Minimizing The Phenomena of Reflection Cracks. A Review
DOI:
https://doi.org/10.29194/NJES.28040505Keywords:
Reflection Cracks, Geosynthetic, Geogrids, Stress Absorbing Membrane Interlayers, SAMIAbstract
Reflective cracking is a serious issue that Adversely influences the performance and longevity of asphalt overlays over deteriorated pavements. This review Looks for the Technologies which used to reduce the reflection cracks propagation by insert a new Strategies and different design materials. This research dealt with many treatments such as: increasing the layer thickness of Hot Mix Asphalt (HMA), creating modified asphalt by adding polymers to asphalt, rubberizing asphalt, carbon black, sulfur and other different materials. Geosynthetic materials were studied and analyzed to evaluate their ability to increase the layer tensile strength and minimize the effect of reflection cracks such as geotextiles, geogrids, and Stress Absorbing Membrane Interlayers (SAMI). The research shows that the increasing of overlay asphalt layer thickness leads to durability development. On the other hand, using developed materials like Polymer-Modified Asphalt and Stress Absorbing Membrane Interlayers (SAMI) Strategies leads to increasing the service life of the repaired pavement. The conclusion indicated that the development of overlay asphalt layer thickness and layer reinforcement and applying advanced environmental systems can be improving the pavement performance. These Strategies can produce a perfect solution to prevent or reduce the reflection cracks in rigid and flexible pavement.
Downloads
References
G. S. Cleveland, J. W. Button, and R. L. Lytton, “Geosynthetics in flexible and rigid pavement overlay systems to reduce reflection cracking,” Tex. Transp. Inst. Rep. No 0-1777, vol. 298, pp. 1–297, 2002.
J. Kim and W. G. Buttlar, “Analysis of Reflective Crack Control System Involving Reinforcing Gridover Base-Isolating Interlayer Mixture,” J.
Transp. Eng., vol. 128, no. 4, pp. 375–384, Jul. 2002, doi: 10.1061/(ASCE)0733-947X(2002)128:4(375). DOI: https://doi.org/10.1061/(ASCE)0733-947X(2002)128:4(375)
A. de Bondt, “Effect of reinforcement properties,” in Proceedings PRO11. 4th International RILEM Conference on Reflective Cracking in Pavements–Research in Practice. Edited by AO Abd El Halim, D, 2000, pp. 13–22
M. Elseifi and R. Bandaru, “Cost effective` prevention of reflective cracking of composite pavement.,” Louisiana. Dept. of Transportation and Development, 2011.
J. W. Button and R. L. Lytton, Guidelines for using geosynthetics with HMA overlays to reduce reflective cracking. Texas Transportation Institute, Texas A & M University, 2003.
S. Saride and V. V. Kumar, “Influence of geosynthetic-interlayers on the performance of asphalt overlays on pre-cracked pavements,” Geotext. Geomembr., vol. 45, no. 3, pp. 184–196, Jun. 2017, doi: 10.1016/j.geotexmem.2017.01.010. DOI: https://doi.org/10.1016/j.geotexmem.2017.01.010
D. Zamora-Barraza, M. A. Calzada-Pérez, D. Castro-Fresno, and A. Vega-Zamanillo, “Evaluation of anti-reflective cracking systems using geosynthetics in the interlayer zone,” Geotext. Geomembr., vol. 29, no. 2, pp. 130–136, Apr. 2011, doi: 10.1016/j.geotexmem.2010.10.005. DOI: https://doi.org/10.1016/j.geotexmem.2010.10.005
J. Li, J. Zi, T. Jiang, T. Hu, and Z. Feng, “Impact of the implementation of continuous construction method on pavement cracking performance,” Int. J. Pavement Eng., vol. 17, no. 3, pp. 201–210, Mar. 2016, doi: 10.1080/10298436.2014.979820. DOI: https://doi.org/10.1080/10298436.2014.979820
B. Yu, Q. Lu, and J. Yang, “Evaluation of anti-reflective cracking measures by laboratory test,” Int. J. Pavement Eng., vol. 14, no. 6, pp. 553–560, Aug. 2013, doi: 10.1080/10298436.2012.721 DOI: https://doi.org/10.1080/10298436.2012.721547
M. Elseifi, R. Bandaru, and La. ). D. of C. and E. E. Louisiana State University (Baton Rouge, “Cost effective prevention of reflective cracking of composite pavement.,” FHWA/LA.11/478, Sep. 2011.
