A Survey Of Solar Dish Cavity Receivers Geometries

Authors

  • Sarmad S. A. Talib Department of Mechanical Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Ra'ad K. Mohammed Al Dulaimi Department of Mechanical Engineering, Al-Nahrain University, Baghdad, Iraq.

DOI:

https://doi.org/10.29194/NJES.28020240

Keywords:

Cavity Receiver, Solar Dish Geometry, Parabolic Dish Collectors

Abstract

Recent scholarly efforts have extensively explored the efficacy of solar dish concentrators through both numerical simulations and empirical investigations. These studies predominantly scrutinize the interplay between solar receiver geometry and the dual objectives of minimizing heat loss while amplifying thermal efficiency. This comprehensive review synthesizes the spectrum of research dedicated to examining various cavity receiver geometries alongside their optimization techniques when integrated with parabolic dish collectors. We systematically assess configurations, including flat-sided, cylindrical, conical, and hemispherical designs. Our findings highlight that for an inlet temperature set at 200oC, the conical cavity receiver is distinguished by an exergy efficiency of 30%, a thermal efficiency approximating 70%, and an optical efficiency nearing 87%, maintaining a working fluid temperature range of 650°C to 750°C. The elevated operational temperatures, coupled with the inherent geometry of the cavity, accentuate the significance of mitigating heat losses attributed to convection, conduction, and radiation, as these factors critically impinge on system performance. Additional variables such as cavity inclination angle, diameter-to-depth ratio, tubing contour, and material selection are identified as instrumental in influencing cavity heat losses. Consequently, the pursuit of an optimized cavity receiver geometry emerges as a pivotal area of study. Drawing upon the issues analyzed, we propose strategic recommendations and conclude with insightful remarks poised to guide future research endeavors.

Downloads

Download data is not yet available.

References

S. A. Kalogirou, Solar Energy Engineering: Processes and Systems, 1st ed. Amsterdam, The Netherlands: Elsevier Inc., 2009.

M. Thirugnanasambandam, S. Iniyan, and R. Goic, “A review of solar thermal technologies,” Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 312–322, 2010. DOI: 10.1016/j.rser.2009.07.014 DOI: https://doi.org/10.1016/j.rser.2009.07.014

A. S. Kopalakrishnaswami and S. K. Natarajan, “Comparative study of modified conical cavity receiver with other receivers for solar paraboloidal dish collector system,” Environ. Sci. Pollut. Res., vol. 29, pp. 7548–7558, 2022. DOI: 10.1007/s11356-021-16127-z DOI: https://doi.org/10.1007/s11356-021-16127-z

J. Garrido, L. Aichmayer, A. Abou-Taouk, and B. Laumert, “Experimental and numerical performance analyses of a dish–Stirling cavity receiver: geometry and operating temperature studies,” Sol. Energy, vol. 170, pp. 913–923, 2018. DOI: 10.1016/j.solener.2018.06.031 DOI: https://doi.org/10.1016/j.solener.2018.06.031

C. Zou, Y. Zhang, Q. Falcoz, P. Neveu, C. Zhang, W. Shu, and S. Huang, “Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system,” Renew. Energy, vol. 103, pp. 478–489, 2017. DOI: 10.1016/j.renene.2016.11.044 DOI: https://doi.org/10.1016/j.renene.2016.11.044

A. Mawire and S. H. Taole, “Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes,” Energy Sustain. Develop., vol. 19, pp. 162–169, 2014. DOI: 10.1016/j.esd.2014.01.004 DOI: https://doi.org/10.1016/j.esd.2014.01.004

R. A. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian, “Thermodynamic analysis of a solar dish receiver using different nanofluids,” Energy, vol. 133, pp. 749–760, 2017. doi: 10.1016/j.energy.2017.03.071 DOI: https://doi.org/10.1016/j.energy.2017.05.016

R. Loni, A. Kasaeian, E. A. Asli-Ardeh, and B. Ghobadian, “Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle,” Energy, vol. 112, pp. 1259–1272, 2016. DOI: 10.1016/j.energy.2016.05.020 DOI: https://doi.org/10.1016/j.energy.2016.06.109

H. Ghaebi, H. Rostamzadeh, J. Rostamzadeh, M. Ebadolahi, and H. Abioghli, “Comparison of different working fluids operation for basic and modified organic Rankine cycles (ORCs),” J. Energy Manag. Technol., vol. 2, no. 1, pp. 23–29, 2018. DOI: 10.22109/jemt.2018.100794.1036

