10.1021/acsami.6b13009. DOI: https://doi.org/10.1021/acsami.6b13009

G. Liu, Y. Zhang, L. Xu, B. Xu, and F. Li, “A PW 12 /Bi 2 WO 6 composite photocatalyst for enhanced visible light photocatalytic degradation of organic dye pollutants,” New J. Chem., vol. 43, no. 8, pp. 3469–3475, 2019, doi: 10.1039/C8NJ05862H. DOI: https://doi.org/10.1039/C8NJ05862H

N. Lu et al., “Design of polyoxometallate-titania composite film (H 3PW 12O 40/TiO 2) for the degradation of an aqueous dye Rhodamine B under the simulated sunlight irradiation,” J. Hazard. Mater., vol. 199–200, no. September 2020, pp. 1–8, 2012, doi: 10.1016/j.jhazmat.2011.08.070. DOI: https://doi.org/10.1016/j.jhazmat.2011.08.070

P. Li, Z. Liu, B. Yang, Z. Jiang, and J. Yang, “Synthesis of Phosphotungstic Acid/S-doped g-C3N4 Photocatalyst and Its Photocatalytic Degradation of Organic Pollutants in Aqueous Solutions,” Medziagotyra, vol. 29, no. 2, pp. 135–141, 2023, doi: 10.5755/j02.ms.31053. DOI: https://doi.org/10.5755/j02.ms.31053

Downloads

Published

20-12-2024

How to Cite

[1]
W. A. Jabbar and M. F. Abdul Jabbar, “Study of Dyes and Methods of Their Removal, with a Focus on Studying Their Removal using Photocatalysts Based on Polyoxometalates: Review”, NJES, vol. 27, no. 4, pp. 422–440, Dec. 2024, doi: 10.29194/NJES.27040422.

Similar Articles

1-10 of 12

You may also start an advanced similarity search for this article.