E. B. Owusu-Antwi, L. Khazanovich, and L. Titus-Glover, “Mechanistic-Based Model for Predicting Reflective Cracking in Asphalt Concrete–Overlaid Pavements,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1629, no. 1, pp. 234–241, Jan. 1998, doi: 10.3141/1629-26. DOI: https://doi.org/10.3141/1629-26
L. G. Loria-Salazar, Reflective cracking of flexible pavements: Literature review, analysis models, and testing methods. University of Nevada, Reno, 2008.
M. Elseifi, N. Dhakal, La. ). D. of C. and E. E. Louisiana State University (Baton Rouge, and Louisiana Transportation Research Center, “Mitigation Strategies of Reflection Cracking in Pavements,” FWHA/LA.14/541, May 2015.
C. Mushota, M. C. Mwale, G. Mutembo, M. Muya, and L. F. Walubita, “Reflective Cracking on Cement Treated Base (CTB) Pavements in Zambia: An Analytical Study,” in Application of Nanotechnology in Pavements, Geological Disasters, and Foundation Settlement Control Technology, Yichang, Hubei, China: American Society of Civil Engineers, Jun. 2014, pp. 62–69. doi: 10.1061/9780784478448.009. DOI: https://doi.org/10.1061/9780784478448.009
W. S. Adaska and D. R. Luhr, “Control of reflective cracking in cement stabilized pavements,” in Proceedings of 5th international RILEM conference on cracking in pavements, 2004, pp. 309–316.
F. P. Germann and R. L. Lytton, “Methodology for predicting the reflection cracking life of asphalt concrete overlays,” Interim Rep., 1979.
N. Dhakal, M. A. Elseifi, and Z. Zhang, “Mitigation strategies for reflection cracking in rehabilitated pavements – A synthesis,” Int. J. Pavement Res. Technol., vol. 9, no. 3, pp. 228–239, May 2016, doi: 10.1016/j.ijprt.2016.05.001. DOI: https://doi.org/10.1016/j.ijprt.2016.05.001
M. A. Elseifi and I. L. Al-Qadi, “A Simplified Overlay Design Model against Reflective Cracking Utilizing Service Life Prediction,” Road Mater. Pavement Des., vol. 5, no. 2, pp. 169–191, Jan. 2004, doi: 10.1080/14680629.2004.9689968.
M. A. Elseifi and I. L. Al-Qadi, “A Simplified Overlay Design Model against Reflective Cracking Utilizing Service Life Prediction,” Road Mater. Pavement Des., vol. 5, no. 2, pp. 169–191, Jan. 2004, doi: 10.1080/14680629.2004.9689968. DOI: https://doi.org/10.3166/rmpd.5.169-191
J. Pais, “The Reflective Cracking in Flexible Pavements,” Romanian J. Transp. Infrastruct., vol. 2, no. 1, pp. 63–87, Jul. 2013, doi: 10.1515/rjti-2015-0012. DOI: https://doi.org/10.1515/rjti-2015-0012
F. N. Finn and C. L. Monismith, “asphalt overlay design procedures,” NCHRP Synthesis of Highway Practice 116 (1984).
G. Sherman, “minimizing reflection cracking of pavement overlays,” NCHRP Synth. Highw. Pract., no. 92, Sep. 1982.
R. D. Barksdale, “fabrics in asphalt overlays and pavement maintenance,” NCHRP Synth. Highw. Pract., no. 171, Jul. 1991.
W. Gulden and D. Brown, “Overlays for plain jointed concrete pavements,” NASA STIRecon Tech. Rep. N, vol. 85, p. 25557, Sep. 1984.
W. Gulden and D. Brown, “Treatments for Reduction of Reflective Cracking of Asphalt Overlays on Jointed-Concrete Pavements in Georgia,” Transp. Res. Rec., vol. 916, pp. 1–6, 1983.
N. H. Predoehl, Evaluation of Paving Fabric Test Installations in California: Report, vol. 90. California Department of Transportation, Office of Transportation Laboratory, 1990.
