Effect of Elevated Temperature on Bending Fatigue Behavior for Neat and Reinforced Polyamide 6,6
DOI:
https://doi.org/10.29194/NJES.23030232Keywords:
CNTs, High Cycle Fatigue, Polyamide 6,6, Short Carbon FibersAbstract
Recently, considering polymer composite in manufacturing of mechanical parts can be caused a fatigue failure due to the very long time of exposure to cyclic loading and may at environmental temperatures higher than their glass transition temperature; therefore, in this paper, a comprehensive investigation for bending fatigue behavior at room and elevated temperatures equal to 60 °C, 70°C, and 80 °C will be done. Rotating bending test machine was manufactured for this purpose supplied with a connected furnace to perform fatigue tests at elevated temperatures. The obtained results appeared that the increase in applied stress and temperature caused a clear reduction in fatigue life; also the addition of carbon nanotubes enhanced the fatigue life at different temperatures by 183%, 205%, 218%, and 240%, respectively while the addition of short carbon fibers improved fatigue life by 324%, 351%, 387%, and 415%, respectively. As well as, Polyamide 6,6/carbon fiber composite appeared fatigue limit at temperatures equal to 20°C and 60°C and stresses approximately equal to 55 MPa and 38 MPa respectively.
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.