Enhancement of Magnetic Fluid Multimode Interference Filter-Based on No-Core Fiber in the Fourth Self-Imaging
DOI:
https://doi.org/10.29194/NJES.28020304Keywords:
Multimode Interferometry (MMI), Ferrofluid, Magnetic Field Filter, Self-Imaging, Optimization, TunabilityAbstract
Cascade single mode-No Core - single mode fiber structure (SNS) optical filters have garnered a lot of interest as dependable optical devices. These devices' simplicity, compactness, affordability, all-fiber design, low transmission loss, and ability to continuously adjust the laser wavelength at a particular spectral range contribute to their dependability. The operation's foundation is multimode interference (MMI) and self-image phenomena. SNS filter based on optimized 4th self-imaging condition for different NCF- Specifications was theoretically optimized a tunable filter based on a cascade single mode-no core-single mode (SNS) fiber structure encircled by Ferrofluid was experimentally investigated. The findings indicate that reducing the NCF diameter can enhance the filter's tunability. device has applications in fiber laser technology, spectroscopy, and optical communication.
Downloads
References
A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, “Telecomm tunable fiber laser based on multimode interference effect,” in Proc. IEEE/LEOS Summer Topical Meetings, 2008, pp. 17–18. doi: 10.1109/LEOSST.2008.4590467. DOI: https://doi.org/10.1109/LEOSST.2008.4590467
C. Hong, H.-E. Horng, and S.-Y. Yang, “Tunable refractive index of magnetic fluids and its applications,” Phys. Status Solidi A, vol. 1, no. 7, pp. 1604–1609, 2004. doi: 10.1002/pssc.200304388. DOI: https://doi.org/10.1002/pssc.200304388
W. S. Mohammed, P. W. E. Smith, and X. Gu, “All-fiber multimode interference bandpass filter,” Opt. Lett., vol. 31, no. 17, pp. 2547–2549, 2006. doi: 10.1364/OL.31.002547. DOI: https://doi.org/10.1364/OL.31.002547
L. B. Soldano and E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightw. Technol., vol. 13, no. 4, pp. 615–627, 1995. doi: 10.1109/50.372474. DOI: https://doi.org/10.1109/50.372474
L. B. Soldano, F. B. Veerman, M. K. Smit, B. H. Verbeek, A. H. Dubost, and E. C. M. Pennings, “Planar monomode optical couplers based on multimode interference effects,” J. Lightw. Technol., vol. 10, no. 12, pp. 1843–1850, 1992. doi: 10.1109/50.202837. DOI: https://doi.org/10.1109/50.202837
D. A. May-Arrioja, P. LiKamWa, J. J. Sanchez-Mondragon, R. J. Selvas-Aguilar, and I. Torres-Gomez, “A reconfigurable multimode interference splitter for sensing applications,” Meas. Sci. Technol., vol. 18, no. 10, p. 3241, 2007. doi: 10.1088/0957-0233/18/10/S29. DOI: https://doi.org/10.1088/0957-0233/18/10/S29
M. P. Earnshaw and D. W. E. Allsopp, “Semiconductor space switches based on multimode interference couplers,” J. Lightw. Technol., vol. 20, no. 4, p. 643, 2002. doi: 10.1109/50.996585. DOI: https://doi.org/10.1109/50.996585
D. A. May-Arrioja, N. Bickel, and P. LiKamWa, “Robust 2×2 multimode interference optical switch,” Opt. Quantum Electron., vol. 38, pp. 557–566, 2006. doi: 10.1007/s11082-005-4699-y. DOI: https://doi.org/10.1007/s11082-005-4699-y
A. Mehta, W. S. Mohammed, and E. G. Johnson, “Multimode interference-based fiber-optic displacement sensor,” IEEE Photon. Technol. Lett., vol. 15, no. 8, pp. 1129–1131, 2003. doi: 10.1109/LPT.2003.815338. DOI: https://doi.org/10.1109/LPT.2003.815338
