Advances in Catalytic Isomerization Using Heteropolyacid-Based Nanocomposites: A Comprehensive Review
DOI:
https://doi.org/10.29194/NJES.27040413Keywords:
Catalytic Isomerization, Alkanes, Keggin, Heteropolyacids, SupportedAbstract
Catalytic isomerization is a process used to increase the octane number of light naphtha fraction and thus aids in extending the life of automobile engines. Researchers are still working to prepare more effective and less expensive isomerization catalysts to replace the costly previous catalysts. Ongoing challenges in this field seek to design highly active isomerization catalysts operated under moderate conditions while keeping high branched-isomer selectivity. Heteropolyacids (HPA) have been presented as the most capable substitutes to fulfill the requirements. They are considered bifunctional catalysts that perform dehydrogenation /isomerization followed by hydrogenation because of their firm acidity and redox properties. Some catalytic-isomerization studies were started utilizing HPA in combination with platinum, which significantly improves the selectivity and stability. Thus, HPA-based bifunctional catalysts can provide enough acid and hydrogenation–dehydrogenation sites sufficiently. However, the most ongoing challenge in this field is the poor thermal stability of HPAs, which limits their use at higher temperatures for vapour-phase reactions. This review aims to highlight the recent progress in catalytic isomerization of alkanes using heteropolyacids supported on different carriers, with and without noble metals.
Downloads
References
L. Lloyd, “Industrial catalysts,” in Handbook of Industrial Catalysts, Springer, 2011, pp. 1–22. DOI: https://doi.org/10.1007/978-0-387-49962-8_1
R. A. Meyers, Handbook of petroleum refining processes. McGraw-Hill Education, 2016.
B. Leach, Applied industrial catalysis. Elsevier, 2012.
N. Musselwhite et al., “Isomerization of n-hexane catalyzed by supported monodisperse PtRh bimetallic nanoparticles,” Catal. Letters, vol. 143, no. 9, pp. 907–911, 2013. DOI: https://doi.org/10.1007/s10562-013-1068-5
D. Y. Murzin and T. Salmi, Catalytic kinetics. Elsevier, 2005. DOI: https://doi.org/10.1016/B978-044451605-3/50006-X
F. R. Hartley and P. N. Vezey, “Supported transition metal complexes as catalysts,” in Advances in Organometallic Chemistry, vol. 15, Elsevier, 1977, pp. 189–234. DOI: https://doi.org/10.1016/S0065-3055(08)60129-X
A. A. Ibragimov, R. R. Shiriyazdanov, A. R. Davletshin, and M. N. Rakhimov, “Isomerization of light alkanes catalyzed by ionic liquids: an analysis of process parameters,” Theor. Found. Chem. Eng., vol. 47, no. 1, pp. 66–70, 2013. DOI: https://doi.org/10.1134/S0040579513010028
Z. Nawaz, “Light alkane dehydrogenation to light olefin technologies: a comprehensive review,” Rev. Chem. Eng., vol. 31, no. 5, pp. 413–436, 2015. DOI: https://doi.org/10.1515/revce-2015-0012
G. A. Olah and Á. Molnár, Hydrocarbon chemistry. John Wiley & Sons, 2003. DOI: https://doi.org/10.1002/0471433489
A. Dhar, A. Dutta, C. O. Castillo-Araiza, V. A. Suárez-Toriello, D. Ghosh, and U. Raychaudhuri, “One-pot isomerization of n-alkanes by super acidic solids: Sulfated aluminum-zirconium binary oxides,” Int. J. Chem. React. Eng., vol. 14, no. 3, pp. 795–807, 2016. DOI: https://doi.org/10.1515/ijcre-2015-0052
