A Survey Of Solar Dish Cavity Receivers Geometries

Authors

  • Sarmad S. A. Talib Department of Mechanical Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Ra'ad K. Mohammed Al Dulaimi Department of Mechanical Engineering, Al-Nahrain University, Baghdad, Iraq.

DOI:

https://doi.org/10.29194/NJES.28020240

Keywords:

Cavity Receiver, Solar Dish Geometry, Parabolic Dish Collectors

Abstract

Recent scholarly efforts have extensively explored the efficacy of solar dish concentrators through both numerical simulations and empirical investigations. These studies predominantly scrutinize the interplay between solar receiver geometry and the dual objectives of minimizing heat loss while amplifying thermal efficiency. This comprehensive review synthesizes the spectrum of research dedicated to examining various cavity receiver geometries alongside their optimization techniques when integrated with parabolic dish collectors. We systematically assess configurations, including flat-sided, cylindrical, conical, and hemispherical designs. Our findings highlight that for an inlet temperature set at 200oC, the conical cavity receiver is distinguished by an exergy efficiency of 30%, a thermal efficiency approximating 70%, and an optical efficiency nearing 87%, maintaining a working fluid temperature range of 650°C to 750°C. The elevated operational temperatures, coupled with the inherent geometry of the cavity, accentuate the significance of mitigating heat losses attributed to convection, conduction, and radiation, as these factors critically impinge on system performance. Additional variables such as cavity inclination angle, diameter-to-depth ratio, tubing contour, and material selection are identified as instrumental in influencing cavity heat losses. Consequently, the pursuit of an optimized cavity receiver geometry emerges as a pivotal area of study. Drawing upon the issues analyzed, we propose strategic recommendations and conclude with insightful remarks poised to guide future research endeavors.

Downloads

Download data is not yet available.

References

S. A. Kalogirou, Solar Energy Engineering: Processes and Systems, 1st ed. Amsterdam, The Netherlands: Elsevier Inc., 2009.

M. Thirugnanasambandam, S. Iniyan, and R. Goic, “A review of solar thermal technologies,” Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 312–322, 2010. DOI: 10.1016/j.rser.2009.07.014

A. S. Kopalakrishnaswami and S. K. Natarajan, “Comparative study of modified conical cavity receiver with other receivers for solar paraboloidal dish collector system,” Environ. Sci. Pollut. Res., vol. 29, pp. 7548–7558, 2022. DOI: 10.1007/s11356-021-16127-z

J. Garrido, L. Aichmayer, A. Abou-Taouk, and B. Laumert, “Experimental and numerical performance analyses of a dish–Stirling cavity receiver: geometry and operating temperature studies,” Sol. Energy, vol. 170, pp. 913–923, 2018. DOI: 10.1016/j.solener.2018.06.031

C. Zou, Y. Zhang, Q. Falcoz, P. Neveu, C. Zhang, W. Shu, and S. Huang, “Design and optimization of a high-temperature cavity receiver for a solar energy cascade utilization system,” Renew. Energy, vol. 103, pp. 478–489, 2017. DOI: 10.1016/j.renene.2016.11.044

A. Mawire and S. H. Taole, “Experimental energy and exergy performance of a solar receiver for a domestic parabolic dish concentrator for teaching purposes,” Energy Sustain. Develop., vol. 19, pp. 162–169, 2014. DOI: 10.1016/j.esd.2014.01.004

R. A. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian, “Thermodynamic analysis of a solar dish receiver using different nanofluids,” Energy, vol. 133, pp. 749–760, 2017. doi: 10.1016/j.energy.2017.03.071

R. Loni, A. Kasaeian, E. A. Asli-Ardeh, and B. Ghobadian, “Optimizing the efficiency of a solar receiver with tubular cylindrical cavity for a solar-powered organic Rankine cycle,” Energy, vol. 112, pp. 1259–1272, 2016. DOI: 10.1016/j.energy.2016.05.020

