Review of the Current Advances of Silver Halides-Based Composites as Photocatalysts for the Degradation of Organic Pollutants
DOI:
https://doi.org/10.29194/NJES.28030362Keywords:
AgX, Heterojunctions, Photocatalytic Mechanism, Organic Pollutants, Photocatalytic DegradationAbstract
Industrial activities significantly affect the environment by releasing many organic pollutants, including industrial dyes, phenols and antibiotics, which produce wastewater. Effective removal of these substances from wastewater has appeared as a noticeable research field owing to its environmental significance. Exorbitant operational expenses and the potential generation of supplementary pollutants load conventional techniques like adsorption, membrane separation, and coagulation. Semiconductor-based photocatalysis has effectively degraded organic contaminants into less toxic or biodegradable compounds. The construction of robust visible-light-sensitive photocatalytic hybrids for environmental decontamination is an inspiring task for researchers. The exceptional photocatalytic performance of silver halides (AgX, where X is I, Cl, and Br) has recently attracted significant consideration as photocatalysts. Moreover, the combination of silver halides with other photo-active semiconductors to create efficient visible-light-driven photocatalyst heterojunctions has significantly promoted the broader application of the photocatalysis process with enhanced efficiency. Ag-silver halides/semiconductors heterojunctions have developed as crucial components in efficient composites for photocatalysis through surface plasmonic actions, helping with visible light absorption. The current study overviews the most recent Ag and silver halide-based composite photocatalysts. Additionally, it provides an essential understanding of their promoted photocatalytic performances and their main applications in organic pollutant degradation. Moreover, the photocatalytic mechanisms and environmental applications of AgI and composites were discussed.
Downloads
References
J. Y. J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, "Heterojunction photocatalysts," Adv. Mater., vol. 29, p. 1601694, 2017. DOI: 10.1002/adma.201601694 DOI: https://doi.org/10.1002/adma.201601694
R. Huang, J. Wu, M. Zhang, B. Liu, Z. Zheng, and D. Luo, "Strategies to enhance photocatalytic activity of graphite carbon nitride-based photocatalysts," Mater. Des., vol. 210, p. 110040, 2021. DOI: 10.1016/j.matdes.2021.110040 DOI: https://doi.org/10.1016/j.matdes.2021.110040
A. K. D. Ammar, S. H. Attia, and H. G. Affat, "Extraction of metal ions mixture cadmium, iron, zinc and copper from aqueous solutions using emulsion liquid membrane technique," in Proc. 1st Nat. Conf. Eng. Sci. (FNCES), IEEE, 2012, pp. 1-10. DOI: 10.1109/NCES.2012.6740483 DOI: https://doi.org/10.1109/NCES.2012.6740483
H. Huang, Y.-X. Li, H.-L. Wang, and W.-F. Jiang, "In situ fabrication of ultrathin-g-C₃N₄/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution," Appl. Surf. Sci., vol. 538, p. 148132, 2021. DOI: 10.1016/j.apsusc.2020.148132 DOI: https://doi.org/10.1016/j.apsusc.2020.148132