M. Prakash, S. Kedare, and J. Nayak, “Investigations on heat losses from a solar cavity receiver,” Sol. Energy, vol. 83, no. 2, pp. 157–170, 2009. DOI: 10.1016/j.solener.2008.07.011 DOI: https://doi.org/10.1016/j.solener.2008.07.011

J. Garrido, L. Aichmayer, A. Abou-Taouk, and B. Laumert, “Experimental and numerical performance analyses of dish–Stirling cavity receivers: radiative property study and design,” Energy, vol. 169, pp. 478–488, 2019. DOI: 10.1016/j.energy.2018.12.033 DOI: https://doi.org/10.1016/j.energy.2018.12.033

D. Azzouzi, B. Boumeddane, and A. Abene, “Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish,” Renew. Energy, vol. 106, pp. 111–121, 2017. DOI: 10.1016/j.renene.2016.12.102 DOI: https://doi.org/10.1016/j.renene.2016.12.102

Z. Li, D. Tang, J. Du, and T. Li, “Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility,” Appl. Therm. Eng., vol. 31, no. 10, pp. 1780–1789, 2011. DOI: 10.1016/j.applthermaleng.2011.02.023 DOI: https://doi.org/10.1016/j.applthermaleng.2011.02.023

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian, “Experimental study of carbon nanotube/oil nanofluid in dish concentrator using a cylindrical cavity receiver: outdoor tests,” Energy Convers. Manage., vol. 165, pp. 593–601, 2018. DOI: 10.1016/j.enconman.2018.03.079 DOI: https://doi.org/10.1016/j.enconman.2018.03.079

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, S. Gorjian, G. Najafi, and E. Bellos, “Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: experimental tests,” Renew. Energy, vol. 145, pp. 783–804, 2020. DOI: 10.1016/j.renene.2019.06.056 DOI: https://doi.org/10.1016/j.renene.2019.06.056

J. Yan, Y.-d. Peng, and Z.-r. Cheng, “Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system,” Renew. Energy, vol. 129, pp. 431–445, 2018. DOI: 10.1016/j.renene.2018.06.025 DOI: https://doi.org/10.1016/j.renene.2018.06.025

S. Soltani, M. Bonyadi, and V. M. Avargani, “A novel optical–thermal modeling of a dish–Stirling cavity receiver,” Energy, vol. 168, pp. 88–98, 2019. DOI: 10.1016/j.energy.2018.11.097 DOI: https://doi.org/10.1016/j.energy.2018.11.097

W. Wang, G. Ragnolo, L. Aichmayer, T. Strand, and B. Laumert, “Integrated design of a hybrid gas turbine–receiver unit for a solar dish system,” in Proc. Int. SolarPACES Conf., Beijing, China, Sep. 2014. DOI: 10.1016/j.egypro.2015.03.067 DOI: https://doi.org/10.1016/j.egypro.2015.03.067

W. Wang, B. Wang, L. Li, B. Laumert, and T. Strand, “The effect of the cooling nozzle arrangement on the thermal performance of a solar impinging receiver,” Sol. Energy, vol. 131, pp. 222–234, 2016. DOI: 10.1016/j.solener.2016.04.019 DOI: https://doi.org/10.1016/j.solener.2016.02.052

W. Wang, B. Laumert, H. Xu, and T. Strand, “Conjugate heat transfer analysis of an impinging receiver design for a dish–Brayton system,” Sol. Energy, vol. 119, pp. 298–309, 2015. DOI: 10.1016/j.solener.2015.07.013 DOI: https://doi.org/10.1016/j.solener.2015.07.013

Q. Mao, Y. Shuai, and Y. Yuan, “Study on radiation flux of the receiver with a parabolic solar concentrator system,” Energy Convers. Manage., vol. 84, pp. 1–6, 2014. DOI: 10.1016/j.enconman.2014.03.083 DOI: https://doi.org/10.1016/j.enconman.2014.03.083

W. Wang, H. Xu, B. Laumert, and T. Strand, “An inverse design method for a cavity receiver used in solar dish–Brayton system,” Sol. Energy, vol. 110, pp. 745–755, 2014. DOI: 10.1016/j.solener.2014.10.019 DOI: https://doi.org/10.1016/j.solener.2014.10.019