H. Ghaebi, H. Rostamzadeh, J. Rostamzadeh, M. Ebadolahi, and H. Abioghli, “Comparison of different working fluids operation for basic and modified organic Rankine cycles (ORCs),” J. Energy Manag. Technol., vol. 2, no. 1, pp. 23–29, 2018. DOI: 10.22109/jemt.2018.100794.1036

M. Prakash, S. Kedare, and J. Nayak, “Investigations on heat losses from a solar cavity receiver,” Sol. Energy, vol. 83, no. 2, pp. 157–170, 2009. DOI: 10.1016/j.solener.2008.07.011

J. Garrido, L. Aichmayer, A. Abou-Taouk, and B. Laumert, “Experimental and numerical performance analyses of dish–Stirling cavity receivers: radiative property study and design,” Energy, vol. 169, pp. 478–488, 2019. DOI: 10.1016/j.energy.2018.12.033

D. Azzouzi, B. Boumeddane, and A. Abene, “Experimental and analytical thermal analysis of cylindrical cavity receiver for solar dish,” Renew. Energy, vol. 106, pp. 111–121, 2017. DOI: 10.1016/j.renene.2016.12.102

Z. Li, D. Tang, J. Du, and T. Li, “Study on the radiation flux and temperature distributions of the concentrator–receiver system in a solar dish/Stirling power facility,” Appl. Therm. Eng., vol. 31, no. 10, pp. 1780–1789, 2011. DOI: 10.1016/j.applthermaleng.2011.02.023

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian, “Experimental study of carbon nanotube/oil nanofluid in dish concentrator using a cylindrical cavity receiver: outdoor tests,” Energy Convers. Manage., vol. 165, pp. 593–601, 2018. DOI: 10.1016/j.enconman.2018.03.079

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, S. Gorjian, G. Najafi, and E. Bellos, “Research and review study of solar dish concentrators with different nanofluids and different shapes of cavity receiver: experimental tests,” Renew. Energy, vol. 145, pp. 783–804, 2020. DOI: 10.1016/j.renene.2019.06.056

J. Yan, Y.-d. Peng, and Z.-r. Cheng, “Optimization of a discrete dish concentrator for uniform flux distribution on the cavity receiver of solar concentrator system,” Renew. Energy, vol. 129, pp. 431–445, 2018. DOI: 10.1016/j.renene.2018.06.025

S. Soltani, M. Bonyadi, and V. M. Avargani, “A novel optical–thermal modeling of a dish–Stirling cavity receiver,” Energy, vol. 168, pp. 88–98, 2019. DOI: 10.1016/j.energy.2018.11.097

W. Wang, G. Ragnolo, L. Aichmayer, T. Strand, and B. Laumert, “Integrated design of a hybrid gas turbine–receiver unit for a solar dish system,” in Proc. Int. SolarPACES Conf., Beijing, China, Sep. 2014. DOI: 10.1016/j.egypro.2015.03.067

W. Wang, B. Wang, L. Li, B. Laumert, and T. Strand, “The effect of the cooling nozzle arrangement on the thermal performance of a solar impinging receiver,” Sol. Energy, vol. 131, pp. 222–234, 2016. DOI: 10.1016/j.solener.2016.04.019

W. Wang, B. Laumert, H. Xu, and T. Strand, “Conjugate heat transfer analysis of an impinging receiver design for a dish–Brayton system,” Sol. Energy, vol. 119, pp. 298–309, 2015. DOI: 10.1016/j.solener.2015.07.013

Q. Mao, Y. Shuai, and Y. Yuan, “Study on radiation flux of the receiver with a parabolic solar concentrator system,” Energy Convers. Manage., vol. 84, pp. 1–6, 2014. DOI: 10.1016/j.enconman.2014.03.083

W. Wang, H. Xu, B. Laumert, and T. Strand, “An inverse design method for a cavity receiver used in solar dish–Brayton system,” Sol. Energy, vol. 110, pp. 745–755, 2014. DOI: 10.1016/j.solener.2014.10.019

