Increasing the Performance of the Iterative Computed Tomography Image Reconstruction Algorithms
DOI:
https://doi.org/10.29194/NJES.23020194Keywords:
ART, Computed tomography, Shepp-Logan, Iterative Reconstruction, Seeded region growingAbstract
Computed tomography (CT) imaging is an important diagnostic tool. CT imaging facilitates the internal rendering of a scanned object by measuring the attenuation of beams of X-ray radiation. CT employs a mathematical technique of image reconstruction; those techniques are classified as; analytical and iterative. The iterative reconstruction (IR) methods have been proven to be superior over the analytical methods, but due to their prolonged reconstruction time, those methods are excluded from routine use in clinical applications. In this paper the reconstruction time of an IR algorithm is minimized through the employment of an adaptive region growing segmentation method that focuses the image reconstruction process on a specified region, thus ignoring unwanted pixels that increase the computation time. This method is tested on the iterative algebraic reconstruction technique (ART) algorithm. Some phantom images are used in this paper to demonstrate the effects of the segmentation process. The simulation results are executed using MATLAB (version R2018b) programming language, and a computer system with the following specifications: CPU core i7 (2.40 GHz) for processing. Simulation results indicate that this method will reduce the reconstruction time of the iterative algorithms, and will enhance the quality of the reconstructed image.
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.