A. L. McLaughlin, “Reflection Cracking of Bituminous Overlays for Airport Pavements; a State of the Art,” 1979.
Y. S. Ajool, A. A. Allawi, and A. H. Kalil, “Mitigation of Reflection Cracking in Asphalt Concrete Overlay on Rigid Pavements,” E3S Web Conf., vol. 427, p. 03004, 2023, doi: 10.1051/e3sconf/202342703004. DOI: https://doi.org/10.1051/e3sconf/202342703004
L. Han, S. Zhang, Z. Zhang, and T. Gao, “Mechanical Analysis of Preventing Reflection Cracks Based on Stress Absorbing Layer,” Adv. Civ. Eng., vol. 2022, no. 1, p. 8016215, 2022, doi: 10.1155/2022/8016215. DOI: https://doi.org/10.1155/2022/8016215
A. L. McLaughlin, “reflection cracking of bituminous overlays for airport pavements; a state of the art,” Art. no. FAA-RD-79-57 Final Rpt., May 1979.
K. W. Kim, Y. S. Doh, and S. Lim, “Mode I reflection cracking resistance of strengthened asphalt concretes,” Constr. Build. Mater., vol. 13, no. 5, pp. 243–251, 1999. DOI: https://doi.org/10.1016/S0950-0618(99)00032-X
A. Bardesi et al., “Use of modified bituminous binders, special bitumens and bitumens with additives in road pavements,” Proc World Road Assoc. PIARC, pp. 118–120, 1999.
J. Habbouche, E. Y. Hajj, I. Boz, R. Kluttz, N. E. Morian, and P. E. Sebaaly, “Impact of high-polymer modification on rheological and chemical properties of asphalt binders,” J. Assoc. Asph. Paving Technol., vol. 89, p. in–press, 2020.
J. Habbouche, E. Y. Hajj, P. E. Sebaaly, and M. Piratheepan, “A critical review of high polymer-modified asphalt binders and mixtures,” Int. J. Pavement Eng., vol. 21, no. 6, pp. 686–702, May 2020, doi: 10.1080/10298436.2018.1503273. DOI: https://doi.org/10.1080/10298436.2018.1503273
J. Habbouche, E. Y. Hajj, P. E. Sebaaly, and P. E. & S. P. University of Nevada. Department of Civil and Environmental Engineering, “Structural Coefficient for High Polymer Modified Asphalt Mixes,” Jun. 2019.
B. F. Bowers, B. K. Diefenderfer, and S. D. Diefenderfer, “Evaluation of Highly Polymer-Modified Asphalt Mixtures: Phase I,” Art. no. FHWA/VTRC 18-R14, May 2018.
H. L. Von Quintus, J. Mallela, and M. Buncher, “Quantification of Effect of Polymer-Modified Asphalt on Flexible Pavement Performance,” Transp. Res. Rec. J. Transp. Res. Board, vol. 2001, no. 1, pp. 141–154, Jan. 2007, doi: 10.3141/2001-16. DOI: https://doi.org/10.3141/2001-16
R. E. Skinner Jr et al., “transportation research board 2006 executive committee officers,” 2006.
K. A. Galal, B. J. Coree, J. E. Haddock, and T. D. White, “Structural Adequacy of Rubblized Portland Cement Concrete Pavement,” Transp. Res. Rec., vol. 1684, no. 1, pp. 172–177, Jan. 1999, doi: 10.3141/1684-20. DOI: https://doi.org/10.3141/1684-20
H. Ceylan, K. Gopalakrishnan, B. J. Coree, T. Kota, and R. Mathews, “Rehabilitation of concrete pavements utilizing rubblization: a mechanistic based approach to HMA overlay thickness design,” Int. J. Pavement Eng., vol. 9, no. 1, pp. 45–57, Mar. 2008, doi: 10.1080/10298430701201260. DOI: https://doi.org/10.1080/10298430701201260
T. S. Khedaywi and T. D. White, “Effect of Segregation on Fatigue Performance of Asphalt Paving Mixtures,” Transp. Res. Rec., vol. 1543, no. 1, pp. 63–70, Jan. 1996, doi: 10.1177/0361198196154300108. DOI: https://doi.org/10.1177/0361198196154300108
F. S. Rostler, R. M. White, and P. J. Cass, “Modification of Asphalt Cements for Improvement of Wear Resistance of Pavement Surfaces,” 1972.