X. Zhu, Y. Chen, H. Zhang, L. Wang, and Q. Yu, “Single-transverse-mode output from a fiber laser based on multimode interference,” Opt. Lett., vol. 33, no. 9, pp. 908–910, 2008. doi: 10.1364/OL.33.000908. DOI: https://doi.org/10.1364/OL.33.000908
S. P. Gubin, Y. A. Koksharov, G. B. Khomutov, and G. Y. Yurkov, “Magnetic nanoparticles: preparation, structure and properties,” Russ. Chem. Rev., vol. 74, no. 6, p. 489, 2005. doi: 10.1070/RC2005v074n06ABEH000897. DOI: https://doi.org/10.1070/RC2005v074n06ABEH000897
L. Luo, S. Pu, S. Dong, and J. Tang, “Fiber-optic magnetic field sensor using magnetic fluid as the cladding,” Sens. Actuators A Phys., vol. 236, pp. 67–72, 2015. doi: 10.1016/j.sna.2015.10.034. DOI: https://doi.org/10.1016/j.sna.2015.10.034
H.-E. Horng, J.-J. Chieh, Y. H. Chao, S.-Y. Yang, C.-Y. Hong, and H.-C. Yang, “Tunable optical switch using magnetic fluids,” Appl. Phys. Lett., vol. 85, no. 23, pp. 5592–5594, 2004. doi: 10.1063/1.1833564. DOI: https://doi.org/10.1063/1.1833564
H.-E. Horng, J.-J. Chieh, Y. H. Chao, S.-Y. Yang, C.-Y. Hong, and H.-C. Yang, “Designing optical-fiber modulators by using magnetic fluids,” Opt. Lett., vol. 30, no. 5, pp. 543–545, 2005. doi: 10.1364/OL.30.000543. DOI: https://doi.org/10.1364/OL.30.000543
T. Liu, X. Chen, Z. Di, J. Zhang, X. Li, and J. Chen, “Tunable magneto-optical wavelength filter of long-period fiber grating with magnetic fluids,” Appl. Phys. Lett., vol. 91, no. 12, 2007. doi: 10.1063/1.2787970. DOI: https://doi.org/10.1063/1.2787970
A. Candiani, W. Margulis, C. Sterner, M. Konstantaki, and S. Pissadakis, “Phase-shifted Bragg microstructured optical fiber gratings utilizing infiltrated ferrofluids,” Opt. Lett., vol. 36, no. 13, pp. 2548–2550, 2011. doi: 10.1364/OL.36.002548. DOI: https://doi.org/10.1364/OL.36.002548
Y. Zhao, X. Liu, R.-Q. Lv, Y.-N. Zhang, and Q. Wang, “Review on optical fiber sensors based on the refractive index tunability of ferrofluid,” J. Lightw. Technol., vol. 35, no. 16, pp. 3406–3412, 2016. doi: 10.1109/JLT.2016.2573288. DOI: https://doi.org/10.1109/JLT.2016.2573288
N. Cennamo, F. Arcadio, V. Marletta, S. Baglio, L. Zeni, and B. Andò, “A magnetic field sensor based on SPR-POF platforms and ferrofluids,” IEEE Trans. Instrum. Meas., vol. 70, pp. 1–10, 2020. doi: 10.1109/TIM.2020.3035114. DOI: https://doi.org/10.1109/TIM.2020.3035114
Y. Qi, L. Ma, Z. Kang, Y. Bai, and S. Jian, “Tunable all fiber multi-wavelength mode-locked laser using polarization controller coiled SMF-GIMF-SMF structure as both saturable absorber and comb filter,” Opt. Fiber Technol., vol. 74, p. 103055, 2022. doi: 10.1016/j.yofte.2022.103055. DOI: https://doi.org/10.1016/j.yofte.2022.103055
P. Zhang, T. Wang, W. Ma, K. Dong, and H. Jiang, “Tunable multiwavelength Tm-doped fiber laser based on the multimode interference effect,” Appl. Opt., vol. 54, no. 15, pp. 4667–4671, 2015. doi: 10.1364/AO.54.004667. DOI: https://doi.org/10.1364/AO.54.004667
T. Walbaum and C. Fallnich, “Wavelength tuning of multimode interference bandpass filters by mechanical bending: experiment and theory in comparison,” Appl. Phys. B, vol. 108, pp. 117–124, 2012. doi: 10.1007/s00340-012-5084-8. DOI: https://doi.org/10.1007/s00340-012-5084-8
H. Li, Z. Wang, C. Li, J. Zhang, and S. Xu, “Mode-locked Tm fiber laser using SMF-SIMF-GIMF-SMF fiber structure as a saturable absorber,” Opt. Express, vol. 25, no. 22, pp. 26546–26553, 2017. doi: 10.1364/OE.25.026546. DOI: https://doi.org/10.1364/OE.25.026546