M. Nava, I. V Stoyanova, S. Cummings, E. S. Stoyanov, and C. A. Reed, “The Strongest Brønsted Acid: Protonation of Alkanes by H (CHB11F11) at Room Temperature,” Angew. Chemie Int. Ed., vol. 53, no. 4, pp. 1131–1134, 2014. DOI: https://doi.org/10.1002/anie.201308586
A. Dhar, R. L. Vekariya, and P. Sharma, “Kinetics and mechanistic study of n-alkane hydroisomerization reaction on Pt-doped γ-alumina catalyst,” Petroleum, vol. 3, no. 4, pp. 489–495, 2017. DOI: https://doi.org/10.1016/j.petlm.2017.02.001
H. Matsuhashi, H. Shibata, H. Nakamura, and K. Arata, “Skeletal isomerization mechanism of alkanes over solid superacid of sulfated zirconia,” Appl. Catal. A Gen., vol. 187, no. 1, pp. 99–106, 1999. DOI: https://doi.org/10.1016/S0926-860X(99)00194-5
A. Miyaji, T. Echizen, L. Li, T. Suzuki, Y. Yoshinaga, and T. Okuhara, “Selectivity and mechanism for skeletal isomerization of alkanes over typical solid acids and their Pt-promoted catalysts,” Catal. today, vol. 74, no. 3–4, pp. 291–297, 2002. DOI: https://doi.org/10.1016/S0920-5861(02)00031-7
M. J. Climent, A. Corma, and S. Iborra, “Heterogeneous catalysts for the one-pot synthesis of chemicals and fine chemicals,” Chem. Rev., vol. 111, no. 2, pp. 1072–1133, 2011. DOI: https://doi.org/10.1021/cr1002084
A. Galadima, J. A. Anderson, and R. P. K. Wells, “Solid acid catalysts in heterogeneous n-alkanes hydroisomerisation for increasing octane number of gasoline,” Sci. World J., vol. 4, no. 3, 2009. DOI: https://doi.org/10.4314/swj.v4i3.51853
G. Protić-Lovasić, N. Jambrec, D. Deur-Siftar, and M. V Prostenik, “Determination of catalytic reformed gasoline octane number by high resolution gas chromatography,” Fuel, vol. 69, no. 4, pp. 525–528, 1990. DOI: https://doi.org/10.1016/0016-2361(90)90328-N
T. Okuhara, N. Mizuno, and M. Misono, “Catalytic chemistry of heteropoly compounds,” in Advances in catalysis, vol. 41, Elsevier, 1996, pp. 113–252. DOI: https://doi.org/10.1016/S0360-0564(08)60041-3
I. V Kozhevnikov, “Catalysts for fine chemical synthesis,” Catal. by polyoxometalates, vol. 2, p. 216, 2002.
W. Alharbi, E. Brown, E. F. Kozhevnikova, and I. V Kozhevnikov, “Dehydration of ethanol over heteropoly acid catalysts in the gas phase,” J. Catal., vol. 319, pp. 174–181, 2014. DOI: https://doi.org/10.1016/j.jcat.2014.09.003
A. M. Alsalme, P. V Wiper, Y. Z. Khimyak, E. F. Kozhevnikova, and I. V Kozhevnikov, “Solid acid catalysts based on H3PW12O40 heteropoly acid: Acid and catalytic properties at a gas–solid interface,” J. Catal., vol. 276, no. 1, pp. 181–189, 2010. DOI: https://doi.org/10.1016/j.jcat.2010.09.014
A. V Ivanov, T. V Vasina, V. D. Nissenbaum, L. M. Kustov, M. N. Timofeeva, and J. I. Houzvicka, “Isomerization of n-hexane on the Pt-promoted Keggin and Dawson tungstophosphoric heteropoly acids supported on zirconia,” Appl. Catal. A Gen., vol. 259, no. 1, pp. 65–72, 2004. DOI: https://doi.org/10.1016/j.apcata.2003.09.011
S.-S. Wang and G.-Y. Yang, “Recent advances in polyoxometalate-catalyzed reactions,” Chem. Rev., vol. 115, no. 11, pp. 4893–4962, 2015. DOI: https://doi.org/10.1021/cr500390v
I. V Kozhevnikov, “Catalysis by heteropoly acids and multicomponent polyoxometalates in liquid-phase reactions,” Chem. Rev., vol. 98, no. 1, pp. 171–198, 1998. DOI: https://doi.org/10.1021/cr960400y
J. A. Lopez-Sanchez et al., “Au–Pd supported nanocrystals prepared by a sol immobilisation technique as catalysts for selective chemical synthesis,” Phys. Chem. Chem. Phys., vol. 10, no. 14, pp. 1921–1930, 2008. DOI: https://doi.org/10.1039/b719345a