R. Beltrán, N. Velazquez, A. C. Espericueta, D. Sauceda, and G. Perez, “Mathematical model for the study and design of a solar dish collector with cavity receiver for its application in Stirling engines,” J. Mech. Sci. Technol., vol. 26, no. 10, pp. 3311–3321, 2012. DOI: 10.1007/s12206-012-0801-0

M. Neber and H. Lee, “Design of a high-temperature cavity receiver for residential-scale concentrated solar power,” Energy, vol. 47, no. 1, pp. 481–487, 2012. DOI: 10.1016/j.energy.2012.09.005

L. Xiao, S.-Y. Wu, and Y.-R. Li, “Natural convection heat loss estimation of solar cavity receiver by incorporating a modified aperture ratio,” IET Renew. Power Gener., vol. 6, no. 2, pp. 122–128, 2012. DOI: 10.1049/iet-rpg.2011.0095

L. Xiao, S.-Y. Wu, and Y.-R. Li, “Numerical study on combined free–forced convection heat loss of solar cavity receiver under wind environments,” Int. J. Therm. Sci., vol. 60, pp. 182–194, 2012. DOI: 10.1016/j.ijthermalsci.2012.05.008

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and S. Gorjian, “Numerical and experimental investigation of wind effect on a hemispherical cavity receiver,” Appl. Therm. Eng., vol. 126, pp. 179–193, 2017. DOI: 10.1016/j.applthermaleng.2017.08.056

M. S. Khan, M. Abid, H. M. Ali, K. P. Amber, M. A. Bashir, and S. Javed, “Comparative performance assessment of solar dish assisted s-CO₂ Brayton cycle using nanofluids,” Appl. Therm. Eng., vol. 148, pp. 295–306, 2019. DOI: 10.1016/j.applthermaleng.2018.11.021

A. Refiei, R. Loni, G. Najafi, A. Sahin, and E. Bellos, “Effect of mwCNT/oil nanofluid on the performance of solar organic Rankine cycle,” Energy Rep., vol. 6, pp. 782–794, 2020. DOI: 10.1016/j.egyr.2020.03.035

A. Rafiei, A. S. Alsagri, S. Mahadzir, R. Loni, G. Najafi, and A. Kasaeian, “Thermal analysis of a hybrid solar desalination system using various shapes of cavity receiver: cubical, cylindrical, and hemispherical,” Energy Convers. Manage., vol. 198, art. 111861, 2019. DOI: 10.1016/j.enconman.2019.111861

N. S. Kumar and K. Reddy, “Numerical investigation of natural convection heat loss in modified cavity receiver for fuzzy focal solar dish concentrator,” Sol. Energy, vol. 81, no. 7, pp. 846–855, 2007. DOI: 10.1016/j.solener.2006.11.008

Y. Li, G. Liu, Z. Rao, and S. Liao, “Field synergy principle analysis for reducing natural convection heat loss of a solar cavity receiver,” Renew. Energy, vol. 75, pp. 257–265, 2015. DOI: 10.1016/j.renene.2014.10.052

Y. Tan, L. Zhao, J. Bao, and Q. Liu, “Experimental investigation on heat loss of semispherical cavity receiver,” Energy Convers. Manage., vol. 87, pp. 576–583, 2014. DOI: 10.1016/j.enconman.2014.06.080

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, A. Kasaeian, and E. Bellos, “Energy and exergy investigation of alumina/oil and silica/oil nanofluids in hemispherical cavity receiver: experimental study,” Energy, vol. 164, pp. 275–287, 2018. DOI: 10.1016/j.energy.2018.08.174

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, M. Ahmadi, and E. Bellos, “GMDH modeling and experimental investigation of thermal performance enhancement of hemispherical cavity receiver using mwCNT/oil nanofluid,” Sol. Energy, vol. 171, pp. 790–803, 2018. DOI: 10.1016/j.solener.2018.07.003

