A Review on Automated Segmentation of Lung Lesions in Chest CT Scans Using Hybrid Approaches

Authors

  • Raed Hamid Lateef Ministry of Health, Wassit Governorate Health Directorate, Al-Kut, Iraq.
  • Ahmed Hussein Department of Biomedical Engineering , College of Engineering, Al-Nahrain University, Baghdad, Iraq. https://orcid.org/0000-0003-2483-0028

DOI:

https://doi.org/10.29194/NJES.28030403

Keywords:

Medical Image Segmentation, Deep Learning, CNN, Machine Learning, CT Lung Image

Abstract

One of the most common causes of mortality worldwide is Lung cancer, an early diagnosis crucial for a patient’s survival and recovery. Automated segmentation of lung lesions in chest CT has become a pre-eminent focal point for research, particularly with the development of hybrid methods combining traditional image processing with advanced deep learning methods such as CNN. These hybrid approaches aim to minimize individual methods limitations by controlling their merge strengths to enhance segmentation efficiency, precision, and clinical utility. This review comprehensively analyzes different hybrid techniques, such as deep learning improved by rule-based systems, multi-scale feature extraction, and ensemble learning. As well as inspect their clinical effect, particularly in improving diagnostic accuracy and optimizing treatment procedures. Despite their possibility, these approaches still face significant challenges, such as computational complexity, data requirements, and the requirement for explainable AI (XAI). Upcoming advancements in lung lesion segmentation will focus on refining these models to achieve faster processing, improved accuracy, and integration with diagnostic tools to protect transparency and ethical considerations.

Downloads

Download data is not yet available.

References

A. S. Tsao et al., “Scientific Advances in Lung Cancer 2015,” Journal of Thoracic Oncology, vol. 11, no. 5, pp. 613–638, May 2016, DOI: 10.1016/j.jtho.2016.03.012. DOI: https://doi.org/10.1016/j.jtho.2016.03.012

T.-C. Phan, A.-C. Phan, Q.-T. Tran, and T.-N. Trieu, “Lung Lesions Segmentation and Classification with Deep Neural Networks,” 2022, pp. 653–664. DOI: 10.1007/978-981-19-8069-5_45. DOI: https://doi.org/10.1007/978-981-19-8069-5_45

N. Fuentes, M. Silva Rodriguez, and P. Silveyra, “Role of sex hormones in lung cancer,” Exp Biol Med, vol. 246, no. 19, pp. 2098–2110, Oct. 2021, DOI: 10.1177/15353702211019697. DOI: https://doi.org/10.1177/15353702211019697

H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA Cancer J Clin, vol. 71, no. 3, pp. 209–249, May 2021, DOI: 10.3322/caac.21660. DOI: https://doi.org/10.3322/caac.21660

H.-Y. Min and H.-Y. Lee, “Mechanisms of resistance to chemotherapy in non-small cell lung cancer,” Arch Pharm Res, vol. 44, no. 2, pp. 146–164, Feb. 2021, DOI: 10.1007/s12272-021-01312-y. DOI: https://doi.org/10.1007/s12272-021-01312-y

M. Alexander, S. Y. Kim, and H. Cheng, “Update 2020: Management of Non-Small Cell Lung Cancer,” Lung, vol. 198, no. 6, pp. 897–907, Dec. 2020, DOI: 10.1007/s00408-020-00407-5. DOI: https://doi.org/10.1007/s00408-020-00407-5

SCAD College of Engineering and Technology and Institute of Electrical and Electronics Engineers, Proceedings of the International Conference on Trends in Electronics and Informatics (ICOEI 2019) : 23-25, April 2019.

