A Numerical Study of the Heat Transfer and Fluid Flow in Different Shapes of Microchannels
Abstract
Microchannels are the current interest for use in compact heat exchanger , micro reactors , very large scale integrated system where there is a desire of high heat transfer performance. The mentioned electronic equipment are important part of modern life. The dissipation of heat from these equipment is very necessary for the proper functioning of these instruments. Microchannels provide high heat transfer coefficients because of their small hydraulic diameter. In this work, a numerical investigation of fluid flow and heat transfer in different shapes of microchannels have been presented, square notches with different number are added to the rectangular microchannel to create different shapes of MCHS. A three dimensional computational fluid dynamics were built using a commercial package FLUENT to investigate the conjugate fluid flow and heat transfer phenomena in aluminum-based rectangular microchannel heat sink. The MCHS performance is evaluated in terms of temperature profile , Nusselt number and friction factor. Water is used in the present study as the working fluid. The results show that the heat transfer rate and Nusselt number are increased for the shapes that have notches compared with the original channel as Reynolds number increase. The Results conducted from this study were compared with that published in the previous literature and there were a good agreement obtained.
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.