S. Pavlovic, E. Bellos, and R. Loni, “Exergetic investigation of a solar dish collector with smooth and corrugated spiral absorber operating with various nanofluids,” J. Clean. Prod., vol. 174, pp. 1147–1160, 2018. DOI: 10.1016/j.jclepro.2017.11.004

R. Loni, S. Pavlovic, E. Bellos, C. Tzivanidis, and E. A. Asli-Ardeh, “Thermal and exergy performance of a nanofluid-based solar dish collector with spiral cavity receiver,” Appl. Therm. Eng., vol. 135, pp. 206–217, 2018. DOI: 10.1016/j.applthermaleng.2018.02.070

K. Reddy, S. K. Natarajan, and G. Veershetty, “Experimental performance investigation of modified cavity receiver with fuzzy focal solar dish concentrator,” Renew. Energy, vol. 74, pp. 148–157, 2015. DOI: 10.1016/j.renene.2014.07.058

K. Reddy and N. S. Kumar, “An improved model for natural convection heat loss from modified cavity receiver of solar dish concentrator,” Sol. Energy, vol. 83, no. 10, pp. 1884–1892, 2009. DOI: 10.1016/j.solener.2009.07.001

S. Yang, J. Wang, P. D. Lund, C. Jiang, and B. Huang, “Design and performance evaluation of a high-temperature cavity receiver for a two-stage dish concentrator,” Sol. Energy, vol. 174, pp. 1126–1132, 2018. DOI: 10.1016/j.solener.2018.10.021

L. Zhi-Gang, T. Da-Wei, L. Tie, and D. Jing-Long, “A hemispherical-involute cavity receiver for Stirling engine powered by a xenon arc solar simulator,” Chin. Phys. Lett., vol. 28, no. 5, p. 054401, 2011. DOI: 10.1088/0256-307X/28/5/054401

E. Bellos, E. Bousi, C. Tzivanidis, and S. Pavlovic, “Optical and thermal analysis of different cavity receiver designs for solar dish concentrators,” Energy Convers. Manage. X, vol. 2, art. 100013, 2019. DOI: 10.1016/j.ecmx.2019.100013

S. Pavlovic, R. Loni, E. Bellos, D. Vasiljević, G. Najafi, and A. Kasaeian, “Comparative study of spiral and conical cavity receivers for a solar dish collector,” Energy Convers. Manage., vol. 178, pp. 111–122, 2018. DOI: 10.1016/j.enconman.2018.10.030

S. Pavlovic, A. M. Daabo, E. Bellos, V. Stefanovic, S. Mahmoud, and R. K. Al-Dadah, “Experimental and numerical investigation on the optical and thermal performance of solar parabolic dish and corrugated spiral cavity receiver,” J. Clean. Prod., vol. 150, pp. 75–92, 2017. DOI: 10.1016/j.jclepro.2017.02.201

X. Li, Y. Dai, and R. Wang, “Performance investigation on solar thermal conversion of a conical cavity receiver employing a beam-down solar tower concentrator,” Sol. Energy, vol. 114, pp. 134–151, 2015. DOI: 10.1016/j.solener.2015.01.033

V. Thirunavukkarasu, M. Sornanathan, and M. Cheralathan, “An experimental study on energy and exergy performance of a cavity receiver for solar parabolic dish concentrator,” Int. J. Exergy, vol. 23, no. 2, pp. 129–148, 2017. DOI: 10.1504/IJEX.2017.085164

S. Chu, F. Bai, X. Zhang, B. Yang, Z. Cui, and F. Nie, “Experimental study and thermal analysis of a tubular pressurized air receiver,” Renew. Energy, vol. 125, pp. 413–424, 2018. DOI: 10.1016/j.renene.2018.02.125

V. Thirunavukkarasu and M. Cheralathan, “An experimental study on energy and exergy performance of a spiral tube receiver for solar parabolic dish concentrator,” Energy, vol. 192, art. 116635, 2020. DOI: 10.1016/j.energy.2019.116635

