Enhancing Emission Intensity of Spectral Lines Ti I Using Nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS)

Authors

  • Noor Kefah Noory Dept. of Laser and Optoelectronics Eng., College of Engineering, Al-Nahrain University, Baghdad, Iraq
  • Tagreed Hamad Dept. of Laser and Optoelectronics Eng., College of Engineering, Al-Nahrain University, Baghdad, Iraq
  • Salam A. W. Al-abassi Dept. of Electron Devices, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics, Budapest, Hungary.

DOI:

https://doi.org/10.29194/NJES.28030347

Keywords:

LIBS, nano-gold nanoparticles, NELIBS, laser ablation, plasma, plasma sputter coating.

Abstract

Enhanced signal emission from nano (ESEN) coated titanium target over than that from normal untreated one was investigated. Four samples of Ti alloy were adjusted, the first sample was left untreated, the second and third samples were coated with plasma sputter at thicknesses of 35nm and 70nm, and the last sample was treated with a drop of colloidal Au nanoparticle solution prepared by laser ablation. The (ESEN) was monitored with Ti   at 413.7 and 393.3 nm. It was obtained that the spectral emission from the nano-laser ablation had a greater improvement than that from the plasma sputter coating or bulk target. Enhancement factors were found up to ten folds, and show the spectroscopic line induced patterns by laser energies (100,150, and 200mJ) from the alloy  with and without gold.

Downloads

Download data is not yet available.

References

C. Sánchez-Aké, T. García-Fernández, J. L. Benítez, M. B. de la Mora, and M. Villagrán-Muniz, “Intensity enhancement of LIBS of glass by using Au thin films and nanoparticles,” Spectrochim. Acta Part B At. Spectrosc., vol. 146, pp. 77–83, 2018. DOI: https://doi.org/10.1016/j.sab.2018.05.007

DOI: 10.1016/j.sab.2018.05.003 DOI: https://doi.org/10.1016/j.sab.2018.05.003

M. Abdelhamid, Y. A. Attia, and M. Abdel-Harith, “The significance of nano-shapes in nanoparticle-enhanced laser-induced breakdown spectroscopy,” J. Anal. At. Spectrom., vol. 35, no. 12, pp. 2982–2989, 2020. DOI: 10.1039/D0JA00259A DOI: https://doi.org/10.1039/D0JA00329H

F. Poggialini et al., “Green-synthetized silver nanoparticles for Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy (NELIBS) using a mobile instrument,” Spectrochim. Acta Part B At. Spectrosc., vol. 141, pp. 53–58, 2018. DOI: https://doi.org/10.1016/j.sab.2018.01.005

DOI: 10.1016/j.sab.2018.01.007 DOI: https://doi.org/10.1016/j.sab.2018.01.007

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples,” Anal. Chem., vol. 85, no. 21, pp. 10180–10187, 2013. DOI: 10.1021/ac402174x DOI: https://doi.org/10.1021/ac4016165

A. De Giacomo, R. Gaudiuso, C. Koral, M. Dell’Aglio, and O. De Pascale, “Nanoparticle Enhanced Laser Induced Breakdown Spectroscopy: Effect of nanoparticles deposited on sample surface on laser ablation and plasma emission,” Spectrochim. Acta Part B At. Spectrosc., vol. 98, pp. 19–27, 2014. DOI: 10.1016/j.sab.2014.06.002 DOI: https://doi.org/10.1016/j.sab.2014.05.010

T. Ohta, M. Ito, T. Kotani, and T. Hattori, “Emission enhancement of laser-induced breakdown spectroscopy by localized surface plasmon resonance for analyzing plant nutrients,” Appl. Spectrosc., vol. 63, no. 5, pp. 555–558, 2009. DOI: https://doi.org/10.1366/000370209788346896

DOI: 10.1366/000370209788559891

A. Giakoumaki, K. Melessanaki, and D. Anglos, “Laser-induced breakdown spectroscopy (LIBS) in archaeological science—applications and prospects,” Anal. Bioanal. Chem., vol. 387, pp. 749–760, 2007. DOI: 10.1007/s00216-006-1038-4 DOI: https://doi.org/10.1007/s00216-006-0908-1

A. EL Farash, A. EL Sherbini, O. Helal, and A. El-Sherif, “Measurement of enhanced emission from Titanium using nano-enhanced laser induced breakdown spectroscopy (NELIBS),” Int. Conf. Math. Eng. Phys., vol. 9, no. 6, pp. 1–11, 2018. DOI: https://doi.org/10.21608/icmep.2018.29604

M. S. Ahmed, H. Abdulrida, and Q. A. Abbas, “Effect of Using Nanoscale Titanium as a Target Instead of a Bulk Target on Laser-Induced Plasma Properties,” J. Surv. Fish. Sci., vol. 10, no. 3S, p. 2023, 2023.