T. Okuhara, T. Nishimura, H. Watanabe, K. Na, and M. Misono, “4.8 novel catalysis of cesium salt of heteropoly acid and its characterization by solid-state NMR,” in Studies in Surface Science and Catalysis, vol. 90, Elsevier, 1994, pp. 419–428. DOI: https://doi.org/10.1016/S0167-2991(08)61853-4
S. P. Jiang, “Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells,” J. Mater. Chem. A, vol. 2, no. 21, pp. 7637–7655, 2014. DOI: https://doi.org/10.1039/C4TA00121D
T. Okuhara, T. Nishimura, H. Watanabe, and M. Misono, “Insoluble heteropoly compounds as highly active catalysts for liquid-phase reactions,” J. Mol. Catal., vol. 74, no. 1–3, pp. 247–256, 1992. DOI: https://doi.org/10.1016/0304-5102(92)80242-9
N. Mizuno and M. Misono, “Heterogeneous catalysis,” Chem. Rev., vol. 98, no. 1, pp. 199–218, 1998. DOI: https://doi.org/10.1021/cr960401q
M. T. Pope, Y. Jeannin, and M. Fournier, Heteropoly and isopoly oxometalates, vol. 8. Springer, 1983. DOI: https://doi.org/10.1007/978-3-662-12004-0
J. B. Moffat, Metal-oxygen clusters: the surface and catalytic properties of heteropoly oxometalates. Springer Science & Business Media, 2006.
Y. Izumi, R. Hasebe, and K. Urabe, “Catalysis by heterogeneous supported heteropoly acid,” J. Catal., vol. 84, no. 2, pp. 402–409, 1983. DOI: https://doi.org/10.1016/0021-9517(83)90011-8
A. Dhar, R. L. Vekariya, and P. Bhadja, “n-Alkane isomerization by catalysis—a method of industrial importance: An overview,” Cogent Chem., vol. 4, no. 1, p. 1514686, 2018. DOI: https://doi.org/10.1080/23312009.2018.1514686
N. Essayem, Y. Ben Taârit, C. Feche, P. Y. Gayraud, G. Sapaly, and C. Naccache, “Comparative study of n-pentane isomerization over solid acid catalysts, heteropolyacid, sulfated zirconia, and mordenite: dependence on hydrogen and platinum addition,” J. Catal., vol. 219, no. 1, pp. 97–106, 2003. DOI: https://doi.org/10.1016/S0021-9517(03)00162-3
S. Sun, J., Li, Y., Mu, C., Wei, J., Zhao, Y., Ma, X. and Wang, “Supported heteropolyacids catalysts for the selective hydrocracking and isomerization of n-C16 to produce jet fuel,” Appl. Catal. A Gen., vol. 598, no. December 2019, 2020, doi: 10.1016/j.apcata.2020.117556. DOI: https://doi.org/10.1016/j.apcata.2020.117556
L. F. Chen et al., “A study of n-hexane hydroisomerization catalyzed with the Pt/H3PW12O40/Zr-MCM-41 catalysts,” Catal. Today, vol. 133–135, no. 1–4, pp. 331–338, 2008, doi: 10.1016/j.cattod.2007.12.115. DOI: https://doi.org/10.1016/j.cattod.2007.12.115
M. Rezaei, N. and Taghizadeh, “Pd–Pt promoted HPMo/UiO-66 acid catalyst for n-hexane hydroisomerization for higher quality and cleaner fuel production: Catalytic activity and kinetic modeling,” Int. J. Hydrogen Energy, 2023. DOI: https://doi.org/10.1016/j.ijhydene.2023.07.334
M. Rezaei, N. and Taghizadeh, “Catalytic performance and kinetic modeling of n-hexane isomerization over phosphomolybdic acid (HPMo) combining palladium and platinum supported on metal-organic framework MIL-101 (HPW),” Chem. Eng. Commun., vol. 210, no. 11, pp. 1–20, 2023. DOI: https://doi.org/10.1080/00986445.2023.2172570
W. A. N. G. Wei, Z., Rong-Jiang, L.I.U., Shou-Tao, M.A., Yan-Hua, S.U.O. and Ying-Jun, “A novel MIL-101 (Cr) acidified by silicotungstic acid and its catalytic performance for isomerization of n-heptane,” China Pet. Process. Petrochemical Technol., vol. 24, no. 1, p. 68, 2022.