F. S. Rostler, R. M. White, and E. M. Dannenberg, “Carbon black as a reinforcing agent for Asphalt,” presented at the Association of Asphalt Paving Technologists Proc, 1977.
Z. Yao and C. L. Monismith, “behavior of asphalt mixtures with carbon black reinforcement (with discussion),” presented at the Association of Asphalt Paving Technologists Proc, 1986.
S. C. Poon, “Reflection cracking on asphaltic concrete runway overlays in cold areas,” 1986,
E. T. Hignell, J. J. Hajek, and R. C. Haas, “modification of temperature susceptibilities of asphalt paving mixtures with discussion,” presented at the Association of Asphalt Paving Technologists Proc, 1972.
H. J. Fromm, D. C. Bean, and L. Miller, “sulphur-asphalt pavements performance and recycling (with discussion),” presented at the Association of Asphalt Paving Technologists Proceedings, 1981.
T. W. Kennedy, L. O. Cummings, and T. D. White, “Changing Asphalt Through Creation of Metal Complexes,” presented at the Association of Asphalt Paving Technologists Proceedings, 1981.
T. W. Kennedy and J. Moulthrop, “Properties of Modified Asphalt-Aggregate Mixtures Involving a Metal Complex Catalyst,” in Proceedings of the Canadian Technical Asphalt Association, 1985.
C. S. Huges and K. H. McGhee, “Results of Reflection Crack Questionnaire Survey,” Rep. No VHRC, pp. 72-R25, 1973.
E. R. Steen, “Stress relieving function of paving fabrics when used in new road construction,” in Proc., 5th International RILEM Conference, Edited by C. Petit, IL Al-Qadi, and A. Millien, Limoges, France, 2004, pp. 105–112.
C. Abernathy and Montana. Dept. of Transportation. Research Programs, “Evaluation of Various Pavement Fabric and Mat Applications to Retard Reflective Cracking,” MT 00-18, Apr. 2013. doi: 10.21949/1518249.
J. W. Button and T. G. Hunter, “Synthetic Fibers in Asphalt Paving Mixtures. Final Report,” Art. no. FHWA/TX-85/73+319-1F, Nov. 1984.
R. M. Koerner, Designing with Geosynthetics - 6Th Edition Vol. 1. Xlibris Corporation, 2012.
F. Amini and Jackson State University. Department of Civil & Environmental Engineering, “Potential applications of paving fabrics to reduce reflective cracking.,” FHWA/MS-DOT-RD-05-174, Feb. 2005.
R. Roque, C. Cocconcelli, J. Zou, B. Park, and G. Lopp, “Evaluation of Reflective Cracking Mitigation Treatments Using the Composite Specimen Interface Crack (CSIC) Test,” University of Florida. Dept. of Civil and Coastal Engineering, 2018.
C. Joel Sprague, S. Allen, and W. Tribbett, “Tensile Properties of Asphalt Overlay Geosynthetic Reinforcement,” Transp. Res. Rec. J. Transp. Res. Board, vol. 1611, no. 1, pp. 65–69, Jan. 1998, doi: 10.3141/1611-08. DOI: https://doi.org/10.3141/1611-08
S. J. Ellis, P. C. Langdale, and J. Cook, “Performance of techniques to minimize reflection cracking and associated developments in pavement investigation for maintenance of uk military airfields,” in Proceedings of the 2002 Federal Aviation Administration Airport Technology Transfer Conference, 2002.
S. A. Safavizadeh, S.-H. Cho, and Y. R. Kim, “Interface shear strength and shear fatigue resistance of fibreglass grid-reinforced asphalt concrete test specimens,” Int. J. Pavement Eng., vol. 23, no. 8, pp. 2531–2542, Jul. 2022, doi: 10.1080/10298436.2020.1861447. DOI: https://doi.org/10.1080/10298436.2020.1861447
P. Li et al., “Gradation Influence on Crack Resistance of Stress-Absorbing Membrane Interlayer,” Appl. Sci., vol. 13, no. 20, p. 11276, 2023. DOI: https://doi.org/10.3390/app132011276
I. I. Idris, H. Sadek, and M. Hassan, “State-of-the-Art Review of the Evaluation of Asphalt Mixtures’ Resistance to Reflective Cracking in Laboratory,” J. Mater. Civ. Eng., vol. 32, no. 9, p. 03120004, Sep. 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003254. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0003254
M. Rith and S. W. Lee, “Development of cohesive-zone-based prediction model for reflective cracking in asphalt overlay,” Int. J. Pavement Eng., vol. 23, no. 4, pp. 1050–1059, Mar. 2022, doi: 10.1080/10298436.2020.1788028. DOI: https://doi.org/10.1080/10298436.2020.1788028
Z. Zeng, Y. Guo, P. Li, A. Shen, and C. Zhai, “Performance research of fiber-reinforced asphalt rubber as a stress-absorbing membrane interlayer,” J. Adhes. Sci. Technol., vol. 35, no. 19, pp. 2047–2063, Oct. 2021, doi: 10.1080/01694243.2021.1871813.