T. Venkatachalam and M. Cheralathan, “Effect of aspect ratio on thermal performance of cavity receiver for solar parabolic dish concentrator: An experimental study,” Renew. Energy, vol. 139, pp. 573–581, 2019. DOI: 10.1016/j.renene.2019.02.102

M. A. Bashir and A. Giovannelli, “Design optimization of the phase change material integrated solar receiver: A numerical parametric study,” Appl. Therm. Eng., vol. 160, art. 114008, 2019. DOI: 10.1016/j.applthermaleng.2019.114008

I. Khalil, Q. Pratt, C. Spitler, and D. Codd, “Modeling a thermoplate conical heat exchanger in a point focus solar thermal collector,” Int. J. Heat Mass Tran., vol. 130, pp. 1–8, 2019. DOI: 10.1016/j.ijheatmasstransfer.2018.10.041

N. Hernandez, D. Riveros-Rosas, E. Venegas, R. J. Dorantes, A. Rojas-Morín, O. Jaramillo, C. A. Arancibia-Bulnes, and C. A. Estrada, “Conical receiver for a paraboloidal concentrator with large rim angle,” Sol. Energy, vol. 86, no. 4, pp. 1053–1062, 2012. DOI: 10.1016/j.solener.2012.01.007

H. Xiao, Y. Zhang, C. You, C. Zou, and Q. Falcoz, “Effects of critical geometric parameters on the optical performance of a conical cavity receiver,” Front. Energy, vol. 13, no. 4, pp. 673–683, 2019. DOI: 10.1007/s11708-019-0630-2

Y. Zhang, H. Xiao, C. Zou, Q. Falcoz, and P. Neveu, “Combined optics and heat transfer numerical model of a solar conical receiver with built-in helical pipe,” Energy, vol. 193, art. 116775, 2020. DOI: 10.1016/j.energy.2019.116775

R. Beltrán-Chacon, D. Leal-Chavez, D. Sauceda, M. Pellegrini-Cervantes, and M. Borunda, “Design and analysis of a dead volume control for a solar Stirling engine with induction generator,” Energy, vol. 93, pp. 2593–2603, 2015. DOI: 10.1016/j.energy.2015.09.046

R. Loni, A. Kasaeian, E. A. Asli-Ardeh, B. Ghobadian, and W. G. Le Roux, “Performance study of a solar-assisted organic Rankine cycle using a dish-mounted rectangular-cavity tubular solar receiver,” Appl. Therm. Eng., vol. 108, pp. 1298–1309, 2016. DOI: 10.1016/j.applthermaleng.2016.08.014

R. Loni, A. Kasaeian, O. Mahian, and A. Sahin, “Thermodynamic analysis of an organic Rankine cycle using a tubular solar cavity receiver,” Energy Convers. Manage., vol. 127, pp. 494–503, 2016. DOI: 10.1016/j.enconman.2016.09.007

T. Taumoefolau, S. Paitoonsurikarn, G. Hughes, and K. Lovegrove, “Experimental investigation of natural convection heat loss from a model solar concentrator cavity receiver,” J. Sol. Energy Eng., vol. 126, no. 2, pp. 801–807, 2004. DOI: 10.1115/1.1687403

R. Alvarado-Juárez, M. Montiel-González, H. Villafán-Vidales, C. Estrada, and J. Flores-Navarrete, “Experimental and numerical study of conjugate heat transfer in an open square-cavity solar receiver,” Int. J. Therm. Sci., vol. 156, art. 106458, 2020. DOI: 10.1016/j.ijthermalsci.2020.106458

O. López, A. Banos, and A. Arenas, “On the thermal performance of flat and cavity receivers for a parabolic dish concentrator and low/medium temperatures,” Sol. Energy, vol. 199, pp. 911–923, 2019. DOI: 10.1016/j.solener.2019.02.049