S. Sharma, V. Dutta, P. Singh, et al., "Carbon quantum dot supported semiconductor photocatalysts for efficient degradation of organic pollutants in water: a review," J. Clean. Prod., vol. 228, pp. 755-769, 2019. DOI: 10.1016/j.jclepro.2019.04.292 DOI: https://doi.org/10.1016/j.jclepro.2019.04.292
Y. A. Jabbar, Z. H. Graimed, B. H. Issa, M. A. Khadim, H. J. Ammar, S. H. Okab, and A. A. Shafiq, "A review study summarizes the main characterization techniques of nano-composite photocatalysts and their applications in photodegradation of organic pollutants," Environ. Nanotechnol. Monit. Manag., vol. 19, p. 100765, 2023. DOI: 10.1016/j.enmm.2022.100765 DOI: https://doi.org/10.1016/j.enmm.2022.100765
D. Zhu and Q. Zhou, "Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review," Environ. Nanotechnol. Monit. Manag., vol. 12, 2019. DOI: 10.1016/j.enmm.2019.100255 DOI: https://doi.org/10.1016/j.enmm.2019.100255
S. H. Ammar, W. A. Abdulnabi, et al., "Synthesis, characterization and environmental remediation applications of polyoxometalates-based magnetic zinc oxide nanocomposites (Fe₃O₄@ZnO/PMOs)," Environ. Nanotechnol. Monit. Manag., vol. 13, p. 100289, 2020. DOI: 10.1016/j.enmm.2020.100289 DOI: https://doi.org/10.1016/j.enmm.2020.100289
M. Pavel, C. Anastasescu, R.-N. State, A. Vasile, F. Papa, and I. Balint, "Photocatalytic degradation of organic and inorganic pollutants to harmless end products: assessment of practical application potential for water and air cleaning," Catalysts, vol. 13, no. 2, p. 380, 2023. DOI: 10.3390/catal13020380 DOI: https://doi.org/10.3390/catal13020380
S. Sharma, P. Raizada, P. Singh, et al., "Recent advances in silver bromide-based Z-scheme photocatalytic systems for environmental and energy applications: a review," J. Environ. Chem. Eng., vol. 9, no. 2, p. 105157, 2021. DOI: 10.1016/j.jece.2021.105157 DOI: https://doi.org/10.1016/j.jece.2021.105157
H. Lin, J. Cao, B. Luo, B. Xu, and S. Chen, "Synthesis of novel Z-scheme AgI/Ag/AgBr composite with enhanced visible light photocatalytic activity," Catal. Commun., vol. 21, pp. 91-93, 2012. DOI: 10.1016/j.catcom.2012.02.008 DOI: https://doi.org/10.1016/j.catcom.2012.02.008
W. Yang, L. Zhang, Y. Hu, Y. Zhong, H. B. Wu, and X. W. Lou, "Microwave-assisted synthesis of porous Ag₂S-Ag hybrid nanotubes with high visible-light photocatalytic activity," Angew. Chem., vol. 124, no. 46, pp. 11669-11672, 2012. DOI: 10.1002/ange.201206715 DOI: https://doi.org/10.1002/ange.201206715
C. An, S. Peng, and Y. Sun, "Facile synthesis of sunlight-driven AgCl:Ag plasmonic nanophotocatalyst," Adv. Mater., vol. 22, no. 23, pp. 2570-2574, 2010. DOI: 10.1002/adma.200904116 DOI: https://doi.org/10.1002/adma.200904116
X. Wang, S. Li, H. Yu, J. Yu, and S. Liu, "Ag₂O as a new visible-light photocatalyst: self-stability and high photocatalytic activity," Chem. Eur. J., vol. 17, no. 28, pp. 7777-7780, 2011. DOI: 10.1002/chem.201101032 DOI: https://doi.org/10.1002/chem.201101032
V. Sivakumar, R. Suresh, K. Giribabu, and V. Narayanan, "AgVO₃ nanorods: synthesis, characterization and visible light photocatalytic activity," Solid State Sci., vol. 39, pp. 34-39, 2015. DOI: 10.1016/j.solidstatesciences.2014.10.016 DOI: https://doi.org/10.1016/j.solidstatesciences.2014.10.016