K. Zhang, Z. Zhang, and Y. Luo, “Material Composition Design and Anticracking Performance Evaluation of Asphalt Rubber Stress‐Absorbing Membrane Interlayer (AR‐SAMI),” Adv. Mater. Sci. Eng., vol. 2018, no. 1, p. 8560604, Jan. 2018, doi: 10.1155/2018/8560604. DOI: https://doi.org/10.1155/2018/8560604
O. M. Ogundipe, N. Thom, and A. Collop, “Investigation of crack resistance potential of stress absorbing membrane interlayers (SAMIs) under traffic loading,” Constr. Build. Mater., vol. 38, pp. 658–666, Jan. 2013, doi: 10.1016/j.conbuildmat.2012.08.039. DOI: https://doi.org/10.1016/j.conbuildmat.2012.08.039
O. M. Ogundipe, N. H. Thom, and A. C. Collop, “Evaluation of performance of stress-absorbing membrane interlayer (SAMI) using accelerated pavement testing,” Int. J. Pavement Eng., vol. 14, no. 6, pp. 569–578, Aug. 2013, doi: 10.1080/10298436.2012.742193. DOI: https://doi.org/10.1080/10298436.2012.742193
Y. Chen, G. Lopp, and R. Roque, “Effects of an Asphalt Rubber Membrane Interlayer on Pavement Reflective Cracking Performance,” J. Mater. Civ. Eng., vol. 25, no. 12, pp. 1936–1940, Dec. 2013, doi: 10.1061/(ASCE)MT.1943-5533.0000781. DOI: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000781
Z. Z. Li, S. F. Chen, W. D. Liao, and R. X. Yuan, “Lab simulation study on anti-cracking performance of asphalt concrete overlays for fatigue,” Adv. Mater. Res., vol. 510, pp. 478–483, 2012. DOI: https://doi.org/10.4028/www.scientific.net/AMR.510.478
R. S. Baghel, S. R. Kasu, and A. K. Chandrappa, “Effect of dual and new generation wide-base tire assembly on inverted pavements,” J. Road Eng., vol. 2, no. 2, pp. 124–136, Jun. 2022, doi: 10.1016/j.jreng.2022.04.001. DOI: https://doi.org/10.1016/j.jreng.2022.04.001
J. W. Vespa and Illinois. Department of Transportation. Bureau of Materials and Physical Research, “An evaluation of interlayer stress absorbing composite (ISAC) reflective crack relief system,” FHWA/IL/PRR 150, Mar. 2005.
C. Palacios, G. R. Chehab, F. Chaignon, and M. Thompson, “Evaluation of fiber reinforced bituminous interlayers for pavement preservation,” in Proceedings of 6th international RILEM conference, Chicago, 2008, pp. 721–729.
O. O. Moses, “Investigation of performance of glass fibre impregnated with bitumen emulsion against reflective cracking,” J. Civ. Environ. Eng., vol. 4, no. 1, p. 1, 2014.
Z. Zeng, Y. Guo, P. Li, A. Shen, and C. Zhai, “Performance research of fiber-reinforced asphalt rubber as a stress-absorbing membrane interlayer,” J. Adhes. Sci. Technol., vol. 35, no. 19, pp. 2047–2063, Oct. 2021, doi: 10.1080/01694243.2021.1871813 DOI: https://doi.org/10.1080/01694243.2021.1871813
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sameer A. Jasim, Hassan Musa Al-Mousawi, Ahmed I. M. Nassar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.