S. Srinivasan, D. Francis, S. K. Mathivanan, H. Rajadurai, B. D. Shivahare, and M. A. Shah, “A hybrid deep CNN model for brain tumour image multi-classification,” BMC Med Imaging, vol. 24, no. 1, p. 21, 2024, DOI: 10.1186/s12880-024-01195-7. DOI: https://doi.org/10.1186/s12880-024-01195-7

A. F. Hussein, W. R. Mohammed, M. M. Jaber, and O. I. Khalaf, “An adaptive ECG noise removal process based on empirical mode decomposition (EMD),” Contrast Media Mol. Imaging, vol. 2022, no. 1, 2022, DOI: 10.1155/2022/3346055.. DOI: https://doi.org/10.1155/2022/3346055

S. Lee et al., “Hybrid Method Incorporating a Rule-Based Approach and Deep Learning for Prescription Error Prediction,” Drug Saf, vol. 45, no. 1, pp. 27–35, 2022, DOI: 10.1007/s40264-021-01123-6. DOI: https://doi.org/10.1007/s40264-021-01123-6

A. F. Hussein, A. K. ALZubaidi, Q. A. Habash, and M. M. Jaber, “An adaptive biomedical data managing scheme based on the blockchain technique,” Appl. Sci., vol. 9, no. 12, 2019, DOI: 10.3390/app9122494. DOI: https://doi.org/10.3390/app9122494

E. H. Houssein, B. E. Helmy, D. Oliva, A. A. Elngar, and H. Shaban, “A novel Black Widow Optimization algorithm for multilevel thresholding image segmentation,” Expert Syst Appl, vol. 167, p. 114159, Apr. 2021, DOI: 10.1016/j.eswa.2020.114159. DOI: https://doi.org/10.1016/j.eswa.2020.114159

J. N. Saeed, “A Survey of Ultrasonography Breast Cancer Image Segmentation Techniques,” Academic Journal of Nawroz University, vol. 9, no. 1, p. 1, Feb. 2020, DOI: 10.25007/ajnu.v9n1a523. DOI: https://doi.org/10.25007/ajnu.v9n1a523

R. Ranjbarzadeh et al., “Breast tumor localization and segmentation using machine learning techniques: Overview of datasets, findings, and methods,” Comput Biol Med, vol. 152, p. 106443, Jan. 2023, DOI: 10.1016/j.compbiomed.2022.106443. DOI: https://doi.org/10.1016/j.compbiomed.2022.106443

E. H. Houssein et al., “An improved opposition-based marine predators algorithm for global optimization and multilevel thresholding image segmentation,” Knowl Based Syst, vol. 229, p. 107348, Oct. 2021, DOI: 10.1016/j.knosys.2021.107348. DOI: https://doi.org/10.1016/j.knosys.2021.107348

H. A. Jaber, H. K. Aljobouri, and I. Çankaya, “Design of a web laboratory interface for ECG signal analysis using MATLAB builder NE,” Open Comput. Sci., vol. 12, no. 1, pp. 227–237, 2022. DOI: https://doi.org/10.1515/comp-2022-0244

R. V. Kaulgud and A. Patil, “Analysis based on machine and deep learning techniques for the accurate detection of lung nodules from CT images,” Biomed Signal Process Control, vol. 85, p. 105055, Aug. 2023, DOI: 10.1016/j.bspc.2023.105055. DOI: https://doi.org/10.1016/j.bspc.2023.105055

D. Bhattacharyya, N. Thirupathi Rao, E. S. N. Joshua, and Y.-C. Hu, “A bi-directional deep learning architecture for lung nodule semantic segmentation,” Vis Comput, vol. 39, no. 11, pp. 5245–5261, 2023, DOI: 10.1007/s00371-022-02657-1. DOI: https://doi.org/10.1007/s00371-022-02657-1

H. A. Jaber, I. Çankaya, H. K. Aljobouri, O. M. Koçak, and O. Algin, “Optimal model-free approach based on MDL and CHL for active brain identification in fMRI data analysis,” Curr. Med. Imaging, vol. 17, no. 3, pp. 352–365, 2021. DOI: https://doi.org/10.2174/1573405616999200730174700