A. Amirulsyafiee, M. M. Khan, and M. H. Harunsani, "Ag₃PO₄ and Ag₃PO₄-based visible light active photocatalysts: recent progress, synthesis, and photocatalytic applications," Catal. Commun., p. 106556, 2022. DOI: 10.1016/j.catcom.2022.106556 DOI: https://doi.org/10.1016/j.catcom.2022.106556
H. Dong, G. Chen, J. Sun, C. Li, Y. Yu, and D. Chen, "A novel high-efficiency visible-light sensitive Ag₂CO₃ photocatalyst with universal photodegradation performances: simple synthesis, reaction mechanism and first-principles study," Appl. Catal. B Environ., vol. 134, pp. 46-54, 2013. DOI: 10.1016/j.apcatb.2012.12.041 DOI: https://doi.org/10.1016/j.apcatb.2012.12.041
G. Li, C. Yang, Q. He, and J. Liu, "Ag-based photocatalytic heterostructures: construction and photocatalytic energy conversion application," J. Environ. Chem. Eng., vol. 10, no. 3, p. 107374, 2022. DOI: 10.1016/j.jece.2022.107374 DOI: https://doi.org/10.1016/j.jece.2022.107374
S. H. Graimed, B. H. Okab, A. A. Jabbar, Z. H. Issa, M. A. Ammar, "Highly stable β-Bi₂O₃/Ag decorated nanosilica as an efficient Schottky heterojunction for ciprofloxacin photodegradation in wastewater under LED illumination," Mater. Sci. Semicond. Process., vol. 156, 2023. DOI: 10.1016/j.mssp.2022.107303 DOI: https://doi.org/10.1016/j.mssp.2022.107303
Y. Ren, D. Zeng, and W. Ong, "Interfacial engineering of graphitic carbon nitride (g-C₃N₄)-based metal sulfide heterojunction photocatalysts for energy conversion: a review," Chin. J. Catal., vol. 40, no. 3, pp. 289-319, 2019. DOI: 10.1016/S1872-2067(19)63293-6 DOI: https://doi.org/10.1016/S1872-2067(19)63293-6
R. F. Ammar, S. H. Salman, M. D. Shafi, "Keggin- and Dawson-type polyoxotungstates immobilized on poly(3,4-ethylenedioxythiophene)-coated zerovalent iron nanoparticles: synthesis, characterization and their catalytic oxidative desulfurization activity," J. Environ. Chem. Eng., vol. 9, no. 1, p. 104904, 2021. DOI: 10.1016/j.jece.2020.104904 DOI: https://doi.org/10.1016/j.jece.2020.104904
H. Li, Y. Zhou, W. Tu, J. Ye, and Z. Zou, "State-of-the-art progress in diverse heterostructured photocatalysts toward promoting photocatalytic performance," *Adv. Funct. Mater.*, vol. 25, no. 7, pp. 998-1013, 2015. DOI: 10.1002/adfm.201401636 DOI: https://doi.org/10.1002/adfm.201401636
A. S. Khudhair, E. M. Khudhair, W. N. Khudhair, S. H. Ammar, and M. Mahdi, "Assembling ZIF-67@Cd₀.₅Zn₀.₅S nanocomposites with an enhanced photocatalytic activity," *Inorg. Chem. Commun.*, vol. 142, p. 109639, 2022. DOI: 10.1016/j.inoche.2022.109639 DOI: https://doi.org/10.1016/j.inoche.2022.109639
A. G. Jabbar, Z. H. Graimed, B. H. Ammar, M. M. Alsunbuli, S. A. Hamood, H. Hamzah Najm, and T. Taher, "Design and construction of a robust ternary Bi₅O₇I/Cd₀.₅Zn₀.₅S/CuO photocatalytic system for boosted photodegradation of antibiotics via dual-S-scheme mechanisms: environmental factors and degradation intermediates," *Environ. Res.*, vol. 234, p. 116554, 2023. DOI: 10.1016/j.envres.2023.116554 DOI: https://doi.org/10.1016/j.envres.2023.116554
Q. Kuang, X. Zheng, and S. Yang, "AgI microplate monocrystals with polar {0001} facets: spontaneous photocarrier separation and enhanced photocatalytic activity," *Chem. Eur. J.*, vol. 20, no. 9, pp. 2637-2645, 2014. DOI: 10.1002/chem.201303642 DOI: https://doi.org/10.1002/chem.201303642
