Maximum Power Point Tracking Techniques for Photovoltaic Systems: A Review

Authors

  • Narjis N. Nadhim Dept. of Electronics & Communication Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq
  • Muhammed S. Salim Dept. of Electronics & Communication Engineering, College of Engineering, Al-Nahrain University,Baghdad, Iraq

DOI:

https://doi.org/10.29194/NJES.28040653

Keywords:

MPPT, PV System, P&O, Fuzzy Logic, ANN, Solar Cell

Abstract

Maximum Power Point Tracking (MPPT) techniques are essential for maximizing energy extraction from photovoltaic (PV) systems under diverse environmental conditions. This paper reviews three widely used MPPT methods Perturb and Observe (P&O), Fuzzy Logic Control (FLC), and Artificial Neural Networks (ANN) highlighting their effectiveness in addressing challenges such as temperature fluctuations, varying irradiance, and shading. The P&O method is noted for its simplicity and low computational requirements, but it suffers from oscillations around the maximum power point under rapidly changing conditions. FLC offers enhanced adaptability and robustness by mimicking human decision-making, performing well in dynamic environments with moderate complexity. ANN-based methods demonstrate superior tracking efficiency and fast convergence, particularly under complex and highly variable conditions, due to their ability to learn and generalize from data. These findings underscore the importance of continued development of MPPT techniques, especially intelligent and hybrid approaches, to meet the growing demand for sustainable energy. Thus, solar energy remains a highly viable solution for modern energy needs.

Downloads

Download data is not yet available.

References

M. F. Jalil, S. Khatoon, I. Nasiruddin, and R. C. Bansal, "Review of PV array modelling, configuration and MPPT techniques," Int. J. Model. Simul., vol. 42, no. 4, pp. 533-550, 2022. https://doi.org/10.1080/02286203.2021.1938810 DOI: https://doi.org/10.1080/02286203.2021.1938810

I. Yadav, S. K. Maurya, and G. K. Gupta, "A literature review on industrially accepted MPPT techniques for solar PV system," Int. J. Electr. Comput. Eng., vol. 10, no. 2, pp. 2117-2127, 2020. https://doi.org/10.11591/ijece.v10i2.pp2117-2127 DOI: https://doi.org/10.11591/ijece.v10i2.pp2117-2127

A. Mohapatra, B. Nayak, P. Das, and K. B. Mohanty, "A review on MPPT techniques of PV system under partial shading condition," Renew. Sustain. Energy Rev., 2017. https://doi.org/10.1016/j.rser.2017.05.083 DOI: https://doi.org/10.1016/j.rser.2017.05.083

B. Bendib, H. Belmili, and F. Krim, "A survey of the most used MPPT methods: Conventional and advanced algorithms applied for photovoltaic systems," Renew. Sustain. Energy Rev., 2015. https://doi.org/10.1016/j.rser.2015.02.009 DOI: https://doi.org/10.1016/j.rser.2015.02.009

Ö. F. Tozlu and H. Çalık, "A review and classification of most used MPPT algorithms for photovoltaic systems," Hittite J. Sci. Eng., vol. 8, no. 3, pp. 207-220, Sep. 2021. https://doi.org/10.17350/HJSE19030000231 DOI: https://doi.org/10.17350/HJSE19030000231

B. Pakkiraiah and G. D. Sukumar, "Research survey on various MPPT performance issues to improve the solar PV system efficiency," J. Solar Energy, vol. 2016, pp. 1-20, Jul. 2016. https://doi.org/10.1155/2016/8012432 DOI: https://doi.org/10.1155/2016/8012432

S. Selvan, P. Nair, and Umayal, "A review on photo voltaic MPPT algorithms," Int. J. Electr. Comput. Eng., vol. 6, no. 2, pp. 567-582, Apr. 2016. https://doi.org/10.11591/ijece.v6i2.9204 DOI: https://doi.org/10.11591/ijece.v6i2.9204

A. K. Podder, N. K. Roy, and H. R. Pota, "MPPT methods for solar PV systems: A critical review based on tracking nature," IET Renew. Power Gener., Jul. 2019. https://doi.org/10.1049/iet-rpg.2018.5946 DOI: https://doi.org/10.1049/iet-rpg.2018.5946

Z. Erdem, "A review of MPPT algorithms for partial shading conditions," Acta Phys. Pol. A, pp. 1128-1133, Sep. 2017. https://doi.org/10.12693/APhysPolA.132.1128 DOI: https://doi.org/10.12693/APhysPolA.132.1128

Proc. 53rd Int. Univ. Power Eng. Conf. (UPEC), Glasgow, U.K., Sep. 2018. IEEE.

