Utilizing Sustainable Recycled Thermoplastic Polymers in 3D Printing Filament

Authors

  • Bashar Dheyaa Hussein Department of Mechanical Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Ghanim Sh. Sadiq Department of Mechanical Engineering, Al-Nahrain University, Baghdad, Iraq.

DOI:

https://doi.org/10.29194/NJES.28030442

Keywords:

Polymer Recycle, 3D Printing, Filament Production

Abstract

Over the last several years, additive manufacturing (AM), sometimes known as "3D printing", has seen remarkable expansion due to mechatronics and materials science advancements. Fused filament deposition (FDM) production is the predominant technology in additive manufacturing (AM) because of its cost-effectiveness in operational and material expenses. Nevertheless, the materials often used for this technique are pristine thermoplastics. Unsuccessful printing and throwaway prototypes generate a significant quantity of trash. Utilizing green and sustainable products is crucial to minimize the environmental effects. Recycled, bio-based, and mixed recycled materials provide a promising solution for 3D printing. The absence of comprehension about the interlayer adhesion process and material degradation in FDM printing has presented a significant obstacle for these environmentally friendly materials. This study comprehensively examines many materials used for FDM three-dimensional printing filaments, including recycled, bio-based, and mixed materials. The merits and drawbacks of thermoplastics and their composites were deliberated over. This evaluation is a comprehensive guide for engineers and researchers in selecting appropriate materials for three-dimensional printing. Three-dimensional printed objects have worse mechanical characteristics in comparison to injection molded materials.

Downloads

Download data is not yet available.

References

K. A. Iyer, L. Zhang, and J. M. Torkelson, "Direct use of natural antioxidant-rich agro-wastes as thermal stabilizer for polymer: Processing and recycling," ACS Sustain. Chem. Eng., vol. 4, no. 3, pp. 881-889, 2016. DOI:10.1021/acssuschemeng.5b01283 DOI: https://doi.org/10.1021/acssuschemeng.5b00945

F. A. C. Sanchez, H. Boudaoud, M. Camargo, and J. M. Pearce, "Plastic recycling in additive manufacturing: A systematic literature review and opportunities for the circular economy," J. Clean. Prod., vol. 264, p. 121602, 2020. DOI:10.1016/j.jclepro.2020.121602 DOI: https://doi.org/10.1016/j.jclepro.2020.121602

S. Kaewunruen, D. Li, Y. Chen, and Z. Xiang, "Enhancement of dynamic damping in eco-friendly railway concrete sleepers using waste-tyre crumb rubber," Materials, vol. 11, no. 7, p. 1169, 2018. DOI:10.3390/ma11071169 DOI: https://doi.org/10.3390/ma11071169

K. Mikula, M. Skrzypczak, M. Khajavi, and A. Torabi, "3D printing filament as a second life of waste plastics-a review," Environ. Sci. Pollut. Res., vol. 28, pp. 12321-12333, 2021. DOI:10.1007/s11356-020-10657-8

D. Mohan, Z. K. Teong, A. N. Bakir, M. S. Sajab, and H. Kaco, "Extending cellulose-based polymers application in additive manufacturing technology: A review of recent approaches," Polymers, vol. 12, no. 9, p. 1876, 2020. DOI:10.3390/polym12091876 DOI: https://doi.org/10.3390/polym12091876

N. Mervine, K. Brӓtt, and D. Saloni, "A review of sustainable materials used in thermoplastic extrusion and powder bed melting additive manufacturing," in Advances in Manufacturing, Production Management and Process Control, Springer, 2020, pp. 95-102. DOI:10.1007/978-3-030-51981-0_12 DOI: https://doi.org/10.1007/978-3-030-51981-0_12

I. S. Jawahir and R. Bradley, "Technological elements of circular economy and the principles of 6R-based closed-loop material flow in sustainable manufacturing," Procedia CIRP, vol. 40, pp. 103-108, 2016. DOI:10.1016/j.procir.2016.01.067 DOI: https://doi.org/10.1016/j.procir.2016.01.067