W. Wang et al., “Nodule-Plus R-CNN and Deep Self-Paced Active Learning for 3D Instance Segmentation of Pulmonary Nodules,” IEEE Access, vol. 7, pp. 128796–128805, 2019, DOI: 10.1109/ACCESS.2019.2939850. DOI: https://doi.org/10.1109/ACCESS.2019.2939850

A. Santone, F. Mercaldo, and L. Brunese, “A Method for Real-Time Lung Nodule Instance Segmentation Using Deep Learning,” Life, vol. 14, no. 9, p. 1192, Sep. 2024, DOI: 10.3390/life14091192. DOI: https://doi.org/10.3390/life14091192

K. J. Devi and S. V Sudha, “A novel panoptic segmentation model for lung tumor prediction using deep learning approaches,” Soft comput, vol. 28, no. 3, pp. 2637–2648, 2024, DOI: 10.1007/s00500-023-09569-9. DOI: https://doi.org/10.1007/s00500-023-09569-9

H. A. Jaber, B. A. Al-Ghali, M. M. Kareem, I. Çankaya, and O. Algin, “Exploratory Data Analysis Methods for Functional Magnetic Resonance Imaging (fMRI): A Comprehensive Review of Software Programs Used in Research,” Al-Nahrain J. Eng. Sci., vol. 27, no. 4, pp. 491–500, 2024. DOI: https://doi.org/10.29194/NJES.27040491

J. Dolz, K. Gopinath, J. Yuan, H. Lombaert, C. Desrosiers, and I. Ben Ayed, “HyperDense-Net: A Hyper-Densely Connected CNN for Multi-Modal Image Segmentation,” IEEE Trans Med Imaging, vol. 38, no. 5, pp. 1116–1126, May 2019, DOI: 10.1109/TMI.2018.2878669. DOI: https://doi.org/10.1109/TMI.2018.2878669

F. Isensee, P. Kickingereder, W. Wick, M. Bendszus, and K. H. Maier-Hein, “Brain tumor segmentation and radiomics survival prediction: Contribution to the BRATS 2017 challenge,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Springer Verlag, 2018, pp. 287–297. DOI: 10.1007/978-3-319-75238-9_25. DOI: https://doi.org/10.1007/978-3-319-75238-9_25

S. Cui, L. Mao, J. Jiang, C. Liu, and S. Xiong, “Automatic Semantic Segmentation of Brain Gliomas from MRI Images Using a Deep Cascaded Neural Network,” J Healthc Eng, vol. 2018, pp. 1–14, 2018, DOI: 10.1155/2018/4940593. DOI: https://doi.org/10.1155/2018/4940593

A. Kirillov, K. He, R. Girshick, C. Rother, and P. Dollár, “Panoptic Segmentation.” [Online]. Available: https://arxiv.org/abs/1801.00868.

F. Bianconi et al., “Comparative evaluation of conventional and deep learning methods for semi-automated segmentation of pulmonary nodules on CT,” Quant Imaging Med Surg, vol. 11, no. 7, pp. 3286–3305, Jul. 2021, DOI: 10.21037/qims-20-1356. DOI: https://doi.org/10.21037/qims-20-1356

P. Wang et al., “Understanding Convolution for Semantic Segmentation,” in 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), IEEE, Mar. 2018, pp. 1451–1460. DOI: 10.1109/WACV.2018.00163. DOI: https://doi.org/10.1109/WACV.2018.00163

F. Altaf, S. M. S. Islam, N. Akhtar, and N. K. Janjua, “Going deep in medical image analysis: Concepts, methods, challenges, and future directions,” 2019, Institute of Electrical and Electronics Engineers Inc. DOI: 10.1109/ACCESS.2019.2929365. DOI: https://doi.org/10.1109/ACCESS.2019.2929365

P. F. Raudaschl et al., “Evaluation of segmentation methods on head and neck CT : Auto‐segmentation challenge 2015,” Med Phys, vol. 44, no. 5, pp. 2020–2036, May 2017, DOI: 10.1002/mp.12197. DOI: https://doi.org/10.1002/mp.12197