R. Beltrán, N. Velazquez, A. C. Espericueta, D. Sauceda, and G. Perez, “Mathematical model for the study and design of a solar dish collector with cavity receiver for its application in Stirling engines,” J. Mech. Sci. Technol., vol. 26, no. 10, pp. 3311–3321, 2012. DOI: 10.1007/s12206-012-0801-0 DOI: https://doi.org/10.1007/s12206-012-0801-0

M. Neber and H. Lee, “Design of a high-temperature cavity receiver for residential-scale concentrated solar power,” Energy, vol. 47, no. 1, pp. 481–487, 2012. DOI: 10.1016/j.energy.2012.09.005 DOI: https://doi.org/10.1016/j.energy.2012.09.005

L. Xiao, S.-Y. Wu, and Y.-R. Li, “Natural convection heat loss estimation of solar cavity receiver by incorporating a modified aperture ratio,” IET Renew. Power Gener., vol. 6, no. 2, pp. 122–128, 2012. DOI: 10.1049/iet-rpg.2011.0095 DOI: https://doi.org/10.1049/iet-rpg.2011.0133

L. Xiao, S.-Y. Wu, and Y.-R. Li, “Numerical study on combined free–forced convection heat loss of solar cavity receiver under wind environments,” Int. J. Therm. Sci., vol. 60, pp. 182–194, 2012. DOI: 10.1016/j.ijthermalsci.2012.05.008 DOI: https://doi.org/10.1016/j.ijthermalsci.2012.05.008

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian, “Numerical and experimental investigation of wind effect on a hemispherical cavity receiver,” Appl. Therm. Eng., vol. 126, pp. 179–193, 2017. DOI: 10.1016/j.applthermaleng.2017.08.056 DOI: https://doi.org/10.1016/j.applthermaleng.2017.07.097

M. S. Khan, M. Abid, H. M. Ali, K. P. Amber, M. A. Bashir, and S. Javed, “Comparative performance assessment of solar dish assisted s-CO₂ Brayton cycle using nanofluids,” Appl. Therm. Eng., vol. 148, pp. 295–306, 2019. DOI: 10.1016/j.applthermaleng.2018.11.021 DOI: https://doi.org/10.1016/j.applthermaleng.2018.11.021

A. Refiei, R. Loni, G. Najafi, A. Sahin, and E. Bellos, “Effect of mwCNT/oil nanofluid on the performance of solar organic Rankine cycle,” Energy Rep., vol. 6, pp. 782–794, 2020. DOI: 10.1016/j.egyr.2020.03.035 DOI: https://doi.org/10.1016/j.egyr.2020.03.035

A. Rafiei, A. S. Alsagri, S. Mahadzir, R. Loni, G. Najafi, and A. Kasaeian, “Thermal analysis of a hybrid solar desalination system using various shapes of cavity receiver: cubical, cylindrical, and hemispherical,” Energy Convers. Manage., vol. 198, art. 111861, 2019. DOI: 10.1016/j.enconman.2019.111861 DOI: https://doi.org/10.1016/j.enconman.2019.111861

N. S. Kumar and K. Reddy, “Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator,” Sol. Energy, vol. 81, no. 7, pp. 846–855, 2007. DOI: 10.1016/j.solener.2006.11.008 DOI: https://doi.org/10.1016/j.solener.2006.11.008

Y. Li, G. Liu, Z. Rao, and S. Liao, “Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver,” Renew. Energy, vol. 75, pp. 257–265, 2015. DOI: 10.1016/j.renene.2014.10.052 DOI: https://doi.org/10.1016/j.renene.2014.09.055

Y. Tan, L. Zhao, J. Bao, and Q. Liu, “Experimental investigation on heat loss of semispherical cavity receiver,” Energy Convers. Manage., vol. 87, pp. 576–583, 2014. DOI: 10.1016/j.enconman.2014.06.080 DOI: https://doi.org/10.1016/j.enconman.2014.06.080

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and E. Bellos, “Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: experimental study,” Energy, vol. 164, pp. 275–287, 2018. DOI: 10.1016/j.energy.2018.08.174 DOI: https://doi.org/10.1016/j.energy.2018.08.174

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, M. Ahmadi, and E. Bellos, “GMDH modeling and experimental investigation of thermal performance enhancement of hemispherical cavity receiver using mwCNT/oil nanofluid,” Sol. Energy, vol. 171, pp. 790–803, 2018. DOI: 10.1016/j.solener.2018.07.003 DOI: https://doi.org/10.1016/j.solener.2018.07.003