V. V. Kiris, A. V. Butsen, E. A. Ershov-Pavlov, M. I. Nedelko, and A. A. Nevar, “Nanoparticle-Enhanced Laser Induced Breakdown Spectroscopy Using Copper-Silver and Nickel-Carbon Nanocomposites on Aluminium,” Int. J. Nanosci., vol. 18, no. 3–4, 2019. DOI: https://doi.org/10.1142/S0219581X19400222

DOI: 10.1142/S0219581X19400123

“Sputter coating data sheet,” [Online]. Available: http://www.Kjmti.com/userfiles/upload/file20020.pdf

T. K. Hamad, A. S. Jasim, and H. T. Salloom, “Characterizing Laser-induced Plasma Generated from MgO/PVA Solid Targets,” Opt. Spectrosc., vol. 127, no. 1, 2019. DOI: 10.1134/S0030400X19010108 DOI: https://doi.org/10.1134/S0030400X19070099

H. Salloom and T. Hamad, “Investigation of compositional analysis and physical properties for Ni-Cr-Nb alloys using laser-induced breakdown spectroscopy,” Opt. Appl., vol. 51, no. 3, pp. 429–444, 2021. DOI: 10.17586/oa.2021.51.3.10 DOI: https://doi.org/10.37190/oa210310

“NIST Atomic Spectra Database,” [Online]. Available: https://physics.nist.gov/PhysRefData/ASD/lines_form.html

F. Bredice, P. P. Martinez, C. Sánchez-Aké, and M. Villagrán-Muniz, “Temporal evolution of the spectral lines emission and temperatures in laser induced plasmas through characteristic parameters,” Spectrochim. Acta Part B At. Spectrosc., vol. 107, pp. 25–31, 2015. DOI: https://doi.org/10.1016/j.sab.2015.02.012

DOI: 10.1016/j.sab.2015.02.001 DOI: https://doi.org/10.1016/j.sab.2015.02.001

E. Mohamed, A. Elfattah, and A. Elazem, “Outline of Nanostructure Enhanced LIBS (NELIBS),” J. Basic Environ. Sci., vol. 1, pp. 26–38, 2023.

A. M. El Sherbini, A. A. S. Al Amer, A. T. Hassan, and T. M. El Sherbini, “Spectrometric measurement of plasma parameters utilizing the target ambient gas OI & NI atomic lines in LIBS experiment,” Opt. Photonics J., vol. 2, no. Dec., p. 286, 2012. DOI: 10.4236/opj.2012.23034 DOI: https://doi.org/10.4236/opj.2012.24035

B. Zmerli, N. Ben Nessib, M. S. Dimitrijevic, and S. Sahal-Bréchot, “On the Stark broadening of CuI spectral lines,” Mem. Soc. Astron. Ital. Suppl., vol. 15, p. 152, 2010.

S. Hashimoto, D. Werner, and T. Uwada, “Studies on the interaction of pulsed lasers with plasmonic gold nanoparticles toward light manipulation, heat management, and nanofabrication,” J. Photochem. Photobiol. C Photochem. Rev., vol. 13, no. 1, pp. 28–54, 2012. DOI: 10.1016/j.jphotochemrev.2012.02.001 DOI: https://doi.org/10.1016/j.jphotochemrev.2012.01.001

D. W. Hahn, N. Omenetto, A. De Giacomo, R. Gaudiuso, and M. Dell’Aglio, “Perspective on the use of nanoparticles to improve LIBS analytical performance: Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS),” Spectrochim. Acta Part B At. Spectrosc., vol. 35, no. 5, pp. 565–573, 2022. DOI: 10.1016/j.sab.2022.106311

Downloads

Published

29-09-2025

How to Cite

[1]
N. K. Noory, T. . Hamad, and S. A. W. . Al-abassi, “Enhancing Emission Intensity of Spectral Lines Ti I Using Nanoparticle enhanced laser-induced breakdown spectroscopy (NELIBS)”, NJES, vol. 28, no. 3, pp. 347–350, Sep. 2025, doi: 10.29194/NJES.28030347.

Similar Articles

21-30 of 65

You may also start an advanced similarity search for this article.