D. Zhang et al., “Understanding the Tricks of Deep Learning in Medical Image Segmentation: Challenges and Future Directions,” Sep. 2022, [Online]. Available: http://arxiv.org/abs/2209.10307

M. F. Abdullah, S. N. Sulaiman, M. K. Osman, N. K. A. Karim, S. Setumin, and I. S. Isa, “A new procedure for lung region segmentation from computed tomography images,” International Journal of Electrical and Computer Engineering, vol. 12, no. 5, pp. 4978–4987, Oct. 2022, DOI: 10.11591/ijece.v12i5.pp4978-4987. DOI: https://doi.org/10.11591/ijece.v12i5.pp4978-4987

H. Hu, Q. Li, Y. Zhao, and Y. Zhang, “Parallel Deep Learning Algorithms With Hybrid Attention Mechanism for Image Segmentation of Lung Tumors,” IEEE Trans Industr Inform, vol. 17, no. 4, pp. 2880–2889, Apr. 2021, DOI: 10.1109/TII.2020.3022912. DOI: https://doi.org/10.1109/TII.2020.3022912

R. H. AL-Abboodi and A. A. Al-Ani, “An Efficient and Robust Combined Feature Extraction Technique for Face Recognition Systems,” Iraqi J. Inf. Commun. Technol., vol. 7, no. 3, pp. 43–54, 2024.

O. A. Jassim, M. J. Abed, and Z. H. S. Saied, “Deep Learning Techniques in the Cancer-Related Medical Domain: A Transfer Deep Learning Ensemble Model for Lung Cancer Prediction,” Baghdad Science Journal, Aug. 2023, DOI: 10.21123/bsj.2023.8340. DOI: https://doi.org/10.21123/bsj.2023.8340

T. K. Nayak, C. S. R. Annavarappu, S. R. Nayak, and B. M. Gedefaw, “DMF-Net: a deep multi-level semantic fusion network for high-resolution chest CT and X-ray image de-noising,” BMC Med Imaging, vol. 23, no. 1, p. 150, Oct. 2023, DOI: 10.1186/s12880-023-01108-0. DOI: https://doi.org/10.1186/s12880-023-01108-0

C. Zhao, W. Lv, X. Zhang, Z. Yu, and S. Wang, “MMS-Net: Multi-level multi-scale feature extraction network for medical image segmentation,” Biomed Signal Process Control, vol. 86, p. 105330, Sep. 2023, DOI: 10.1016/j.bspc.2023.105330. DOI: https://doi.org/10.1016/j.bspc.2023.105330

J. Subash and S. Kalaivani, “Dual-stage classification for lung cancer detection and staging using hybrid deep learning techniques,” Neural Comput Appl, vol. 36, no. 14, pp. 8141–8161, May 2024, DOI: 10.1007/s00521-024-09425-3. DOI: https://doi.org/10.1007/s00521-024-09425-3

J. Wang, G. Li, and W. Zhang, “Combine-Net: An Improved Filter Pruning Algorithm,” Information, vol. 12, no. 7, p. 264, Jun. 2021, DOI: 10.3390/info12070264. DOI: https://doi.org/10.3390/info12070264

Z. Naz, M. U. G. Khan, T. Saba, A. Rehman, H. Nobanee, and S. A. Bahaj, “An Explainable AI-Enabled Framework for Interpreting Pulmonary Diseases from Chest Radiographs,” Cancers (Basel), vol. 15, no. 1, p. 314, Jan. 2023, DOI: 10.3390/cancers15010314. DOI: https://doi.org/10.3390/cancers15010314

R. D. Abdu-Aljabar and O. A. Awad, “LUNG CANCER RELAPSE PREDICTION USING PARALLEL XGBOOST: Bioinformation,” Iraqi J. Inf. Commun. Technol., vol. 5, no. 2, pp. 10–20, 2022. DOI: https://doi.org/10.31987/ijict.5.2.194

