Automated Detection and Visualization of Local Kidney Images with Artificial Intelligence Models

Authors

  • Hawraa Saleh Department of Computer Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Hadeel Kassim Aljobouri‬ Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq. https://orcid.org/0000-0003-1792-9230
  • Hani M. Amasha Biomedical Engineering Department, FMEE, Damascus University, Damascus, Syria

DOI:

https://doi.org/10.29194/NJES.27040465

Keywords:

CNN, Deep Learning, Feature Extraction, Kidney Diseases, RF, Ultrasound Images, Visualization

Abstract

Kidney disease is a global health concern, often leading to kidney failure and impaired function. Artificial intelligence and deep learning have been extensively researched, with numerous proposed models and methods to improve kidney disease diagnosis. This work aims to enhance the efficiency and accuracy of the diagnostic system for kidney disease by using Deep Learning, thereby contributing to effective healthcare delivery. This work proposed three models: CNN, CNN-XGBoost and CNN-RF to extract features and classify kidney Ultrasound images into four categories: three abnormal cases (stones, hydronephrosis, and cysts) and one normal case. The models were tested on a real dataset of 1260 kidney ultrasound images (from 1000 patients) collected from the Lithotripsy Centre in Iraq. CNN models are often viewed as black boxes due to the challenge of understanding their learned behaviors, Visualizing Intermediate Activations (VIA) was used to address this issue. The proposed framework was assessed based on precision, recall, F1-score, and accuracy. CNN-RF is the most accurate model, with an accuracy of 99.6%. This study can potentially assist radiologists in high-volume medical facilities and enhance the accuracy of the diagnostic system for kidney disease.

Downloads

Download data is not yet available.

Author Biography

  • Hadeel Kassim Aljobouri‬, Department of Biomedical Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq.

    Department of Biomedical Engineering, College of Engineering, Al-Nahrain University

References

A. C. Webster, E. V. Nagler, R. L. Morton, and P. Masson, “Chronic Kidney Disease,” The Lancet, vol. 389, no. 10075, pp. 1238–1252, Mar. 2017, doi: 10.1016/S0140-6736(16)32064-5. DOI: https://doi.org/10.1016/S0140-6736(16)32064-5

A. S. Levey et al., “Definition and classification of chronic kidney disease: A position statement from Kidney Disease: Improving Global Outcomes (KDIGO),” Kidney International, vol. 67, no. 6, pp. 2089–2100, Jun. 2005, doi: 10.1111/J.1523-1755.2005.00365.X. DOI: https://doi.org/10.1111/j.1523-1755.2005.00365.x

Z. M. El-Zoghby et al., “Urolithiasis and the risk of ESRD,” Clinical journal of the American Society of Nephrology : CJASN, vol. 7, no. 9, pp. 1409–1415, Sep. 2012, doi: 10.2215/CJN.03210312. DOI: https://doi.org/10.2215/CJN.03210312

V. Patel et al., “miR-17~92 miRNA cluster promotes kidney cyst growth in polycystic kidney disease,” Proceedings of the National Academy of Sciences of the United States of America, vol. 110, no. 26, pp. 10765–10770, Jun. 2013, doi: 10.1073/PNAS.1301693110. DOI: https://doi.org/10.1073/pnas.1301693110

P. Nuraj and N. Hyseni, “The diagnosis of obstructive hydronephrosis with Color Doppler ultrasound,” Acta Informatica Medica, vol. 25, no. 3, pp. 178–181, 2017, doi: 10.5455/aim.2017.25.178-181. DOI: https://doi.org/10.5455/aim.2017.25.178-181

K. M. Sternberg, V. M. Pais, T. Larson, J. Han, N. Hernandez, and B. Eisner, “Is Hydronephrosis on Ultrasound Predictive of Ureterolithiasis in Patients with Renal Colic?,” Journal of Urology, vol. 196, no. 4, pp. 1149–1152, 2016, doi: 10.1016/j.juro.2016.04.076. DOI: https://doi.org/10.1016/j.juro.2016.04.076

H. Diaa AL-rubaie, H. K. Aljobouri, Z. J. AL-Jobawi, and I. Çankaya, “Convolutional Neural Network Deep Learning Model for Improved Ultrasound Breast Tumor Classification,” Al-Nahrain Journal for Engineering Sciences , vol. 26, no. 2, pp. 57–62, Jul. 2023, doi: 10.29194/NJES.26020057. DOI: https://doi.org/10.29194/NJES.26020057

P. N. T. Wells, “Ultrasound imaging,” Physics in Medicine and Biology, vol. 51, no. 13, pp. R83–R98, Jun. 2006, doi: 10.1088/0031-9155/51/13/R06. DOI: https://doi.org/10.1088/0031-9155/51/13/R06