M. L. Katche, A. B. Makokha, S. O. Zachary, and M. S. Adaramola, "A comprehensive review of maximum power point tracking (MPPT) techniques used in solar PV systems," Energies, vol. 16, no. 5, Mar. 2023. https://doi.org/10.3390/en16052206 DOI: https://doi.org/10.3390/en16052206

M. Mao, L. Cui, Q. Zhang, K. Guo, L. Zhou, and H. Huang, "Classification and summarization of solar photovoltaic MPPT techniques: A review based on traditional and intelligent control strategies," Energy Rep., Nov. 2020. https://doi.org/10.1016/j.egyr.2020.05.013 DOI: https://doi.org/10.1016/j.egyr.2020.05.013

D. Verma, S. Nema, A. M. Shandilya, and S. K. Dash, "Maximum power point tracking (MPPT) techniques: Recapitulation in solar photovoltaic systems," Renew. Sustain. Energy Rev., Feb. 2016. https://doi.org/10.1016/j.rser.2015.10.068 DOI: https://doi.org/10.1016/j.rser.2015.10.068

R. B. Bollipo, S. Mikkili, and P. K. Bonthagorla, "Hybrid, optimal, intelligent and classical PV MPPT techniques: A review," CSEE J. Power Energy Syst., Jan. 2021.

W. H. Tan and J. Mohamad-Saleh, "Critical review on interrelationship of electro-devices in PV solar systems with their evolution and future prospects for MPPT applications," Energies, vol. 16, no. 2, Jan. 2023. https://doi.org/10.3390/en16020850 DOI: https://doi.org/10.3390/en16020850

A. Ali et al., "Investigation of MPPT techniques under uniform and non-uniform solar irradiation condition-A retrospection," IEEE Access, vol. 8, pp. 127368-127392, 2020. https://doi.org/10.1109/ACCESS.2020.3007710 DOI: https://doi.org/10.1109/ACCESS.2020.3007710

S. H. Hanzaei, S. A. Gorji, and M. Ektesabi, "A scheme-based review of MPPT techniques with respect to input variables including solar irradiance and PV arrays' temperature," IEEE Access, 2020. https://doi.org/10.1109/ACCESS.2020.3028580 DOI: https://doi.org/10.1109/ACCESS.2020.3028580

Z. Salam, J. Ahmed, and B. S. Merugu, "The application of soft computing methods for MPPT of PV system: A technological and status review," Appl. Energy, 2013. https://doi.org/10.1016/j.apenergy.2013.02.008 DOI: https://doi.org/10.1016/j.apenergy.2013.02.008

S. Karthika, M. Asok, M. Mohan, R. Hima, J. Das, and C. A. Varghese, "An enhanced P and O algorithm for maximum power point tracking," in Proc. Int. Conf. Futuristic Technol. Control Syst. Renew. Energy (ICFCR), Sep. 2020. https://doi.org/10.1109/ICFCR50903.2020.9249985 DOI: https://doi.org/10.1109/ICFCR50903.2020.9249985

J. Ahmed and Z. Salam, "An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency," Appl. Energy, vol. 150, pp. 97-108, Jul. 2015. https://doi.org/10.1016/j.apenergy.2015.04.006 DOI: https://doi.org/10.1016/j.apenergy.2015.04.006

R. Kahani, M. Jamil, and M. T. Iqbal, "An improved perturb and observed maximum power point tracking algorithm for photovoltaic power systems," J. Mod. Power Syst. Clean Energy, vol. 11, no. 4, pp. 1165-1175, Jul. 2023. https://doi.org/10.35833/MPCE.2022.000245 DOI: https://doi.org/10.35833/MPCE.2022.000245

O. Lodin Afghanistan, "Predictive-P&O MPPT algorithm for fast and reliable tracking of maximum power point in solar energy systems," 2019. [Online]. Available: https://www.researchgate.net/publication/338886396

J. Ahmed and Z. Salam, "An enhanced adaptive P&O MPPT for fast and efficient tracking under varying environmental conditions," IEEE Trans. Sustain. Energy, vol. 9, no. 3, pp. 1487-1496, Jul. 2018. https://doi.org/10.1109/TSTE.2018.2791968 DOI: https://doi.org/10.1109/TSTE.2018.2791968

S. M. Sulthan, E. P. Sarika, J. Jacob, S. Mohammed, and S. Paul, "A novel hybrid maximum power point tracking technique with zero oscillation based on P&O algorithm," 2020. [Online]. Available: https://www.researchgate.net/publication/348049341