M. K. Islam, M. M. Rahman, M. S. Ali, S. M. Mahim, and M. S. Miah, “Enhancing lung abnormalities detection and classification using a Deep Convolutional Neural Network and GRU with explainable AI: A promising approach for accurate diagnosis,” Machine Learning with Applications, vol. 14, p. 100492, 2023, DOI: https://doi.org/10.1016/j.mlwa.2023.100492 DOI: https://doi.org/10.1016/j.mlwa.2023.100492

H. K. Aljobouri, H. A. Jaber, and I. Çankaya, “Performance evaluation of prototype‐based clustering algorithms combined MDL index,” Comput. Appl. Eng. Educ., vol. 25, no. 4, pp. 642–654, 2017. DOI: https://doi.org/10.1002/cae.21824

A. F. Hussein, S. J. Hashim, F. Z. Rokhani, and W. A. W. Adnan, “An automated high-accuracy detection scheme for myocardial ischemia based on multi-lead long-interval ECG and Choi-Williams time-frequency analysis incorporating a multi-class SVM classifier,” Sensors, vol. 21, no. 7, 2021, DOI: 10.3390/s21072311. DOI: https://doi.org/10.3390/s21072311

X. Yu, Q. Ma, T. Ling, J. Zhu, and Y. Shi, “Enhancing semi-supervised medical image segmentation with bidirectional copy-paste and masked image reconstruction,” International Journal of Machine Learning and Cybernetics, 2024, DOI: 10.1007/s13042-024-02410-1. DOI: https://doi.org/10.1007/s13042-024-02410-1

T.-W. Chiu, Y.-L. Tsai, and S.-F. Su, “Automatic detect lung node with deep learning in segmentation and imbalance data labeling,” Sci Rep, vol. 11, no. 1, p. 11174, May 2021, DOI: 10.1038/s41598-021-90599-4. DOI: https://doi.org/10.1038/s41598-021-90599-4

J. C. Souza, J. O. Bandeira Diniz, J. L. Ferreira, G. L. França da Silva, A. Corrêa Silva, and A. C. de Paiva, “An automatic method for lung segmentation and reconstruction in chest X-ray using deep neural networks,” Comput Methods Programs Biomed, vol. 177, pp. 285–296, Aug. 2019, DOI: 10.1016/j.cmpb.2019.06.005. DOI: https://doi.org/10.1016/j.cmpb.2019.06.005

R. H. AL-Abboodi and A. A. Al-Ani, “An Efficient and Robust Combined Feature Extraction Technique for Face Recognition Systems,” Iraqi J. Inf. Commun. Technol., vol. 7, no. 3, pp. 43–54, 2024. DOI: https://doi.org/10.31987/ijict.7.3.257

Z. Li, S. Zhou, C. Chang, Y. Wang, and Y. Guo, “A weakly supervised deep active contour model for nodule segmentation in thyroid ultrasound images,” Pattern Recognit Lett, vol. 165, pp. 128–137, Jan. 2023, DOI: 10.1016/j.patrec.2022.12.015. DOI: https://doi.org/10.1016/j.patrec.2022.12.015

S. P. Pawar and S. N. Talbar, “Two-Stage Hybrid Approach of Deep Learning Networks for Interstitial Lung Disease Classification,” Biomed Res Int, vol. 2022, 2022, DOI: 10.1155/2022/7340902. DOI: https://doi.org/10.1155/2022/7340902

T. S. Chandrakantha, B. N. Jagadale, O. Abdullah, and M. Farhan Alnaggar, “Indian Journal of Science and Technology Lung Tumor Classification using Hybrid Deep Learning and Segmentation by Fuzzy C Means,” Indian J Sci Technol, vol. 17, no. 1, p. 70, DOI: 10.17485/IJST/v17i1.2124. DOI: https://doi.org/10.17485/IJST/v17i1.2124

R. Mothkur and V. B. Nagendrappa, “An optimal model for classification of lung cancer using grey wolf optimizer and deep hybrid learning,” Indonesian Journal of Electrical Engineering and Computer Science, vol. 30, no. 1, pp. 406–413, Apr. 2023, DOI: 10.11591/ijeecs.v30.i1.pp406-413. DOI: https://doi.org/10.11591/ijeecs.v30.i1.pp406-413

