LQR/Sliding Mode Controller Design Using Particle Swarm Optimization for Crane System
DOI:
https://doi.org/10.29194/NJES.23010045Keywords:
Linear Quadratic Regulator (LQR), Sliding Mode Control (SMC), PSO, LQR/Sliding Mode Controller, Full State FeedbackAbstract
In this work, the design procedure of a hybrid robust controller for crane system is presented. The proposed hybrid controller combines the linear quadratic regulator (LQR) properties with the sliding mode control (SMC) to obtain an optimal and robust LQR/SMC controller. The crane system which is represented by pendulum and cart is used to verify the effectiveness of the proposed controller. The crane system is considered one of the highly nonlinear and uncertain systems in addition to the under-actuating properties. The parameters of the proposed LQR/SMC are selected using Particle Swarm Optimization (PSO) method. The results show that the proposed LQR/SMC controller can achieve a better performance if only SMC controller is used. The robustness of the proposed controller is examined by considering a variation in system parameters with applying an external disturbance input. Finally, the superiority of the proposed LQR/SMC controller over the SMC controller is shown in this work.
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.