K. L. Hansen, M. B. Nielsen, and C. Ewertsen, “Ultrasonography of the kidney: A Pictorial Review,” Diagnostics, vol. 6, no. 1, pp. 1–18, Mar. 2016, doi: 10.3390/diagnostics6010002. DOI: https://doi.org/10.3390/diagnostics6010002

S. B. Belhaouari and A. Islam, “Deep Learning in Healthcare,” in Lecture Notes in Bioengineering, Springer Science and Business Media Deutschland GmbH, 2021, pp. 155–168. doi: 10.1007/978-3-030-67303-1_13/COVER. DOI: https://doi.org/10.1007/978-3-030-67303-1_13

X. Y. Zhang et al., “Artificial intelligence - based ultrasound elastography for disease evaluation - a narrative review,” Frontiers in oncology, vol. 13, 2023, doi: 10.3389/FONC.2023.1197447. DOI: https://doi.org/10.3389/fonc.2023.1197447

P. Hamet and J. Tremblay, “Artificial intelligence in medicine,” Metabolism, vol. 69, pp. S36–S40, Apr. 2017, doi: 10.1016/J.METABOL.2017.01.011. DOI: https://doi.org/10.1016/j.metabol.2017.01.011

K. R. Chowdhary, “Introducing Artificial Intelligence,” in Fundamentals of Artificial Intelligence, Springer India, 2020, pp. 1–23. doi: 10.1007/978-81-322-3972-7_1. DOI: https://doi.org/10.1007/978-81-322-3972-7_1

S. Pattanayak, “Mathematical Foundations,” in Pro Deep Learning with TensorFlow 2.0, Apress Berkeley, CA, 2023, pp. 1–108. doi: 10.1007/978-1-4842-8931-0_1. DOI: https://doi.org/10.1007/978-1-4842-8931-0_1

A. Chunduru, A. R. Kishore, B. K. Sasapu, and K. Seepana, “Multi Chronic Disease Prediction System Using CNN and Random Forest,” SN Computer Science, vol. 5, no. 1, pp. 1–13, Jan. 2024, doi: 10.1007/s42979-023-02521-6. DOI: https://doi.org/10.1007/s42979-023-02521-6

Y. T. Shen, L. Chen, W. W. Yue, and H. X. Xu, “Artificial intelligence in ultrasound,” European Journal of Radiology, vol. 139, pp. 1–12, Jun. 2021, doi: 10.1016/j.ejrad.2021.109717. DOI: https://doi.org/10.1016/j.ejrad.2021.109717

I. Castiglioni et al., “AI applications to medical images: From machine learning to deep learning,” Physica Medica, vol. 83, pp. 9–24, Mar. 2021, doi: 10.1016/j.ejmp.2021.02.006. DOI: https://doi.org/10.1016/j.ejmp.2021.02.006

C. C. Kuo et al., “Automation of the kidney function prediction and classification through ultrasound-based kidney imaging using deep learning,” npj Digital Medicine, vol. 2, no. 1, pp. 1–9, Dec. 2019, doi: 10.1038/s41746-019-0104-2. DOI: https://doi.org/10.1038/s41746-019-0104-2

P. Kokil and S. Sudharson, “Automatic Detection of Renal Abnormalities by Off-the-shelf CNN Features,” IETE Journal of Education, vol. 60, no. 1, pp. 14–23, Jan. 2019, doi: 10.1080/09747338.2019.1613936. DOI: https://doi.org/10.1080/09747338.2019.1613936

S. Sudharson and P. Kokil, “An ensemble of deep neural networks for kidney ultrasound image classification,” Computer Methods and Programs in Biomedicine, vol. 197, no. 105709, pp. 1–9, Dec. 2020, doi: 10.1016/j.cmpb.2020.105709. DOI: https://doi.org/10.1016/j.cmpb.2020.105709

V. M. Raja Sankari, D. A. Raykar, U. Snekhalatha, V. Karthik, and V. Shetty, “Automated Detection of Cystitis in Ultrasound Images Using Deep Learning Techniques,” IEEE Access, vol. 11, pp. 104179–104190, 2023, doi: 10.1109/ACCESS.2023.3317148. DOI: https://doi.org/10.1109/ACCESS.2023.3317148

V. Thambawita, I. Strümke, S. A. Hicks, P. Halvorsen, S. Parasa, and M. A. Riegler, “Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images,” Diagnostics 2021, Vol. 11, Page 2183, vol. 11, no. 12, p. 2183, Nov. 2021, doi: 10.3390/DIAGNOSTICS11122183. DOI: https://doi.org/10.3390/diagnostics11122183

M. J. Willemink et al., “Preparing medical imaging data for machine learning,” Radiology, vol. 295, no. 1, pp. 4–15, Feb. 2020, doi: 10.1148/RADIOL.2020192224/ASSET/IMAGES/LARGE/RADIOL.2020192224.FIG5B.JPEG. DOI: https://doi.org/10.1148/radiol.2020192224