C. Liu and M. Pang, “Extracting Lungs from CT Images via Deep Convolutional Neural Network Based Segmentation and Two-Pass Contour Refinement,” J Digit Imaging, vol. 33, no. 6, pp. 1465–1478, 2020, DOI: 10.1007/s10278-020-00388-0. DOI: https://doi.org/10.1007/s10278-020-00388-0

S. Chakraborty and D. R. D. K. Banerjee, “A Study on The Hybrid Approach for Lung Cancer Detection Using Convolutional Neural Networks and Decision Trees,” 2024.

S. S. Bhat and A. Ananth, “Hybrid Particle Swarm Optimization Based Deep Learning Model for the Stage Classification of Lung Cancer,” in International Conference on Signal & Data Processing, Springer, 2022, pp. 243–254. DOI: https://doi.org/10.1007/978-981-99-1410-4_20

C. Liu, R. Zhao, W. Xie, and M. Pang, “Pathological lung segmentation based on random forest combined with deep model and multi-scale superpixels,” Neural Process Lett, vol. 52, no. 2, pp. 1631–1649, 2020, DOI: 10.1007/s11063-020-10330-8. DOI: https://doi.org/10.1007/s11063-020-10330-8

D. Park et al., “Development and validation of a hybrid deep learning–machine learning approach for severity assessment of COVID-19 and other pneumonias,” Sci Rep, vol. 13, no. 1, p. 13420, 2023, DOI: 10.1038/s41598-023-40506-w. DOI: https://doi.org/10.1038/s41598-023-40506-w

I. Shafi et al., “An Effective Method for Lung Cancer Diagnosis from CT Scan Using Deep Learning-Based Support Vector Network,” Cancers (Basel), vol. 14, no. 21, p. 5457, Nov. 2022, DOI: 10.3390/cancers14215457. DOI: https://doi.org/10.3390/cancers14215457

Rabia Javed, Azka Sarfraz Khan, and Ali Haider Khan, “Deep Learning Techniques for Diagnosis of Lungs Cancer,” Journal of Computing & Biomedical Informatics, vol. 3, no. 01, pp. 230–242, Mar. 2022, DOI: 10.56979/301/2022/36. DOI: https://doi.org/10.56979/302/2022/76

A. Manju et al., “Early diagnosis of lung tumors for extending patients’ life using deep neural networks,” Computers, Materials and Continua, 2023. DOI: https://doi.org/10.32604/cmc.2023.039567

Y. Lyu and X. Tian, “MWG-UNet: Hybrid Deep Learning Framework for Lung Fields and Heart Segmentation in Chest X-ray Images,” Bioengineering, vol. 10, no. 9, p. 1091, Sep. 2023, DOI: 10.3390/bioengineering10091091. DOI: https://doi.org/10.3390/bioengineering10091091

S. R. Vinta, B. Lakshmi, M. A. Safali, and G. S. C. Kumar, “Segmentation and Classification of Interstitial Lung Diseases Based on Hybrid Deep Learning Network Model,” IEEE Access, vol. 12, pp. 50444–50458, 2024, DOI: 10.1109/ACCESS.2024.3383144. DOI: https://doi.org/10.1109/ACCESS.2024.3383144

P. Afshar et al., “Hybrid Deep Learning Model For Diagnosis Of Covid-19 Using Ct Scans And Clinical/Demographic Data,” in 2021 IEEE International Conference on Image Processing (ICIP), 2021, pp. 180–184. DOI: 10.1109/ICIP42928.2021.9506661. DOI: https://doi.org/10.1109/ICIP42928.2021.9506661

C. Liu, R. Zhao, and M. Pang, “A fully automatic segmentation algorithm for CT lung images based on random forest,” Med Phys, vol. 47, no. 2, pp. 518–529, Feb. 2020, DOI: 10.1002/mp.13939. DOI: https://doi.org/10.1002/mp.13939

