Non-Dispersive Near Infrared Gas Flow Cell Design for Oxygenator-Exhaust Capnometry
DOI:
https://doi.org/10.29194/NJES.25020076Keywords:
Oxygenator Exhaust Capnometry, NDIR, Gas Flow Cell, Gas-Flow Simulation, ANSYS DiscoveryAbstract
Non-dispersive near-infrared technique is widely used nowadays for the detection of gases, especially in harsh environments. In this study, an optical gas cell was designed for oxygenator exhaust capnometry. A computer-based simulation was used for the analysis of air flows for model selection. ANSYS Discovery 2020 R2 was used for model simulation. The gas flow cells were tested using a custom-made gas rig to measure the fraction absorbance of carbon dioxide gas at the detector. Two gases were used, nitrogen gas as a reference gas (0%) and 9% carbon dioxide. Three gas cells with the following optical path lengths were tested: 31mm, 36mm, and 40mm. The results showed that all gas flow cells produced laminar flow and small pressure drop across the inlet and outlet of the cell (11~12 Pa). Further, the minimum velocity is obtained in the 40mm gas flow sensor and it is located at the gas outlet path away from the effective optical gas path. The simulation and experimental results indicate that the gas flow cell of 40mm optical path length is more suitable for the intended application as it offers a maximum effective absorption path compared to the stagnation areas, and as a result, it provides the maximum fraction absorbance.
Downloads
References
D. P. Davis, “Quantitative capnometry as a critical resuscitation tool.,” J. Trauma Nurs., vol. 12, no. 2, pp. 40–42, 2005, doi: 10.1097/00043860-200512020-00003.
A. Baraka, M. El-khatib, E. Muallem, S. Jamal, S. Haroun-bizri, and M. Aouad, “Oxygenator Exhaust Capnography for Prediction of Arterial Carbon Dioxide Tension During Hypothermic Cardiopulmonary Bypass,” pp. 192–195, 2005.
A. Montalti et al., “Continuous monitoring of membrane lung carbon dioxide removal during ECMO: experimental testing of a new volumetric capnometer.,” Perfusion, vol. 34, no. 7, pp. 538–543, Oct. 2019, doi: 10.1177/0267659119833233.
F. Epis and M. Belliato, “Oxygenator performance and artificial-native lung interaction.,” J. Thorac. Dis., vol. 10, no. Suppl 5, pp. S596–S605, Mar. 2018, doi: 10.21037/jtd.2017.10.05.
E. Duscio et al., “Extracorporeal CO2 Removal: The Minimally Invasive Approach, Theory, and Practice.,” Crit. Care Med., vol. 47, no. 1, pp. 33–40, Jan. 2019, doi: 10.1097/CCM.0000000000003430.
J. Hodgkinson and R. P. Tatam, “Optical gas sensing: a review,” Meas. Sci. Technol., vol. 24, p. 12004, 2013.
Y. Ishigaki, K. Enoki, and S. Yokogawa, “Accuracy verification of low-cost CO2 concentration measuring devices for general use as a countermeasure against COVID-19.” 2021, doi: 10.1101/2021.07.30.21261265.
T.-V. Dinh, I.-Y. Choi, Y.-S. Son, and J.-C. Kim, “A review on non-dispersive infrared gas sensors: Improvement of sensor detection limit and interference correction,” Sensors Actuators B Chem., vol. 231, Mar. 2016, doi: 10.1016/j.snb.2016.03.040.
T. Vincent and J. W. Gardner, “A low cost MEMS based NDIR system for the monitoring of carbon dioxide in breath analysis at ppm levels,” Sensors Actuators B Chem., vol. 236, 2016, doi: 10.1016/j.snb.2016.04.016.
J. O. Høgetveit, F. Kristiansen, and T. H. Pedersen, “Development of an intrsument to indirectly monitor arterial pCO2during cardiopulmonary bypass,” Perfusion, vol. 21, no. 1, pp. 13–19, 2006, doi: 10.1191/0267659106pf841oa.
G. Zhang, Y. Li, and Q. Li, “A miniaturized carbon dioxide gas sensor based on infrared absorption,” Opt. Lasers Eng., vol. 48, pp. 1206–1212, Dec. 2010, doi: 10.1016/j.optlaseng.2010.06.012.
T. Liang, X. J. Yang, C. Y. Xue, and W. D. Zhang, “Study of Optical Gas Chamber Based on Infrared Gas Sensor,” Adv. Mater. Res., vol. 472–475, pp. 1102–1106, 2012, doi: 10.4028/www.scientific.net/AMR.472-475.1102.
C. Chen, Z. Yujun, H. Ying, Y. Kun, and G. Yanwei, Simulation Method for Optical System of an Infrared Gas Sensor. 2016.
D. Shah, D. M. Fuke, S. Upadhyay, A. Verma, and S. Rehman, Development and characterization of NDIR-based CO 2 sensor for manned space missions. 2016.
I. Sieber, H. Eggert, K.-H. Suphan, and O. Nuessen, “Optical modeling of the analytical chamber of an IR gas sensor,” in Proc.SPIE, Apr. 2001, vol. 4408, doi: 10.1117/12.425387.
J. S. Park, H. C. Cho, and S. H. Yi, “NDIR CO2 gas sensor with improved temperature compensation,” Procedia Eng., vol. 5, pp. 303–306, 2010, doi: 10.1016/j.proeng.2010.09.108.
J. Hodgkinson, R. Smith, W. Ho, J. Saffell, and R. Tatam, “Non-dispersive infra-red (NDIR) measurement of carbon dioxide at 4.2?m in a compact and optically efficient sensor,” Sensors Actuators B Chem., vol. 186, pp. 580–588, Sep. 2013, doi: 10.1016/j.snb.2013.06.006.
J. Mayrwoeger, P. Hauer, W. Reichl, R. Schwodiauer, C. Krutzler, and B. Jakoby, “Modeling of Infrared Gas Sensors Using a Ray Tracing Approach,” Sensors Journal, IEEE, vol. 10, pp. 1691–1698, Dec. 2010, doi: 10.1109/JSEN.2010.2046033.
Downloads
Published
Issue
Section
License
Copyright (c) 2022 Al-Nahrain Journal for Engineering Sciences
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.