M. Rycenga, C. M. Cobley, J. Zeng, et al., "Controlling the synthesis and assembly of silver nanostructures for plasmonic applications," *Chem. Rev.*, vol. 111, no. 6, pp. 3669-3712, 2011. DOI: 10.1021/cr100275d DOI: https://doi.org/10.1021/cr100275d
P. Thakur, P. Raizada, P. Singh, A. Kumar, A. A. P. Khan, and A. M. Asiri, "Exploring recent advances in silver halides and graphitic carbon nitride-based photocatalyst for energy and environmental applications," *Arab. J. Chem.*, vol. 13, no. 11, pp. 8271-8300, 2020. DOI: 10.1016/j.arabjc.2020.04.026
B. Tian and J. Zhang, "Morphology-controlled synthesis and applications of silver halide photocatalytic materials," *J. Solut. Chem.*, vol. 41, pp. 210-230, 2012. DOI: 10.1007/s10563-012-9145-0 DOI: https://doi.org/10.1007/s10563-012-9145-0
Y. Yang, W. Guo, Y. Guo, Y. Zhao, X. Yuan, and Y. Guo, "Fabrication of Z-scheme plasmonic photocatalyst Ag@AgBr/g-C₃N₄ with enhanced visible-light photocatalytic activity," *J. Hazard. Mater.*, vol. 271, pp. 150-159, 2014. DOI: 10.1016/j.jhazmat.2014.02.023 DOI: https://doi.org/10.1016/j.jhazmat.2014.02.023
X. Zhou, G. Liu, J. Yu, and W. Fan, "Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light," *J. Mater. Chem.*, vol. 22, no. 40, pp. 21337-21354, 2012. DOI: 10.1039/c2jm31902k DOI: https://doi.org/10.1039/c2jm31902k
Y. Fan, D. Han, Z. Song, and Z. Sun, "Regulations of silver halide nanostructure and composites on photocatalysis," *Nano Res.*, vol. 11, no. 6, pp. 1421-1435, 2018. DOI: 10.1007/s42114-017-0005-2 DOI: https://doi.org/10.1007/s42114-017-0005-2
S. C. Abeyweera, K. D. Rasamani, and Y. Sun, "Ternary silver halide nanocrystals," *Acc. Chem. Res.*, vol. 50, no. 7, pp. 1754-1761, 2017. DOI: 10.1021/acs.accounts.7b00194
Z. Yan, G. Compagnini, D. B. Chrisey, S. Chimiche, and V. A. Doria, "Generation of AgCl cubes by excimer laser ablation of bulk Ag in aqueous NaCl solutions," *J. Phys. Chem. C*, vol. 115, no. 10, pp. 5058-5062, 2011. DOI: 10.1021/jp109240s DOI: https://doi.org/10.1021/jp109240s
L. Yu, X. Y. Yu, and X. W. Lou, "The design and synthesis of hollow micro-/nanostructures: present and future trends," *Adv. Mater.*, vol. 30, no. 38, p. 1800939, 2018. DOI: 10.1002/adma.201800939 DOI: https://doi.org/10.1002/adma.201800939
J. Barzegar, A. Habibi-Yangjeh, A. Akhundi, and S. Vadivel, "Novel ternary g-C₃N₄/Ag₃VO₄/AgBr nanocomposites with excellent visible-light-driven photocatalytic performance for environmental applications," *Solid State Sci.*, vol. 78, pp. 133-143, 2018. DOI: 10.1016/j.solidstatesciences.2018.03.001 DOI: https://doi.org/10.1016/j.solidstatesciences.2018.03.001
S. C. Abeyweera, K. D. Rasamani, and Y. Sun, "Ternary silver halide nanocrystals," *Acc. Chem. Res.*, vol. 50, no. 7, pp. 1754-1761, 2017. DOI: 10.1021/acs.accounts.7b00194 DOI: https://doi.org/10.1021/acs.accounts.7b00194
Y. Tang, Y. Zhang, Y. Li, et al., "Efficient Ag@AgCl cubic cage photocatalysts profit from ultrafast plasmon-induced electron transfer processes," *Adv. Mater.*, vol. 25, no. 20, pp. 2932-2940, 2013. DOI: 10.1002/adfm.201203379 DOI: https://doi.org/10.1002/adfm.201203379
