An An Analysis of Strain Rate Distribution Using Streamline Model and A Quick Stop Device in Metal Cutting
Abstract
In this paper, a quick stop device technique and the streamline model were employed to study the chip formation in metal cutting. The behavior of chip deformation at the primary shear zone was described by this model. Orthogonal test of turning process over a workpiece of the 6061-T6 aluminum alloy at different cutting speeds was carried out. The results of the equivalent strain rate and cumulative plastic strain were used to describe the complexity of chip formation. Finite element analysis by ABAQUS/explicit package was also employed to verify the streamline model. Some behavior of formation and strain rate distribution differs from the experimental results, but the overall trend and maximum results are approximately close. In addition, the quick stop device technique is described in detail. Which could be used in other kinds of studies, such as the metallurgical observation.
Copyright (c) 2019 Al-Nahrain Journal for Engineering Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Author(s) Rights
- Each author retains the right to use the work for non-commercial purposes as well as for further research and spoken presentations.
- Each author retains the right to use the illustrations and research data in his/her future work.
- Only one offprint is provided free for each author. The authors can order offprints at the proof stage at certain rates depending on the number of additional copies required and the year of publication.
Publisher Rights
The publisher of the journal has all rights for publication in the paper, electronic and facsimile formats and for electronic capture, reproduction and licensing in all formats now and in perpetuity in the original and all derivative works.