S. Pavlovic, E. Bellos, and R. Loni, “Exergetic investigation of a solar dish collector with smooth and corrugated spiral absorber operating with various nanofluids,” J. Clean. Prod., vol. 174, pp. 1147–1160, 2018. DOI: 10.1016/j.jclepro.2017.11.004 DOI: https://doi.org/10.1016/j.jclepro.2017.11.004

R. Loni, S. Pavlovic, E. Bellos, C. Tzivanidis, and E. A. Asli-Ardeh, “Thermal and exergy performance of a nanofluid-based solar dish collector with spiral cavity receiver,” Appl. Therm. Eng., vol. 135, pp. 206–217, 2018. DOI: 10.1016/j.applthermaleng.2018.02.070 DOI: https://doi.org/10.1016/j.applthermaleng.2018.02.070

K. Reddy, S. K. Natarajan, and G. Veershetty, “Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator,” Renew. Energy, vol. 74, pp. 148–157, 2015. DOI: 10.1016/j.renene.2014.07.058 DOI: https://doi.org/10.1016/j.renene.2014.07.058

K. Reddy and N. S. Kumar, “An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator,” Sol. Energy, vol. 83, no. 10, pp. 1884–1892, 2009. DOI: 10.1016/j.solener.2009.07.001 DOI: https://doi.org/10.1016/j.solener.2009.07.001

S. Yang, J. Wang, P. D. Lund, C. Jiang, and B. Huang, “Design and performance evaluation of a high-temperature cavity receiver for a two-stage dish concentrator,” Sol. Energy, vol. 174, pp. 1126–1132, 2018. DOI: 10.1016/j.solener.2018.10.021 DOI: https://doi.org/10.1016/j.solener.2018.10.021

L. Zhi-Gang, T. Da-Wei, L. Tie, and D. Jing-Long, “A hemispherical-involute cavity receiver for Stirling engine powered by a xenon arc solar simulator,” Chin. Phys. Lett., vol. 28, no. 5, p. 054401, 2011. DOI: 10.1088/0256-307X/28/5/054401 DOI: https://doi.org/10.1088/0256-307X/28/5/054401

E. Bellos, E. Bousi, C. Tzivanidis, and S. Pavlovic, “Optical and thermal analysis of different cavity receiver designs for solar dish concentrators,” Energy Convers. Manage. X, vol. 2, art. 100013, 2019. DOI: 10.1016/j.ecmx.2019.100013 DOI: https://doi.org/10.1016/j.ecmx.2019.100013

S. Pavlovic, R. Loni, E. Bellos, D. Vasiljević, G. Najafi, and A. Kasaeian, “Comparative study of spiral and conical cavity receivers for a solar dish collector,” Energy Convers. Manage., vol. 178, pp. 111–122, 2018. DOI: 10.1016/j.enconman.2018.10.030 DOI: https://doi.org/10.1016/j.enconman.2018.10.030

S. Pavlovic, A. M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, and R. K. Al-Dadah, “Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver,” J. Clean. Prod., vol. 150, pp. 75–92, 2017. DOI: 10.1016/j.jclepro.2017.02.201 DOI: https://doi.org/10.1016/j.jclepro.2017.02.201

X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy, vol. 114, pp. 134–151, 2015. DOI: 10.1016/j.solener.2015.01.033 DOI: https://doi.org/10.1016/j.solener.2015.01.033

V. Thirunavukkarasu, M. Sornanathan, and M. Cheralathan, “An experimental study on energy and exergy performance of a cavity receiver for solar parabolic dish concentrator,” Int. J. Exergy, vol. 23, no. 2, pp. 129–148, 2017. DOI: 10.1504/IJEX.2017.085164 DOI: https://doi.org/10.1504/IJEX.2017.085164

S. Chu, F. Bai, X. Zhang, B. Yang, Z. Cui, and F. Nie, “Experimental study and thermal analysis of a tubular pressurized air receiver,” Renew. Energy, vol. 125, pp. 413–424, 2018. DOI: 10.1016/j.renene.2018.02.125 DOI: https://doi.org/10.1016/j.renene.2018.02.125

V. Thirunavukkarasu and M. Cheralathan, “An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator,” Energy, vol. 192, art. 116635, 2020. DOI: 10.1016/j.energy.2019.116635 DOI: https://doi.org/10.1016/j.energy.2019.116635