A. Lanzotti, M. Grasso, G. Staiano, and M. Martorelli, "The impact of process parameters on mechanical properties of parts fabricated in PLA with an open-source 3-D printer," Rapid Prototyp. J., vol. 21, no. 5, pp. 604-617, 2015. DOI:10.1108/RPJ-09-2014-0135 DOI: https://doi.org/10.1108/RPJ-09-2014-0135

N. Li, Y. Li, and S. Liu, "Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing," J. Mater. Process. Technol., vol. 238, pp. 218-225, 2016. DOI:10.1016/j.jmatprotec.2016.07.025 DOI: https://doi.org/10.1016/j.jmatprotec.2016.07.025

Z. Abdullah, M. A. Maleque, M. M. Rahman, and M. A. Ali, "The effect of layer thickness and raster angles on tensile strength and flexural strength for fused deposition modeling (FDM) parts," J. Adv. Manuf. Technol., vol. 12, no. 1(4), pp. 147-158, 2018.

A. N. Dickson, H. M. Abourayana, and D. P. Dowling, "3D printing of fibre-reinforced thermoplastic composites using fused filament fabrication-A review," Polymers, vol. 12, no. 10, p. 2188, 2020. DOI:10.3390/polym12102188 DOI: https://doi.org/10.3390/polym12102188

N. Shahrubudin, T. C. Lee, and R. Ramlan, "An overview on 3D printing technology: Technological, materials, and applications," Procedia Manuf., vol. 35, pp. 1286-1296, 2019. DOI:10.1016/j.promfg.2019.06.089 DOI: https://doi.org/10.1016/j.promfg.2019.06.089

I. Antoniac, D. Popescu, A. Zapciu, A. Antoniac, F. Miculescu, and H. Moldovan, "Magnesium filled polylactic acid (PLA) material for filament based 3D printing," Materials, vol. 12, no. 5, p. 719, 2019. DOI:10.3390/ma12050719 DOI: https://doi.org/10.3390/ma12050719

Ł. Miazio, "Impact of print speed on strength of samples printed in FDM technology," Agric. Eng., vol. 23, no. 2, pp. 33-38, 2019. DOI:10.1515/agriceng-2019-0014 DOI: https://doi.org/10.1515/agriceng-2019-0014

X. Wang, M. Jiang, Z. Zhou, J. Gou, and D. Hui, "3D printing of polymer matrix composites: A review and prospective," Compos. Part B Eng., vol. 110, pp. 442-458, 2017. DOI:10.1016/j.compositesb.2016.11.034 DOI: https://doi.org/10.1016/j.compositesb.2016.11.034

A. Dey and N. Yodo, "A systematic survey of FDM process parameter optimization and their influence on part characteristics," J. Manuf. Mater. Process., vol. 3, no. 3, p. 64, 2019. DOI:10.3390/jmmp3030064 DOI: https://doi.org/10.3390/jmmp3030064

J. Saroia, A. Wang, Y. Wei, Y. Zhang, and Y. Liu, "A review on 3D printed matrix polymer composites: Its potential and future challenges," Int. J. Adv. Manuf. Technol., vol. 106, pp. 1695-1721, 2020. DOI:10.1007/s00170-019-04534-z DOI: https://doi.org/10.1007/s00170-019-04534-z

S. Wickramasinghe, T. Do, and P. Tran, "FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments," Polymers, vol. 12, no. 7, p. 1529, 2020. DOI:10.3390/polym12071529 DOI: https://doi.org/10.3390/polym12071529

B. G. Mwanza and C. Mbohwa, "Drivers to sustainable plastic solid waste recycling: A review," Procedia Manuf., vol. 8, pp. 649-656, 2017. DOI:10.1016/j.promfg.2017.02.083 DOI: https://doi.org/10.1016/j.promfg.2017.02.083