M. R. Jones, K. D. Osberg, R. J. Macfarlane, M. R. Langille, and C. A. Mirkin, "Templated techniques for the synthesis and assembly of plasmonic nanostructures," *Nat. Nanotechnol.*, vol. 6, pp. 231-240, 2011. DOI: 10.1021/cr1004452 DOI: https://doi.org/10.1021/cr1004452
K. Kimijima and T. Sugimoto, "Growth mechanism of AgCl nanoparticles in a reverse micelle system," *Langmuir*, vol. 20, no. 9, pp. 3735-3738, 2004. DOI: 10.1021/jp0374612 DOI: https://doi.org/10.1021/jp0374612
P. Thakur, P. Raizada, P. Singh, and A. Kumar, "Exploring recent advances in silver halides and graphitic carbon nitride-based photocatalyst for energy and environmental applications," *Arab. J. Chem.*, vol. 13, no. 11, pp. 8271-8300, 2020. DOI: 10.1016/j.arabjc.2020.04.026 DOI: https://doi.org/10.1016/j.arabjc.2020.04.026
S. Bai, N. Jiang, Y. Zhang, X. Wang, and Y. Xiong, "Toward enhanced photocatalytic oxygen evolution: synergetic utilization of plasmonic effect and Schottky junction via interfacing facet selection," *Adv. Mater.*, pp. 1-9, 2015. DOI: 10.1002/adma.201501200 DOI: https://doi.org/10.1002/adma.201501200
J. Cao, B. Luo, H. Lin, B. Xu, and S. Chen, "Visible light photocatalytic activity enhancement and mechanism of AgBr/Ag₃PO₄ hybrids for degradation of methyl orange," *J. Hazard. Mater.*, vol. 217, pp. 107-115, 2012. DOI: 10.1016/j.jhazmat.2012.03.002 DOI: https://doi.org/10.1016/j.jhazmat.2012.03.002
N. Zhang, Y. Zhang, and Y.-J. Xu, "Recent progress on graphene-based photocatalysts: current status and future perspectives," *Nanoscale*, vol. 4, no. 19, pp. 5792-5813, 2012. DOI: 10.1039/c2nr31480k DOI: https://doi.org/10.1039/c2nr31480k
C. Zhou, Y. Lai, D. Huang, et al., "In situ grown AgI/Bi₁₂O₁₇Cl₂ heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism," *ACS Sustain. Chem. Eng.*, vol. 6, no. 3, pp. 4174-4184, 2018. DOI: 10.1021/acssuschemeng.7b04584
X. J. Wen, Y. Zhang, Y. Liu, et al., "Recent developments on AgI based heterojunction photocatalytic systems in photocatalytic application," *Chem. Eng. J.*, vol. 383, p. 123083, 2020. DOI: 10.1016/j.cej.2019.123083 DOI: https://doi.org/10.1016/j.cej.2019.123083
Z. H. Lafta, M. A. Ammar, S. H. Khadim, and J. Jabbar, "Improved photocatalytic degradation of methyl violet dye and pathogenic bacteria using g-C₃N₄ supported phosphotungstic acid heterojunction," *J. Photochem. Photobiol. A Chem.*, vol. 437, p. 114506, 2023. DOI: 10.1016/j.jphotochem.2022.114506 DOI: https://doi.org/10.1016/j.jphotochem.2022.114506
H. Xu, J. Yan, Y. Xu, Y. Song, H. Li, J. Xia, C. Huang, and Y. Wan, "Novel visible-light-driven AgX/graphite-like C₃N₄ (X = Br, I) hybrid materials with synergistic photocatalytic activity," *Appl. Catal. B Environ.*, vol. 129, pp. 182-193, 2013. DOI: 10.1016/j.apcatb.2012.08.015 DOI: https://doi.org/10.1016/j.apcatb.2012.08.015
H. Zhang, W. Zhou, L. Shi, and J. Deng, "Fabrication of novel visible-light-driven AgI/g-C₃N₄ composites with enhanced visible-light photocatalytic activity for diclofenac degradation," *J. Colloid Interface Sci.*, vol. 496, pp. 167-176, 2017. DOI: 10.1016/j.jcis.2017.02.022 DOI: https://doi.org/10.1016/j.jcis.2017.02.022