H. Ramadan, A. R. Youssef, H. H. H. Mousa, and E. E. M. Mohamed, "An efficient variable-step P&O maximum power point tracking technique for grid-connected wind energy conversion system," SN Appl. Sci., vol. 1, no. 12, Dec. 2019. https://doi.org/10.1007/s42452-019-1716-5 DOI: https://doi.org/10.1007/s42452-019-1716-5

G. R. Patel, D. B. Patel, and K. M. Paghdal, "Analysis of P&O MPPT algorithm for PV system," [Online]. Available: www.iaset.us

P. Manoharan et al., "Improved perturb and observation maximum power point tracking technique for solar photovoltaic power generation systems," IEEE Syst. J., vol. 15, no. 2, pp. 3024-3035, Jun. 2021. https://doi.org/10.1109/JSYST.2020.3003255 DOI: https://doi.org/10.1109/JSYST.2020.3003255

X. Li, H. Wen, Y. Hu, and L. Jiang, "A novel beta parameter based fuzzy-logic controller for photovoltaic MPPT application."

C. R. Algarín, J. T. Giraldo, and O. R. Álvarez, "Fuzzy logic based MPPT controller for a PV system," Energies, vol. 10, no. 12, Dec. 2017. https://doi.org/10.3390/en10122036 DOI: https://doi.org/10.3390/en10122036

M. N. Ali, K. Mahmoud, M. Lehtonen, and M. M. F. Darwish, "An efficient fuzzy-logic based variable-step incremental conductance MPPT method for grid-connected PV systems," IEEE Access, vol. 9, pp. 26420-26430, 2021. https://doi.org/10.1109/ACCESS.2021.3058052 DOI: https://doi.org/10.1109/ACCESS.2021.3058052

M. Y. Baramadeh, M. A. A. Abouelela, and S. M. Alghuwainem, "Maximum power point tracker controller using fuzzy logic control with battery load for photovoltaics systems," Smart Grid Renew. Energy, vol. 12, no. 10, pp. 163-181, 2021. https://doi.org/10.4236/sgre.2021.1210010 DOI: https://doi.org/10.4236/sgre.2021.1210010

U. Yilmaz, A. Kircay, and S. Borekci, "PV system fuzzy logic MPPT method and PI control as a charge controller," Renew. Sustain. Energy Rev., 2018. https://doi.org/10.1016/j.rser.2017.08.048 DOI: https://doi.org/10.1016/j.rser.2017.08.048

J. K. Shiau, Y. C. Wei, and B. C. Chen, "A study on the fuzzy-logic-based solar power MPPT algorithms using different fuzzy input variables," Algorithms, vol. 8, no. 2, pp. 100-127, 2015. https://doi.org/10.3390/a8020100 DOI: https://doi.org/10.3390/a8020100

H. Rezk, M. Aly, M. Al-Dhaifallah, and M. Shoyama, "Design and hardware implementation of new adaptive fuzzy logic-based MPPT control method for photovoltaic applications," IEEE Access, vol. 7, pp. 106427-106438, 2019. https://doi.org/10.1109/ACCESS.2019.2932694 DOI: https://doi.org/10.1109/ACCESS.2019.2932694

T. U. Hassan et al., "A novel algorithm for MPPT of an isolated PV system using push pull converter with fuzzy logic controller," Energies, vol. 13, no. 15, Aug. 2020. https://doi.org/10.3390/en13154007 DOI: https://doi.org/10.3390/en13154007

S. Tang, Y. Sun, Y. Chen, Y. Zhao, Y. Yang, and W. Szeto, "An enhanced MPPT method combining fractional-order and fuzzy logic control," IEEE J. Photovolt., vol. 7, no. 2, pp. 640-650, Mar. 2017. https://doi.org/10.1109/JPHOTOV.2017.2649600 DOI: https://doi.org/10.1109/JPHOTOV.2017.2649600

P. C. Cheng, B. R. Peng, Y. H. Liu, Y. S. Cheng, and J. W. Huang, "Optimization of a fuzzy-logic-control-based MPPT algorithm using the particle swarm optimization technique," Energies, vol. 8, no. 6, pp. 5338-5360, 2015. https://doi.org/10.3390/en8065338 DOI: https://doi.org/10.3390/en8065338

C. H. Basha and M. Murali, "A new design of transformerless, non-isolated, high step-up DC-DC converter with hybrid fuzzy logic MPPT controller," Int. J. Circuit Theory Appl., vol. 50, no. 1, pp. 272-297, Jan. 2022. https://doi.org/10.1002/cta.3153 DOI: https://doi.org/10.1002/cta.3153