W. Leal Filho, L. Salvia, A. L. Pretorius, and A. O. Brandli, "An assessment of attitudes towards plastics and bioplastics in Europe," Sci. Total Environ., vol. 755, p. 142732, 2021. DOI:10.1016/j.scitotenv.2020.142732 DOI: https://doi.org/10.1016/j.scitotenv.2020.142732

R. Kumar, A. Singh, A. K. Pandey, and A. K. Singh, "Impacts of plastic pollution on ecosystem services, sustainable development goals, and need to focus on circular economy and policy interventions," Sustainability, vol. 13, no. 17, p. 9963, 2021. DOI:10.3390/su13179963 DOI: https://doi.org/10.3390/su13179963

S. M. Al-Salem, P. Lettieri, and J. Baeyens, "Recycling and recovery routes of plastic solid waste (PSW): A review," Waste Manag., vol. 29, no. 10, pp. 2625-2643, 2009. DOI:10.1016/j.wasman.2009.06.004 DOI: https://doi.org/10.1016/j.wasman.2009.06.004

N. Singh, D. Hui, R. Singh, I. P. S. Ahuja, L. Feo, and F. Fraternali, "Recycling of plastic solid waste: A state of art review and future applications," Compos. Part B Eng., vol. 115, pp. 409-422, 2017. DOI:10.1016/j.compositesb.2016.09.013 DOI: https://doi.org/10.1016/j.compositesb.2016.09.013

S. Kumar, A. K. Panda, and R. K. Singh, "A review on tertiary recycling of high-density polyethylene to fuel," Resour. Conserv. Recycl., vol. 55, no. 11, pp. 893-910, 2011. DOI:10.1016/j.resconrec.2011.06.010 DOI: https://doi.org/10.1016/j.resconrec.2011.05.005

K. Ragaert, L. Delva, and K. Van Geem, "Mechanical and chemical recycling of solid plastic waste," Waste Manag., vol. 69, pp. 24-58, 2017. DOI:10.1016/j.wasman.2017.07.044 DOI: https://doi.org/10.1016/j.wasman.2017.07.044

A. A. Shah, F. Hasan, A. Hameed, and S. Ahmed, "Biological degradation of plastics: A comprehensive review," Biotechnol. Adv., vol. 26, no. 3, pp. 246-265, 2008. DOI:10.1016/j.biotechadv.2007.12.005 DOI: https://doi.org/10.1016/j.biotechadv.2007.12.005

I. Gibson, D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies, 3rd ed., Springer, 2021. DOI:10.1007/978-3-030-56127-7 DOI: https://doi.org/10.1007/978-3-030-56127-7

B. Silver, "BCC Research," Charleston Advis., vol. 23, no. 3, pp. 10-16, 2022. DOI:10.5260/chara.23.3.10 DOI: https://doi.org/10.5260/chara.23.3.10

K. Kellens, M. Baumers, T. G. Gutowski, W. Flanagan, R. Lifset, and J. R. Duflou, "Environmental dimensions of additive manufacturing: Mapping application domains and their environmental implications," J. Ind. Ecol., vol. 21, no. S1, pp. S49-S68, 2017. DOI:10.1111/jiec.12629 DOI: https://doi.org/10.1111/jiec.12629

F. Decuir, K. Phelan, and B. C. Hollins, "Mechanical strength of 3-D printed filaments," in Proc. 32nd Southern Biomed. Eng. Conf. (SBEC), IEEE, 2016, pp. 47-48. DOI:10.1109/SBEC.2016.11 DOI: https://doi.org/10.1109/SBEC.2016.101

J. Griffey, "Types of filaments for FDM printing," Libr. Technol. Rep., vol. 53, no. 15, pp. 12-16, 2017.

X. Zhang and F. Liou, "Introduction to additive manufacturing," in Additive Manufacturing, Elsevier, 2021, pp. 1-31. DOI:10.1016/B978-0-12-818411-0.00009-4 DOI: https://doi.org/10.1016/B978-0-12-818411-0.00009-4

T. Grimm, "Fused deposition modeling: A technology evaluation," Time-Compression Technol., vol. 11, no. 2, pp. 1-6, 2003.

