Mechanical Analysis of Bone-Plate Construct Regarding Strength and Stiffness
DOI:
https://doi.org/10.29194/NJES.23010089Keywords:
Bone Fixation, Dynamic Compression Plate, Interfragmentary Strain, Finite Element AnalysisAbstract
The aim of this study was to support surgeons to decide where to place the screws in order to achieve an optimal fracture healing and to prevent implant failure after a femoral shaft fracture So this paper focus on the analysis of bone-plate construct by using Finite element Analysis (FEA), comminuted femur fractured bone fixed with Dynamic Compression Plate (DCP) 16 holes by 4.5 Cortex screws, to investigate the effects of screws configuration on the mechanical behavior of different seven model as Interfragmentary strain which is the most important factor for femur fracture healing. The results state the relationships between the Von-Mises stress, Total deformation and Interfragmentary strain with respect to the screws configuration. The study shows the regions of maximum stress from stress distribution and also founded that we can decrease the Interfragmentary strain by increasing the number of screws.
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.