R. B. Roy et al., "A comparative performance analysis of ANN algorithms for MPPT energy harvesting in solar PV system," IEEE Access, vol. 9, pp. 102137-102152, 2021. https://doi.org/10.1109/ACCESS.2021.3096864 DOI: https://doi.org/10.1109/ACCESS.2021.3096864

A. Gündoğdu and R. Çelikel, "ANN-based MPPT algorithm for photovoltaic systems," 2020.

L. Bouselham, M. Hajji, B. Hajji, and H. Bouali, "A new MPPT-based ANN for photovoltaic system under partial shading conditions," Energy Procedia, pp. 924-933, Mar. 2017. https://doi.org/10.1016/j.egypro.2017.03.255 DOI: https://doi.org/10.1016/j.egypro.2017.03.255

I. Haseeb et al., "Solar power system assessments using ANN and hybrid boost converter based MPPT algorithm," Appl. Sci., vol. 11, no. 23, Dec. 2021. https://doi.org/10.3390/app112311332 DOI: https://doi.org/10.3390/app112311332

M. T. Hussain, A. Sarwar, M. Tariq, S. Urooj, A. BaQais, and M. A. Hossain, "An evaluation of ANN algorithm performance for MPPT energy harvesting in solar PV systems," Sustainability, vol. 15, no. 14, Jul. 2023. https://doi.org/10.3390/su151411144 DOI: https://doi.org/10.3390/su151411144

Y. E. A. Idrissi, K. Assalaou, L. Elmahni, and E. Aitiaz, "New improved MPPT based on artificial neural network and PI controller for photovoltaic applications," Int. J. Power Electron. Drive Syst., vol. 13, no. 3, pp. 1791-1801, Sep. 2022. https://doi.org/10.11591/ijpeds.v13.i3.pp1791-1801 DOI: https://doi.org/10.11591/ijpeds.v13.i3.pp1791-1801

L. M. Elobaid, A. K. Abdelsalam, and E. E. Zakzouk, "Artificial neural network-based photovoltaic maximum power point tracking techniques: A survey," IET Renew. Power Gener., vol. 9, no. 8, pp. 1043-1063, Nov. 2015. https://doi.org/10.1049/iet-rpg.2014.0359 DOI: https://doi.org/10.1049/iet-rpg.2014.0359

S. Kumar Roy, S. Hussain, and M. A. Bazaz, "Implementation of MPPT technique for solar PV system using ANN," in Proc. Recent Dev. Control, Autom. Power Eng. (RDCAPE), May 2018, pp. 338-342. https://doi.org/10.1109/RDCAPE.2017.8358293 DOI: https://doi.org/10.1109/RDCAPE.2017.8358293

C. G. Villegas-Mier, J. Rodriguez-Resendiz, J. M. Álvarez-Alvarado, H. Rodriguez-Resendiz, A. M. Herrera-Navarro, and O. Rodríguez-Abreo, "Artificial neural networks in MPPT algorithms for optimization of photovoltaic power systems: A review," Micromachines, vol. 12, no. 10, Oct. 2021. https://doi.org/10.3390/mi12101260 DOI: https://doi.org/10.3390/mi12101260

J. Chorfi, M. Zazi, and M. Mansori, "A new intelligent MPPT based on ANN algorithm for photovoltaic system," in Proc. Int. Renew. Sustain. Energy Conf. (IRSEC), Jul. 2018. https://doi.org/10.1109/IRSEC.2018.8702858 DOI: https://doi.org/10.1109/IRSEC.2018.8702858

M. Yilmaz and M. Corapsiz, "Artificial neural network based MPPT algorithm with boost converter topology for stand-alone PV system," Erzincan Univ. J. Sci. Inst., vol. 15, no. 1, pp. 242-257, Mar. 2022. https://doi.org/10.18185/erzifbed.1002823 DOI: https://doi.org/10.18185/erzifbed.1002823

H. A. Attia, "High performance PV system based on artificial neural network MPPT with PI controller for direct current water pump applications," Int. J. Power Electron. Drive Syst., vol. 10, no. 3, pp. 1329-1338, Sep. 2019. https://doi.org/10.11591/ijpeds.v10.i3.pp1329-1338 DOI: https://doi.org/10.11591/ijpeds.v10.i3.pp1329-1338

Downloads

Published

20-12-2025

How to Cite

[1]
N. N. Nadhim and M. S. Salim, “Maximum Power Point Tracking Techniques for Photovoltaic Systems: A Review”, NJES, vol. 28, no. 4, pp. 653–660, Dec. 2025, doi: 10.29194/NJES.28040653.

Similar Articles

1-10 of 157

You may also start an advanced similarity search for this article.