J. Chen, D. N. Wang, and Z. Wang, "Wavelength-switchable multiple type bound solitons in a passively mode-locked Er-doped fiber laser," IEEE Photonics Technol. Lett., vol. 32, no. 22, pp. 1447-1450, 2020. doi: 10.1109/LPT.2020.3031919
L. Ma, Y. Qi, Z. Kang, Y. Bai, and S. Jian, “Tunable fiber laser based on the refractive index characteristic of MMI effects,” Opt. Laser Technol., vol. 57, pp. 96–99, 2014. doi: 10.1016/j.optlastec.2013.10.001. DOI: https://doi.org/10.1016/j.optlastec.2013.10.001
J. Yu, X. Ma, Y. Qi, Z. Kang, and S. Jian, “All-fiber CW optical parametric oscillator tuned from 1642.5 to 1655.4 nm by a low-loss SMS filter,” Results Phys., vol. 17, p. 103136, 2020. doi: 10.1016/j.rinp.2020.103136. DOI: https://doi.org/10.1016/j.rinp.2020.103136
J. E. Antonio-Lopez, J. J. Sanchez-Mondragon, P. LiKamWa, and D. A. May-Arrioja, “Wide range optofluidically tunable multimode interference fiber laser,” Laser Phys., vol. 24, no. 8, 2014. doi: 10.1088/1054-660X/24/8/085108. DOI: https://doi.org/10.1088/1054-660X/24/8/085108
X. Ma, D. Chen, Q. Shi, G. Feng, and J. Yang, “Widely tunable thulium-doped fiber laser based on multimode interference with a large no-core fiber,” J. Lightw. Technol., vol. 32, no. 19, pp. 3234–3238, 2014. doi: 10.1109/JLT.2014.2342251. DOI: https://doi.org/10.1109/JLT.2014.2342251
A. Castillo-Guzman, J. E. Antonio-Lopez, R. Selvas-Aguilar, D. A. May-Arrioja, J. Estudillo-Ayala, and P. LiKamWa, “Widely tunable erbium-doped fiber laser based on multimode interference effect,” Opt. Express, vol. 18, no. 2, pp. 591–597, 2010. doi: 10.1364/OE.18.000591. DOI: https://doi.org/10.1364/OE.18.000591
G. Yin, S. Lou, P. Hua, X. Wang, and B. Han, “Tunable fiber laser by cascading twin core fiber-based directional couplers,” IEEE Photon. Technol. Lett., vol. 26, no. 22, pp. 2279–2282, 2014. doi: 10.1109/LPT.2014.2351808. DOI: https://doi.org/10.1109/LPT.2014.2351808
G. Yin, S. Lou, X. Wang, and B. Han, “Tunable multi-wavelength erbium-doped fiber laser by cascading a standard Mach-Zehnder interferometer and a twin-core fiber-based filter,” Laser Phys. Lett., vol. 10, no. 12, p. 125110, 2013. doi: 10.1088/1612-2011/10/12/125110. DOI: https://doi.org/10.1088/1612-2011/10/12/125110
L. Zhang, X. Wang, X. Liu, J. Zheng, and Y. Liu, “Room-temperature power-stabilized narrow-linewidth tunable erbium-doped fiber ring laser based on cascaded Mach-Zehnder interferometers with different free spectral range for strain sensing,” J. Lightw. Technol., vol. 38, no. 7, pp. 1966–1974, 2020. doi: 10.1109/JLT.2020.2971666. DOI: https://doi.org/10.1109/JLT.2020.2971666
X. Fang, Y. Xuan, and Q. Li, “Measurement of the extinction coefficients of magnetic fluids,” Nanoscale Res. Lett., vol. 6, pp. 1–5, 2011. doi: 10.1186/1556-276X-6-237. DOI: https://doi.org/10.1186/1556-276X-6-237
J. Chen, D. N. Wang, and Z. Wang, “Wavelength-switchable multiple type bound solitons in a passively mode-locked Er-doped fiber laser,” IEEE Photon. Technol. Lett., vol. 32, no. 22, pp. 1447–1450, 2020. doi: 10.1109/LPT.2020.3031919. DOI: https://doi.org/10.1109/LPT.2020.3031919
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Batool Mahmood, Anwaar A. Al-Dergazly, Haider Al-Juboori

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.