V. Mazzanti, L. Malagutti, and F. Mollica, "FDM 3D printing of polymers containing natural fillers: A review of their mechanical properties," Polymers, vol. 11, no. 7, p. 1094, 2019. DOI:10.3390/polym11071094 DOI: https://doi.org/10.3390/polym11071094

M. Biron, Thermoplastics and Thermoplastic Composites, 2nd ed., William Andrew, 2018. DOI:10.1016/B978-0-08-102501-7.00009-6 DOI: https://doi.org/10.1016/B978-0-08-102501-7.00009-6

M. M. Mbow, P. R. Marin, and F. Pourroy, "Extruded diameter dependence on temperature and velocity in the fused deposition modeling process," Prog. Addit. Manuf., vol. 5, no. 2, pp. 139-152, 2020. DOI:10.1007/s40964-019-00107-4 DOI: https://doi.org/10.1007/s40964-019-00107-4

A. Kijo-Kleczkowska and A. Gnatowski, "Recycling of plastic waste, with particular emphasis on thermal methods-review," Energies, vol. 15, no. 6, p. 2114, 2022. DOI:10.3390/en15062114 DOI: https://doi.org/10.3390/en15062114

A. K. Panda, R. K. Singh, and D. K. Mishra, "Thermolysis of waste plastics to liquid fuel: A suitable method for plastic waste management and manufacture of value added products-A world prospective," Renew. Sustain. Energy Rev., vol. 14, no. 1, pp. 233-248, 2010. DOI:10.1016/j.rser.2009.07.005 DOI: https://doi.org/10.1016/j.rser.2009.07.005

J. Maris, S. Bourdon, J.-M. Brossard, L. Cauret, L. Fontaine, and V. Montembault, "Mechanical recycling: Compatibilization of mixed thermoplastic wastes," Polym. Degrad. Stab., vol. 147, pp. 245-266, 2018. DOI:10.1016/j.polymdegradstab.2017.12.011 DOI: https://doi.org/10.1016/j.polymdegradstab.2017.11.001

Z. O. G. Schyns and M. P. Shaver, "Mechanical recycling of packaging plastics: A review," Macromol. Rapid Commun., vol. 42, no. 3, p. 2000415, 2021. DOI:10.1002/marc.202000415 DOI: https://doi.org/10.1002/marc.202000415

S. Escudero Cuadrado, "Diseño de un triturador de basura para conectar a una máquina compactadora de residuos," B.Sc. thesis, Univ. Politécnica de Valencia, 2015.

C. Abeykoon, K. Li, M. McAfee, P. J. Martin, and G. W. Irwin, "Extruder melt temperature control with fuzzy logic," IFAC Proc. Vol., vol. 44, no. 1, pp. 8577-8582, 2011. DOI:10.3182/20110828-6-IT-1002.02642 DOI: https://doi.org/10.3182/20110828-6-IT-1002.01576

N. Kumar, P. K. Jain, P. Tandon, and P. M. Pandey, "Experimental investigations on suitability of polypropylene (PP) and ethylene vinyl acetate (EVA) in additive manufacturing," Mater. Today Proc., vol. 5, no. 2, pp. 4118-4127, 2018. DOI:10.1016/j.matpr.2017.11.642 DOI: https://doi.org/10.1016/j.matpr.2017.11.672

B. Zhang, K. Kowsari, A. Serjouei, M. L. Dunn, and Q. Ge, "Reprocessable thermosets for sustainable three-dimensional printing," Nat. Commun., vol. 9, no. 1, p. 1831, 2018. DOI:10.1038/s41467-018-04292-8 DOI: https://doi.org/10.1038/s41467-018-04292-8

K. Mikula, M. Skrzypczak, M. Khajavi, and A. Torabi, "3D printing filament as a second life of waste plastics-a review," Environ. Sci. Pollut. Res., vol. 28, pp. 12321-12333, 2021. DOI:10.1007/s11356-020-10657-8 DOI: https://doi.org/10.1007/s11356-020-10657-8

M. Kamran and A. Saxena, "A comprehensive study on 3D printing technology," MIT Int. J. Mech. Eng., vol. 6, no. 2, pp. 63-69, 2016.