G. Wang, C. C. Li, J. R. Li, X. L. Lv, Y. Q. Zhang, and G. Guo, "Photocatalytic organic pollutants degradation in metal-organic frameworks," *Energy Environ. Sci.*, vol. 7, no. 9, pp. 2831-2867, 2014. DOI: 10.1039/C4EE01299B DOI: https://doi.org/10.1039/C4EE01299B
S. H. Lafta and M. A. Ammar, "Synthesis and photocatalytic activity of polyoxometalates immobilized onto g-C₃N₄/ZIF-67 heterostructures," *Mater. Sci. Semicond. Process.*, vol. 153, p. 107131, 2023. DOI: 10.1016/j.mssp.2022.107131 DOI: https://doi.org/10.1016/j.mssp.2022.107131
Y. Gao, X. Fang, D. Chen, N. Ma, and W. Dai, "Ternary photocatalyst of ZIF-8 nanofilms coupled with AgI nanoparticles seamlessly on ZnO microrods for enhanced visible-light photocatalysis degradation," *J. Taiwan Inst. Chem. Eng.*, vol. 131, p. 104146, 2022. DOI: 10.1016/j.jtice.2021.11.013 DOI: https://doi.org/10.1016/j.jtice.2021.11.013
A. Manuscript, "www.rsc.org/pccp," *Phys. Chem. Chem. Phys.*, 2016. DOI: 10.1039/C6CP02246D DOI: https://doi.org/10.1039/C6CP02246D
D. A. Reddy, B. H. Kim, C. H. Park, D. H. Kim, and Y. N. Kim, "Green synthesis of AgI-reduced graphene oxide nanocomposites: toward enhanced visible-light photocatalytic activity for organic dye removal," *Appl. Surf. Sci.*, vol. 341, pp. 175-184, 2015. DOI: 10.1016/j.apsusc.2015.03.019 DOI: https://doi.org/10.1016/j.apsusc.2015.03.019
Y. Han, Y. Wang, H. Liu, et al., "A facile strategy for fabricating AgI-MIL-53(Fe) composites: superior interfacial contact and enhanced visible light photocatalytic performance," *New J. Chem.*, vol. 42, no. 5, pp. 3799-3807, 2018. DOI: 10.1039/C8NJ00417J DOI: https://doi.org/10.1039/C8NJ00417J
A. Akhundi and A. Habibi-Yangjeh, "Codeposition of AgI and Ag₂CrO₄ on g-C₃N₄/Fe₃O₄ nanocomposite: novel magnetically separable visible-light-driven photocatalysts with enhanced activity," *Adv. Powder Technol.*, vol. 27, no. 6, pp. 2496-2506, 2016. DOI: 10.1016/j.apt.2016.09.025 DOI: https://doi.org/10.1016/j.apt.2016.09.025
A. Habibi-Yangjeh and M. Shekofteh-Gohari, "Fe₃O₄/ZnO/Ag₃VO₄/AgI nanocomposites: quaternary magnetic photocatalysts with excellent activity in degradation of water pollutants under visible light," *Sep. Purif. Technol.*, vol. 166, pp. 63-72, 2016. DOI: 10.1016/j.seppur.2016.04.022 DOI: https://doi.org/10.1016/j.seppur.2016.04.022
A. Akhundi and A. Habibi-Yangjeh, "Facile preparation of novel quaternary g-C₃N₄/Fe₃O₄/AgI/Bi₂S₃ nanocomposites: magnetically separable visible-light-driven photocatalysts with significantly enhanced activity," *RSC Adv.*, vol. 6, no. 108, pp. 106572-106583, 2016. DOI: 10.1039/C6RA12414C DOI: https://doi.org/10.1039/C6RA12414C
M. Yang, Y. Zeng, Z. Zhang, D. Huang, G. Zeng, R. Xiao, C. Lai, C. Zhou, H. Guo, W. Xue, and M. Cheng, "Construction of iodine vacancy-rich BiOI/Ag@AgI Z-scheme heterojunction photocatalysts for visible-light-driven tetracycline degradation: transformation pathways and mechanism insight," *Chem. Eng. J.*, vol. 349, pp. 808-821, 2018. DOI: 10.1016/j.cej.2018.05.093. DOI: https://doi.org/10.1016/j.cej.2018.05.093
T. Cai, Y. Zhang, Y. Li, et al., "Ultrafine Ag@AgI nanoparticles on cube single-crystal Ag₃PO₄(100): an all-day-active Z-scheme photocatalyst for environmental purification," *J. Colloid Interface Sci.*, vol. 533, pp. 95-105, 2019. DOI: 10.1016/j.jcis.2018.08.074. DOI: https://doi.org/10.1016/j.jcis.2018.08.074