E. Albalawi et al., “Hybrid healthcare unit recommendation system using computational techniques with lung cancer segmentation,” Front Med (Lausanne), vol. 11, Jul. 2024, DOI: 10.3389/fmed.2024.1429291. DOI: https://doi.org/10.3389/fmed.2024.1429291

J. S. Suri et al., “COVLIAS 1.0 vs. MedSeg: Artificial Intelligence-Based Comparative Study for Automated COVID-19 Computed Tomography Lung Segmentation in Italian and Croatian Cohorts,” Diagnostics, vol. 11, no. 12, p. 2367, Dec. 2021, DOI: 10.3390/diagnostics11122367. DOI: https://doi.org/10.3390/diagnostics11122367

Z. Wang, Y. Zou, and P. X. Liu, “Hybrid dilation and attention residual U-Net for medical image segmentation,” Comput Biol Med, vol. 134, p. 104449, 2021, DOI: https://doi.org/10.1016/j.compbiomed.2021.104449. DOI: https://doi.org/10.1016/j.compbiomed.2021.104449

S. Rakesh and S. Mahesh, “Nodule segmentation of lung CT image for medical applications,” Global Transitions Proceedings, vol. 2, no. 1, pp. 80–83, Jun. 2021, DOI: 10.1016/j.gltp.2021.01.011. DOI: https://doi.org/10.1016/j.gltp.2021.01.011

H. Gu et al., “A 2D–3D hybrid convolutional neural network for lung lobe auto-segmentation on standard slice thickness computed tomography of patients receiving radiotherapy,” Biomed Eng Online, vol. 20, no. 1, p. 94, 2021, DOI: 10.1186/s12938-021-00932-1. DOI: https://doi.org/10.1186/s12938-021-00932-1

M. Owais, N. R. Baek, and K. R. Park, “DMDF-Net: Dual multiscale dilated fusion network for accurate segmentation of lesions related to COVID-19 in lung radiographic scans,” Expert Syst Appl, vol. 202, p. 117360, Sep. 2022, DOI: 10.1016/j.eswa.2022.117360. DOI: https://doi.org/10.1016/j.eswa.2022.117360

C. Gu and H. Gao, “Combining GAN and LSTM Models for 3D Reconstruction of Lung Tumors from CT Scans,” International Journal of Advanced Computer Science and Applications, vol. 14, no. 5, 2023, DOI: 10.14569/IJACSA.2023.0140540. DOI: https://doi.org/10.14569/IJACSA.2023.0140540

D. Lynch and S. M, “PE-DeepNet: A deep neural network model for pulmonary embolism detection,” International Journal of Intelligent Networks, vol. 3, pp. 176–180, 2022, DOI: https://doi.org/10.1016/j.ijin.2022.10.001. DOI: https://doi.org/10.1016/j.ijin.2022.10.001

W. Wang, F. Liu, X. Zhi, T. Zhang, and C. Huang, “An Integrated Deep Learning Algorithm for Detecting Lung Nodules With Low-Dose CT and Its Application in 6G-Enabled Internet of Medical Things,” IEEE Internet Things J, vol. 8, no. 7, pp. 5274–5284, 2021, DOI: 10.1109/JIOT.2020.3023436. DOI: https://doi.org/10.1109/JIOT.2020.3023436

M. Sollini, F. Bartoli, A. Marciano, R. Zanca, R. H. J. A. Slart, and P. A. Erba, “Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology,” Eur J Hybrid Imaging, vol. 4, no. 1, p. 24, 2020, DOI: 10.1186/s41824-020-00094-8. DOI: https://doi.org/10.1186/s41824-020-00094-8

R. Mothkur and B. N. Veerappa, “Classification Of Lung Cancer Using Lightweight Deep Neural Networks,” Procedia Comput Sci, vol. 218, pp. 1869–1877, 2023, DOI: https://doi.org/10.1016/j.procs.2023.01.164. DOI: https://doi.org/10.1016/j.procs.2023.01.164