S.Gopal, K. Patro, and K. K. Sahu, “Normalization: A Preprocessing Stage,” arXiv.org, pp. 20–22, Mar. 2015, doi: 10.17148/IARJSET.2015.2305. DOI: https://doi.org/10.17148/IARJSET.2015.2305

L. A. Shalabi, Z. Shaaban, and B. Kasasbeh, “Data Mining: A Preprocessing Engine,” Journal of Computer Science, vol. 2, no. 9, pp. 735–739, Sep. 2006, doi: 10.3844/JCSSP.2006.735.739. DOI: https://doi.org/10.3844/jcssp.2006.735.739

C. Wakholi et al., “Deep learning feature extraction for image-based beef carcass yield estimation,” Biosystems Engineering, vol. 218, pp. 78–93, Jun. 2022, doi: 10.1016/J.BIOSYSTEMSENG.2022.04.008. DOI: https://doi.org/10.1016/j.biosystemseng.2022.04.008

A. Jain, M. Pandey, and S. Sahu, “A Deep Learning-Based Feature Extraction Model for Classification Brain Tumor,” Lecture Notes on Data Engineering and Communications Technologies, vol. 90, pp. 493–508, 2022, doi: 10.1007/978-981-16-6289-8_42/COVER. DOI: https://doi.org/10.1007/978-981-16-6289-8_42

S. Q. Salih, A. L. Khalaf, N. S. Mohsin, and S. F. Jabbar, “An optimized deep learning model for optical character recognition applications,” International Journal of Electrical and Computer Engineering, vol. 13, no. 3, pp. 3010–3018, Jun. 2023, doi: 10.11591/IJECE.V13I3.PP3010-3018. DOI: https://doi.org/10.11591/ijece.v13i3.pp3010-3018

S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Understanding of a convolutional neural network,” in Proceedings of 2017 International Conference on Engineering and Technology, ICET 2017, Institute of Electrical and Electronics Engineers Inc., Jul. 2017, pp. 1–6. doi: 10.1109/ICEngTechnol.2017.8308186. DOI: https://doi.org/10.1109/ICEngTechnol.2017.8308186

Y. Song et al., “Large Margin Local Estimate With Applications to Medical Image Classification,” IEEE transactions on medical imaging, vol. 34, no. 6, pp. 1362–1377, Jun. 2015, doi: 10.1109/TMI.2015.2393954. DOI: https://doi.org/10.1109/TMI.2015.2393954

M. Mirigliano et al., “A binary classifier based on a reconfigurable dense network of metallic nanojunctions,” Neuromorphic Computing and Engineering , vol. 1, no. 2, p. 024007, Nov. 2021, doi: 10.1088/2634-4386/AC29C9. DOI: https://doi.org/10.1088/2634-4386/ac29c9

T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,” in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Association for Computing Machinery, Aug. 2016, pp. 785–794. doi: 10.1145/2939672.2939785. DOI: https://doi.org/10.1145/2939672.2939785

L. Tian, W. Wu, and T. Yu, “Graph Random Forest: A Graph Embedded Algorithm for Identifying Highly Connected Important Features,” Biomolecules, vol. 13, no. 7, Jul. 2023, doi: 10.3390/BIOM13071153. DOI: https://doi.org/10.3390/biom13071153

H. El Hamdaoui, S. Boujraf, N. E. H. Chaoui, B. Alami, and M. Maaroufi, “Improving Heart Disease Prediction Using Random Forest and AdaBoost Algorithms,” International Journal of Online and Biomedical Engineering (iJOE), vol. 17, no. 11, pp. 60–75, 2021, doi: 10.3991/IJOE.V17I11.24781. DOI: https://doi.org/10.3991/ijoe.v17i11.24781

P. Sahu, A. Chug, A. P. Singh, D. Singh, and R. P. Singh, “Deep Learning Models for Beans Crop Diseases: Classification and Visualization Techniques,” International Journal of Modern Agriculture, vol. 10, no. 1, pp. 796–812, Mar. 2021.

S. Rajaraman and S. Antani, “Visualizing Salient Network Activations in Convolutional Neural Networks for Medical Image Modality Classification,” Communications in Computer and Information Science, vol. 1036, pp. 42–57, 2019, doi: 10.1007/978-981-13-9184-2_4. DOI: https://doi.org/10.1007/978-981-13-9184-2_4

Downloads

Published

20-12-2024

How to Cite

[1]
H. Saleh, H. K. . Aljobouri‬, and H. M. Amasha, “Automated Detection and Visualization of Local Kidney Images with Artificial Intelligence Models”, NJES, vol. 27, no. 4, pp. 465–472, Dec. 2024, doi: 10.29194/NJES.27040465.

Similar Articles

51-60 of 82

You may also start an advanced similarity search for this article.