I. V. Alazman, A., Belic, D., Kozhevnikova, E.F. and Kozhevnikov, “Isomerisation of n-hexane over bifunctional Pt-heteropoly acid catalyst: Enhancing effect of gold,” J. Catal., vol. 357, pp. 80–89, 2018, doi: 10.1016/j.jcat.2017.11.001. DOI: https://doi.org/10.1016/j.jcat.2017.11.001
M. S. Abd El Rahman, S.K., Hassan, H.M. and El-Shall, “Acid catalyzed organic transformations by heteropoly tungstophosphoric acid supported on MCM-41,” Appl. Catal. A Gen., vol. 411–412, no. November, pp. 77–86, 2012, doi: 10.1016/j.apcata.2011.10.024. DOI: https://doi.org/10.1016/j.apcata.2011.10.024
J. Wei, R., Gu, Y. and Wang, “Hydroisomerization of n-heptane over bimetal-bearing H3PW12O40 catalysts supported on dealuminated USY zeolite,” Sci. China Ser. B Chem., vol. 51, no. 2, pp. 120–127, 2008. DOI: https://doi.org/10.1007/s11426-008-0009-4
T. Pinto, V. Dufaud, and F. Lefebvre, “Isomerization of n-hexane on heteropolyacids supported on SBA-15. 1. Monofunctional impregnated catalysts,” Appl. Catal. A Gen., vol. 483, pp. 103–109, 2014, doi: 10.1016/j.apcata.2014.07.003. DOI: https://doi.org/10.1016/j.apcata.2014.07.003
I. V. Alazman, A., Belic, D., Alotaibi, A., Kozhevnikova, E.F. and Kozhevnikov, “Isomerization of Cyclohexane over Bifunctional Pt-, Au-, and PtAu-Heteropoly Acid Catalysts,” ACS Catal., vol. 9, no. 6, pp. 5063–5073, 2019, doi: 10.1021/acscatal.9b00592. DOI: https://doi.org/10.1021/acscatal.9b00592
V. Pinto, T., Arquillière, P., Niccolai, G.P., Lefebvre, F. and Dufaud, “The comparison of two classes of bifunctional SBA-15 supported platinum–heteropolyacid catalysts for the isomerization of n-hexane,” New J. Chem., vol. 39, no. 7, 2015, doi: 10.1039/x0xx00000x. DOI: https://doi.org/10.1039/C5NJ00453E
F. Pinto, T., Arquillière, P., Dufaud, V. and Lefebvre, “Isomerization of n-hexane over Pt‐H3PW12O40/SBA-15 bifunctional catalysts: Effect of the preparation method on catalytic performance,” Appl. Catal. A Gen., vol. 528, pp. 44–51, 2016, doi: 10.1016/j.apcata.2016.09.013. DOI: https://doi.org/10.1016/j.apcata.2016.09.013
N. de la Fuente et al., “Skeletal isomerization of n-heptane with highly selective Pt/H3PW12O40/SBA–15 trifunctional catalysts,” Catal. Commun., vol. 102, pp. 93–97, 2017, doi: 10.1016/j.catcom.2017.08.030. DOI: https://doi.org/10.1016/j.catcom.2017.08.030
M. Hajitabar Firouzjaee and M. Taghizadeh, “Catalytic Performance and Kinetic Modeling of n-Butane Isomerization over Metal Bearing Silicotungstic Acid Supported on Mesoporous KIT-6,” Ind. Eng. Chem. Res., vol. 62, no. 3, pp. 1322–1337, 2023, doi: 10.1021/acs.iecr.2c04411. DOI: https://doi.org/10.1021/acs.iecr.2c04411
E. Grinenval, A. Garron, and F. Lefebvre, “n-Butane Isomerization over Silica-Supported Heteropolyacids: Study of Some Parameters,” J. Catal., vol. 2013, pp. 1–8, 2013, doi: 10.1155/2013/828962. DOI: https://doi.org/10.1155/2013/828962
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alaa J. Awadh, Saad H. Ammar
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.