R. Scaffaro, L. Botta, E. Passaglia, W. Oberhauser, M. Frediani, and L. Di Landro, "Comparison of different processing methods to prepare poly(lactic acid)-hydrotalcite composites," Polym. Eng. Sci., vol. 54, no. 8, pp. 1804-1810, 2014. DOI:10.1002/pen.23718 DOI: https://doi.org/10.1002/pen.23724

P. E. Le Marec, A. Ferry, J. P. Pascault, and A. Saiter, "Influence of melt processing conditions on poly(lactic acid) degradation: Molar mass distribution and crystallization," Polym. Degrad. Stab., vol. 110, pp. 353-363, 2014. DOI:10.1016/j.polymdegradstab.2014.09.014 DOI: https://doi.org/10.1016/j.polymdegradstab.2014.10.003

B. Tuna and G. Ozkoc, "Effects of diisocyanate and polymeric epoxidized chain extenders on the properties of recycled poly(lactic acid)," J. Polym. Environ., vol. 25, pp. 983-993, 2017. DOI:10.1007/s10924-016-0856-6 DOI: https://doi.org/10.1007/s10924-016-0856-6

J. D. Badia, E. Strömberg, S. Karlsson, and A. Ribes-Greus, "Material valorisation of amorphous polylactide. Influence of thermo-mechanical degradation on the morphology, segmental dynamics, thermal and mechanical performance," Polym. Degrad. Stab., vol. 97, no. 4, pp. 670-678, 2012. DOI:10.1016/j.polymdegradstab.2012.03.021 DOI: https://doi.org/10.1016/j.polymdegradstab.2011.12.019

T. Rogers, "Everything you need to know about polylactic acid (PLA)," Creat. Mech., vol. 7, 2015.

E. Karahaliou and P. A. Tarantili, "Stability of ABS compounds subjected to repeated cycles of extrusion processing," Polym. Eng. Sci., vol. 49, no. 11, pp. 2269-2275, 2009. DOI:10.1002/pen.21474 DOI: https://doi.org/10.1002/pen.21480

M. I. Mohammed, A. Das, E. Gomez-Kervin, D. Wilson, and I. Gibson, "EcoPrinting: Investigating the use of 100% recycled acrylonitrile butadiene styrene (ABS) for additive manufacturing," in Proc. 28th Solid Freeform Fabrication Symp., 2017.

H. Schneevogt, K. Stelzner, B. Yilmaz, B. E. Abali, A. Klunker, and C. Völlmecke, "Sustainability in additive manufacturing: Exploring the mechanical potential of recycled PET filaments," Compos. Adv. Mater., vol. 30, p. 26349833211000064, 2021. DOI:10.1177/26349833211000063 DOI: https://doi.org/10.1177/26349833211000063

O. Basurto-Vázquez, E. P. Sánchez-Rodríguez, G. J. McShane, and D. I. Medina, "Load distribution on PET-G 3D prints of honeycomb cellular structures under compression load," Polymers, vol. 13, no. 12, p. 1983, 2021. DOI:10.3390/polym13121983 DOI: https://doi.org/10.3390/polym13121983

I. G. Kim, S. Y. Hong, B. O. Park, H. J. Choi, and J. H. Lee, "Polyphenylene ether/glycol modified polyethylene terephthalate blends and their physical characteristics," J. Macromol. Sci. Part B, vol. 51, no. 4, pp. 798-806, 2012. DOI:10.1080/00222348.2011.610207 DOI: https://doi.org/10.1080/00222348.2011.610207

N. E. Zander, M. Gillan, and R. H. Lambeth, "Recycled polyethylene terephthalate as a new FFF feedstock material," Addit. Manuf., vol. 21, pp. 174-182, 2018. DOI:10.1016/j.addma.2018.03.007 DOI: https://doi.org/10.1016/j.addma.2018.03.007

