Finite Element Modelling of Concrete Filled Double Skin Steel Tubular Columns under Cyclic Axial Compression Load
Keywords:
CFDSST, composite columns, finite element modeling, ABAQUSAbstract
CFDSST Concrete Filled Double-skinned steel tubular columns are composite columns consisting of two concentric circular steel tubes with concrete filler in between. Finite elements method is considered through the use of the computer program ABAQUS to model CFDSST columns numerically under cyclic axial compression. Damage plasticity model was considered to model the concrete while elastic-plastic model used to model the steel tubes. six CFDSST specimens and three ordinary Concrete Filled Steel Tubular (CFST) specimens were analyzed under static axial compression, while three CFDSST specimens were considered for analysis under cyclic axial compression. The numerical results were presented in terms of axial load axial strain displacement curves. It was found that the ultimate axial load carrying capacity calculated numerically in good agreement with that of the experimentally tested specimens. Also it was concluded that Damage plasticity model used for simulating the behavior of concrete and metal plasticity model used for simulating the behavior of steel produced accurate results as compared to the experimental results.
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.