E. Sharma, R. C. Deo, J. Soar, R. Prasad, A. V Parisi, and N. Raj, “Novel hybrid deep learning model for satellite based PM10 forecasting in the most polluted Australian hotspots,” Atmos Environ, vol. 279, p. 119111, 2022, DOI: https://doi.org/10.1016/j.atmosenv.2022.119111 DOI: https://doi.org/10.1016/j.atmosenv.2022.119111

J. N. Siebert et al., “Deep learning diagnostic and severity-stratification for interstitial lung diseases and chronic obstructive pulmonary disease in digital lung auscultations and ultrasonography: clinical protocol for an observational case–control study,” BMC Pulm Med, vol. 23, no. 1, p. 191, 2023, DOI: 10.1186/s12890-022-02255-w. DOI: https://doi.org/10.1186/s12890-022-02255-w

R. Aoki et al., “Effects of Automatic Deep-Learning-Based Lung Analysis on Quantification of Interstitial Lung Disease: Correlation with Pulmonary Function Test Results and Prognosis,” Diagnostics, vol. 12, no. 12, p. 3038, Dec. 2022, DOI: 10.3390/diagnostics12123038. DOI: https://doi.org/10.3390/diagnostics12123038

S. Sreeji, S. Shiji, M. Vysagh, and T. A. Amma, “Security and privacy preserving deep learning framework that protect healthcare data breaches,” International Journal of Research in Engineering, Science and Management, vol. 3, no. 7, pp. 148–152, 2020.

B. R. Louassef and N. Chikouche, “Privacy preservation in healthcare systems,” in 2021 International Conference on Artificial Intelligence for Cyber Security Systems and Privacy (AI-CSP), 2021, pp. 1–6. DOI: 10.1109/AI-CSP52968.2021.9671083. DOI: https://doi.org/10.1109/AI-CSP52968.2021.9671083

V. Nanda, S. Dooley, S. Singla, S. Feizi, and J. P. Dickerson, “Fairness Through Robustness,” in Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency, New York, NY, USA: ACM, Mar. 2021, pp. 466–477. DOI: 10.1145/3442188.3445910. DOI: https://doi.org/10.1145/3442188.3445910

E. Puyol-Antón et al., “Fairness in Cardiac MR Image Analysis: An Investigation of Bias Due to Data Imbalance in Deep Learning Based Segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI 2021, M. de Bruijne, P. C. Cattin, S. Cotin, N. Padoy, S. Speidel, Y. Zheng, and C. Essert, Eds., Cham: Springer International Publishing, 2021, pp. 413–423. DOI: https://doi.org/10.1007/978-3-030-87199-4_39

Z. Salahuddin, H. C. Woodruff, A. Chatterjee, and P. Lambin, “Transparency of deep neural networks for medical image analysis: A review of interpretability methods,” Comput Biol Med, vol. 140, p. 105111, 2022, DOI: https://doi.org/10.1016/j.compbiomed.2021.105111. DOI: https://doi.org/10.1016/j.compbiomed.2021.105111

K. Meduri et al., “Understanding the Role of Explainable AI and Deep Learning in Threat Analysis”.

Z. Obermeyer, B. Powers, C. Vogeli, and S. Mullainathan, “Dissecting racial bias in an algorithm used to manage the health of populations,” Science (1979), vol. 366, no. 6464, pp. 447–453, Oct. 2019, DOI: 10.1126/science.aax2342. DOI: https://doi.org/10.1126/science.aax2342

Downloads

Published

29-09-2025

How to Cite

[1]
R. H. Lateef and A. Hussein, “A Review on Automated Segmentation of Lung Lesions in Chest CT Scans Using Hybrid Approaches”, NJES, vol. 28, no. 3, pp. 403–419, Sep. 2025, doi: 10.29194/NJES.28030403.

Similar Articles

31-40 of 278

You may also start an advanced similarity search for this article.