S. Chong, G.-T. Pan, M. Khalid, T. C.-K. Yang, S.-T. Hung, and C.-M. Huang, "Physical characterization and pre-assessment of recycled high-density polyethylene as 3D printing material," J. Polym. Environ., vol. 25, pp. 136-145, 2017. DOI:10.1007/s10924-016-0793-4 DOI: https://doi.org/10.1007/s10924-016-0793-4

K. Q. Nguyen, C. Mwiseneza, K. Mohamed, P. Cousin, M. Robert, and B. Benmokrane, "Long-term testing methods for HDPE pipe-advantages and disadvantages: A review," Eng. Fract. Mech., vol. 246, p. 107629, 2021. DOI:10.1016/j.engfracmech.2021.107629 DOI: https://doi.org/10.1016/j.engfracmech.2021.107629

G. P. Thomas, "Recycling of high-density polyethylene (HDPE or PEHD)," AZoCleanTech, 2012. [Online]. Available: https://www.azocleantech.com/article.aspx?ArticleID=171

E. Iunolainen, "Suitability of recycled PP for 3D printing filament," B.Sc. thesis, Tampere Univ. Technol., 2017.

N. Vidakis, M. Petousis, E. Velidakis, E. Mountakis, and D. Tzounis, "Sustainable additive manufacturing: Mechanical response of polypropylene over multiple recycling processes," Sustainability, vol. 13, no. 1, p. 159, 2020. DOI:10.3390/su13010159 DOI: https://doi.org/10.3390/su13010159

S. I. Atsani and H. Mastrisiswadi, "Recycled polypropylene filament for 3D printer: Extrusion process parameter optimization," in IOP Conf. Ser.: Mater. Sci. Eng., vol. 771, p. 012022, 2020. DOI:10.1088/1757-899X/771/1/012022 DOI: https://doi.org/10.1088/1757-899X/722/1/012022

G. A. Miranda Salgado and T.-L. Sun, "Performance analysis on fitness equipment: Application of an inertial sensor toward quality of life," in Sustainable Design and Manufacturing 2017, Springer, 2017, pp. 68-76. DOI:10.1007/978-3-319-57078-5_7 DOI: https://doi.org/10.1007/978-3-319-57078-5_7

T. Y. Ng, S. C. Koay, M. Y. Chan, H. L. Choo, and T. K. Ong, "Preparation and characterisation of 3D printer filament from post-used styrofoam," in AIP Conf. Proc., vol. 2203, p. 020060, 2020. DOI:10.1063/5.0000212 DOI: https://doi.org/10.1063/5.0000212

E. P. Mynio, "Recycled material selection for affordable and sustainable homes using large scale additive manufacturing," M.Sc. thesis, Massachusetts Inst. Technol., 2020.

S. Thakur, A. Verma, B. Sharma, J. Chaudhary, S. Tamulevicius, and V. K. Thakur, "Recent developments in recycling of polystyrene based plastics," Curr. Opin. Green Sustain. Chem., vol. 13, pp. 32-38, 2018. DOI:10.1016/j.cogsc.2018.04.007 DOI: https://doi.org/10.1016/j.cogsc.2018.03.011

I. Turku, S. Kasala, and T. Kärki, "Characterization of polystyrene wastes as potential extruded feedstock filament for 3D printing," Recycling, vol. 3, no. 4, p. 57, 2018. DOI:10.3390/recycling3040057 DOI: https://doi.org/10.3390/recycling3040057

Downloads

Published

29-09-2025

How to Cite

[1]
B. D. Hussein and G. S. Sadiq, “Utilizing Sustainable Recycled Thermoplastic Polymers in 3D Printing Filament”, NJES, vol. 28, no. 3, pp. 442–450, Sep. 2025, doi: 10.29194/NJES.28030442.

Similar Articles

21-30 of 73

You may also start an advanced similarity search for this article.