T. Venkatachalam and M. Cheralathan, “Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study,” Renew. Energy, vol. 139, pp. 573–581, 2019. DOI: 10.1016/j.renene.2019.02.102 DOI: https://doi.org/10.1016/j.renene.2019.02.102

M. A. Bashir and A. Giovannelli, “Design optimization of the phase change material integrated solar receiver: A numerical parametric study,” Appl. Therm. Eng., vol. 160, art. 114008, 2019. DOI: 10.1016/j.applthermaleng.2019.114008 DOI: https://doi.org/10.1016/j.applthermaleng.2019.114008

I. Khalil, Q. Pratt, C. Spitler, and D. Codd, “Modeling a thermoplate conical heat exchanger in a point focus solar thermal collector,” Int. J. Heat Mass Tran., vol. 130, pp. 1–8, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.041 DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.041

N. Hernandez, D. Riveros-Rosas, E. Venegas, R. J. Dorantes, A. Rojas-Morín, O. Jaramillo, C. A. Arancibia-Bulnes, and C. A. Estrada, “Conical receiver for a paraboloidal concentrator with large rim angle,” Sol. Energy, vol. 86, no. 4, pp. 1053–1062, 2012. DOI: 10.1016/j.solener.2012.01.007 DOI: https://doi.org/10.1016/j.solener.2011.09.008

H. Xiao, Y. Zhang, C. You, C. Zou, and Q. Falcoz, “Effects of critical geometric parameters on the optical performance of a conical cavity receiver,” Front. Energy, vol. 13, no. 4, pp. 673–683, 2019. DOI: 10.1007/s11708-019-0630-2 DOI: https://doi.org/10.1007/s11708-019-0630-2

Y. Zhang, H. Xiao, C. Zou, Q. Falcoz, and P. Neveu, “Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe,” Energy, vol. 193, art. 116775, 2020. DOI: 10.1016/j.energy.2019.116775 DOI: https://doi.org/10.1016/j.energy.2019.116775

R. Beltrán-Chacon, D. Leal-Chavez, D. Sauceda, M. Pellegrini-Cervantes, and M. Borunda, “Design and analysis of a dead volume control for a solar Stirling engine with induction generator,” Energy, vol. 93, pp. 2593–2603, 2015. DOI: 10.1016/j.energy.2015.09.046 DOI: https://doi.org/10.1016/j.energy.2015.09.046

R. Loni, A. Kasaeian, E. A. Asli-Ardeh, B. Ghobadian, and W. G. Le Roux, “Performance study of a solar-assisted organic Rankine cycle using a dish-mounted rectangular-cavity tubular solar receiver,” Appl. Therm. Eng., vol. 108, pp. 1298–1309, 2016. DOI: 10.1016/j.applthermaleng.2016.08.014 DOI: https://doi.org/10.1016/j.applthermaleng.2016.08.014

R. Loni, A. Kasaeian, O. Mahian, and A. Sahin, “Thermodynamic analysis of an organic Rankine cycle using a tubular solar cavity receiver,” Energy Convers. Manage., vol. 127, pp. 494–503, 2016. DOI: 10.1016/j.enconman.2016.09.007 DOI: https://doi.org/10.1016/j.enconman.2016.09.007

T. Taumoefolau, S. Paitoonsurikarn, G. Hughes, and K. Lovegrove, “Experimental investigation of natural convection heat loss from a model solar concentrator cavity receiver,” J. Sol. Energy Eng., vol. 126, no. 2, pp. 801–807, 2004. DOI: 10.1115/1.1687403 DOI: https://doi.org/10.1115/1.1687403

R. Alvarado-Juárez, M. Montiel-González, H. Villafán-Vidales, C. Estrada, and J. Flores-Navarrete, “Experimental and numerical study of conjugate heat transfer in an open square-cavity solar receiver,” Int. J. Therm. Sci., vol. 156, art. 106458, 2020. DOI: 10.1016/j.ijthermalsci.2020.106458 DOI: https://doi.org/10.1016/j.ijthermalsci.2020.106458

O. López, A. Banos, and A. Arenas, “On the thermal performance of flat and cavity receivers for a parabolic dish concentrator and low/medium temperatures,” Sol. Energy, vol. 199, pp. 911–923, 2019. DOI: 10.1016/j.solener.2019.02.049 DOI: https://doi.org/10.1016/j.solener.2019.07.056