T. Wang, Y. Zhang, Y. Li, et al., "Synthesis of redox-mediator-free direct Z-scheme AgI/WO₃ nanocomposite photocatalysts for the degradation of tetracycline with enhanced photocatalytic activity," *Chem. Eng. J.*, vol. 300, pp. 280-290, 2016. DOI: 10.1016/j.cej.2016.04.128 DOI: https://doi.org/10.1016/j.cej.2016.04.128
Z. Zhang, D. Jiang, C. Xing, L. Chen, M. Chen, and M. He, "Novel AgI-decorated β-Bi₂O₃ nanosheet heterostructured Z-scheme photocatalysts for efficient degradation of organic pollutants with enhanced performance," *Dalt. Trans.*, vol. 44, no. 25, pp. 11582-11591, 2015. DOI: 10.1039/C5DT00298B DOI: https://doi.org/10.1039/C5DT00298B
H. Yu, Y. Zhang, Y. Li, et al., "Facile construction of novel direct solid-state Z-scheme AgI/BiOBr photocatalysts for highly effective removal of ciprofloxacin under visible light exposure: mineralization efficiency and mechanisms," *J. Colloid Interface Sci.*, vol. 522, pp. 82-94, 2018. DOI: 10.1016/j.jcis.2018.03.056 DOI: https://doi.org/10.1016/j.jcis.2018.03.056
H. Guo, Y. Lai, D. Huang, Z. Zhang, C. Zhou, C. Cheng, and G. Zeng, "Construction of direct Z-scheme AgI/Bi₂Sn₂O₇ nanojunction system with enhanced photocatalytic activity: accelerated interfacial charge transfer induced efficient Cr(VI) reduction, tetracycline degradation and Escherichia coli inactivation," ACS Sustain. Chem. Eng., vol. 6, no. 6, pp. 8003-8018, 2018.
C. Zhou, Y. Lai, D. Huang, et al., "In situ grown AgI/Bi₁₂O₁₇Cl₂ heterojunction photocatalysts for visible light degradation of sulfamethazine: efficiency, pathway, and mechanism," ACS Sustain. Chem. Eng., vol. 6, no. 3, pp. 4174-4184, 2018. DOI: 10.1021/acssuschemeng.7b04584 DOI: https://doi.org/10.1021/acssuschemeng.7b04584
M. J. Islam, D. A. Reddy, J. Choi, and T. K. Kim, "Surface oxygen vacancy assisted electron transfer and shuttling for enhanced photocatalytic activity of a Z-scheme CeO₂-AgI nanocomposite," RSC Adv., vol. 6, no. 23, pp. 19341-19350, 2016. DOI: 10.1039/C5RA27533D DOI: https://doi.org/10.1039/C5RA27533D
Z. Jiao, Z. Liu, and Z. Ma, "Rodlike AgI/Ag₂Mo₂O₇ heterojunctions with enhanced visible-light-driven photocatalytic activity," ACS Omega, vol. 4, no. 5, pp. 7919-7930, 2019. DOI: 10.1021/acsomega.9b00806 DOI: https://doi.org/10.1021/acsomega.9b00806
N. Yang, Y. Liu, Y. Zhang, et al., "Preparation of Z-scheme AgI/Bi₅O₇I plate with high visible light photocatalytic performance by phase transition and morphological transformation of BiOI microspheres at room temperature," Dalt. Trans., vol. 47, no. 33, pp. 11420-11428, 2018. DOI: 10.1039/C8DT01711E DOI: https://doi.org/10.1039/C8DT01711E
W. Wang, Y. Zhang, Y. Li, et al., "Novel Ag-bridged dual Z-scheme g-C₃N₄/BiOI/AgI plasmonic heterojunction: exceptional photocatalytic activity towards tetracycline and the mechanism insight," J. Environ. Sci., vol. 131, pp. 123-140, 2023. DOI: 10.1016/j.jes.2022.11.002 DOI: https://doi.org/10.1016/j.jes.2022.11.002
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Hanan H. Abed, Saad H. Ammar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.