W. G. Le Roux, T. Bello-Ochende, and J. P. Meyer, “The efficiency of an open-cavity tubular solar receiver for a small-scale solar thermal Brayton cycle,” Energy Convers. Manage., vol. 84, pp. 457–470, 2014. DOI: 10.1016/j.enconman.2014.06.017

R. Loni, A. Kasaeian, O. Mahian, A. Z. Sahin, and S. Wongwises, “Exergy analysis of a solar organic Rankine cycle with square prismatic cavity receiver,” Int. J. Exergy, vol. 22, no. 2, pp. 103–124, 2017. DOI: 10.1504/IJEX.2017.083011

R. Loni, A. Kasaeian, K. Shahverdi, E. A. Asli-Ardeh, B. Ghobadian, and M. H. Ahmadi, “ANN model to predict the performance of parabolic dish collector with tubular cavity receiver,” Mech. Ind., vol. 18, no. 4, p. 408, 2017. DOI: 10.1051/meca/2017016

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, E. Bellos, and W. G. Le Roux, “Numerical comparison of a solar dish concentrator with different cavity receivers and working fluids,” J. Clean. Prod., vol. 198, pp. 1013–1030, 2018. DOI: 10.1016/j.jclepro.2018.07.180

R. Loni, E. A. Asli-Ardeh, B. Ghobadian, G. Najafi, and E. Bellos, “Effects of size and volume fraction of alumina nanoparticles on the performance of a solar organic Rankine cycle,” Energy Convers. Manage., vol. 182, pp. 398–411, 2019. DOI: 10.1016/j.enconman.2018.12.079

R. Loni, A. Kasaeian, E. A. Asli-Ardeh, B. Ghobadian, and S. Gorjian, “Experimental and numerical study on dish concentrator with cubical and cylindrical cavity receivers using thermal oil,” Energy, vol. 154, pp. 168–181, 2018. DOI: 10.1016/j.energy.2018.04.102

A. M. Daabo, S. Mahmoud, and R. K. Al-Dadah, “The effect of receiver geometry on the optical performance of a small-scale solar cavity receiver for parabolic dish applications,” Energy, vol. 114, pp. 513–525, 2016. DOI: 10.1016/j.energy.2016.08.025

N. S. Kumar and K. Reddy, “Comparison of receivers for solar dish collector system,” Energy Convers. Manage., vol. 49, no. 4, pp. 812–819, 2008. DOI: 10.1016/j.enconman.2007.07.026

Z. Si-Quan, L. Xin-Feng, D. Liu, and M. Qing-Song, “A numerical study on optical and thermodynamic characteristics of a spherical cavity receiver,” Appl. Therm. Eng., vol. 149, pp. 11–21, 2019. DOI: 10.1016/j.applthermaleng.2018.10.030

N. Kaushika and K. Reddy, “Performance of a low cost solar paraboloidal dish steam generating system,” Energy Convers. Manage., vol. 41, no. 7, pp. 713–726, 2000. DOI: 10.1016/S0196-8904(99)00133-8

Y. Shuai, X. Xia, and H. Tan, “Numerical simulation and experiment research of radiation performance in a dish solar collector system,” Front. Energy Power Eng. China, vol. 4, no. 4, pp. 488–495, 2010. DOI: 10.1007/s11708-010-0007-z

T. Seo, S. Ryu, and Y. Kang, “Heat losses from the receivers of a multifaceted parabolic solar energy collecting system,” KSME Int. J., vol. 17, no. 8, pp. 1185–1195, 2003. DOI: 10.1007/BF03016513

Downloads

Published

19-07-2025

How to Cite

[1]
S. S. A. Talib and R. K. M. Al Dulaimi, “A Survey Of Solar Dish Cavity Receivers Geometries ”, NJES, vol. 28, no. 2, pp. 240–252, Jul. 2025, doi: 10.29194/NJES.28020240.

Similar Articles

11-20 of 34

You may also start an advanced similarity search for this article.