W. G. Le Roux, T. Bello-Ochende, and J. P. Meyer, “The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle,” Energy Convers. Manage., vol. 84, pp. 457–470, 2014. DOI: 10.1016/j.enconman.2014.06.017 DOI: https://doi.org/10.1016/j.enconman.2014.04.048

R. Loni, A. Kasaeian, O. Mahian, A. Z. Sahin, and S. Wongwises, “Exergy analysis of a solar organic Rankine cycle with square prismatic cavity receiver,” Int. J. Exergy, vol. 22, no. 2, pp. 103–124, 2017. DOI: 10.1504/IJEX.2017.083011 DOI: https://doi.org/10.1504/IJEX.2017.083011

R. Loni, A. Kasaeian, K. Shahverdi, E. A. Asli-Ardeh, B. Ghobadian, and M. H. Ahmadi, “ANN model to predict the performance of parabolic dish collector with tubular cavity receiver,” Mech. Ind., vol. 18, no. 4, p. 408, 2017. DOI: 10.1051/meca/2017016 DOI: https://doi.org/10.1051/meca/2017016

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, E. Bellos, and W. G. Le Roux, “Numerical comparison of a solar dish concentrator with different cavity receivers and working fluids,” J. Clean. Prod., vol. 198, pp. 1013–1030, 2018. DOI: 10.1016/j.jclepro.2018.07.180 DOI: https://doi.org/10.1016/j.jclepro.2018.07.075

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, G. Najafi, and E. Bellos, “Effects of size and volume fraction of alumina nanoparticles on the performance of a solar organic Rankine cycle,” Energy Convers. Manage., vol. 182, pp. 398–411, 2019. DOI: 10.1016/j.enconman.2018.12.079 DOI: https://doi.org/10.1016/j.enconman.2018.12.079

R. Loni, A. Kasaeian, E. A. Asli-Ardeh, B. Ghobadian, and S. Gorjian, “Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil,” Energy, vol. 154, pp. 168–181, 2018. DOI: 10.1016/j.energy.2018.04.102 DOI: https://doi.org/10.1016/j.energy.2018.04.102

A. M. Daabo, S. Mahmoud, and R. K. Al-Dadah, “The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications,” Energy, vol. 114, pp. 513–525, 2016. DOI: 10.1016/j.energy.2016.08.025 DOI: https://doi.org/10.1016/j.energy.2016.08.025

N. S. Kumar and K. Reddy, “Comparison of receivers for solar dish collector system,” Energy Convers. Manage., vol. 49, no. 4, pp. 812–819, 2008. DOI: 10.1016/j.enconman.2007.07.026 DOI: https://doi.org/10.1016/j.enconman.2007.07.026

Z. Si-Quan, L. Xin-Feng, D. Liu, and M. Qing-Song, “A numerical study on optical and thermodynamic characteristics of a spherical cavity receiver,” Appl. Therm. Eng., vol. 149, pp. 11–21, 2019. DOI: 10.1016/j.applthermaleng.2018.10.030 DOI: https://doi.org/10.1016/j.applthermaleng.2018.10.030

N. Kaushika and K. Reddy, “Performance of a low cost solar paraboloidal dish steam generating system,” Energy Convers. Manage., vol. 41, no. 7, pp. 713–726, 2000. DOI: 10.1016/S0196-8904(99)00133-8 DOI: https://doi.org/10.1016/S0196-8904(99)00133-8

Y. Shuai, X. Xia, and H. Tan, “Numerical simulation and experiment research of radiation performance in a dish solar collector system,” Front. Energy Power Eng. China, vol. 4, no. 4, pp. 488–495, 2010. DOI: 10.1007/s11708-010-0007-z DOI: https://doi.org/10.1007/s11708-010-0007-z

T. Seo, S. Ryu, and Y. Kang, “Heat losses from the receivers of a multifaceted parabolic solar energy collecting system,” KSME Int. J., vol. 17, no. 8, pp. 1185–1195, 2003. DOI: 10.1007/BF03016513 DOI: https://doi.org/10.1007/BF03016513

Downloads

Published

19-07-2025

How to Cite

[1]
S. S. A. Talib and R. K. M. Al Dulaimi, “A Survey Of Solar Dish Cavity Receivers Geometries ”, NJES, vol. 28, no. 2, pp. 240–252, Jul. 2025, doi: 10.29194/NJES.28020240.

Similar Articles

1-10 of 34

You may also start an advanced similarity search for this article.