Metabolic Cost Reduction and Analysis of Assisted Walking Gait: A Review
DOI:
https://doi.org/10.29194/NJES.28030392Keywords:
Walking, Metabolic Cost, Assistive Device, Exoskeleton, Model, Analysis, Simulation, OpensimAbstract
With the occurrence of pathological disorders in some people or aging, metabolic energy consumption begins significantly due to the weakness of the peripheral muscles and the increase in body fat with time, which aggravates the issues for this type of people, causing the rest hours extremely lengthy and consequently may produce heart or arterial diseases and elevate the mortality rate. Regarding the significance of the matter, this study examines a number of previous researches that featured several approaches to energy calculation and strategies for lowering energy consumption through the use of various external assistance devices, such as exosuits or exoskeletons, to assist people in carrying out their everyday tasks. And additionally discussed musculoskeletal simulation employs a variety of programs, especially OpenSim, which enables users to build models of musculoskeletal structures and produce dynamic movement simulations. According to the research findings, exoskeletons and other assistive technology can successfully lower the cost of metabolic energy to varying extents, depending on the device's weight, placement within the body, and whether it is active, semi-active, or inactive. In the future, the work to design and simulate a semi-active torsional ankle-foot exoskeleton with a specialized mechanism aimed to minimize metabolic energy.
Downloads
References
A. P. Hills, N. Mokhtar, and N. M. Byrne, "Assessment of physical activity and energy expenditure: an overview of objective measures," Front. Nutr., vol. 1, p. 5, Jun. 2014. DOI: 10.3389/fnut.2014.00005 DOI: https://doi.org/10.3389/fnut.2014.00005
D. Ndahimana and E. K. Kim, "Measurement methods for physical activity and energy expenditure: a review," Clin. Nutr. Res., vol. 6, no. 2, pp. 68-80, Apr. 2017. DOI: 10.7762/cnr.2017.6.2.68
A. C. P. Volp, F. C. E. Oliveira, R. D. M. Alves, E. A. Esteves, and J. Bressan, "Energy expenditure: components and evaluation methods," Nutr. Hosp., vol. 26, pp. 430-440, 2011.
M. Elms, K. P. Sucher, K. Lacey, and S. L. Roth, Nutrition Therapy and Pathophysiology, 2nd ed. Belmont, CA: Wadsworth, Cengage Learning, 2011.
E. Ravussin and C. Bogardus, "A brief overview of human energy metabolism and its relationship to essential obesity," Am. J. Clin. Nutr., vol. 55, no. 1 Suppl., pp. 242S-245S, 1992. DOI: 10.1093/ajcn/55.1.242s DOI: https://doi.org/10.1093/ajcn/55.1.242s
G. R. Goldberg, A. M. Prentice, H. L. Davies, and P. R. Murgatroyd, "Overnight and basal metabolic rates in men and women," Eur. J. Clin. Nutr., vol. 42, no. 2, pp. 137-144, 1988.
A. M. Fontvieille, R. T. Ferraro, R. Rising, D. E. Larson, and E. Ravussin, "Energy cost of arousal: effect of sex, race, and obesity," Int. J. Obes. Relat. Metab. Disord., vol. 17, no. 12, pp. 705-709, 1993.
H. Kumahara, M. Yoshioka, Y. Yoshitake, M. Shindo, Y. Schutz, and H. Tanaka, "The difference between the basal metabolic rate and the sleeping metabolic rate in Japanese," J. Nutr. Sci. Addictol., vol. 50, no. 6, pp. 441-445, 2004. DOI: 10.3177/jnsv.50.441 DOI: https://doi.org/10.3177/jnsv.50.441
C. Weyer, S. Snitker, R. Rising, C. Bogardus, and E. Ravussin, "Determinants of energy expenditure and fuel utilization in man: effects of body composition, age, sex, ethnicity and glucose tolerance in 916 subjects," Int. J. Obes. Relat. Metab. Disord., vol. 23, no. 7, pp. 715-722, 1999. DOI: 10.1038/sj.ijo.0800910 DOI: https://doi.org/10.1038/sj.ijo.0800910
C. Bogardus, S. Lillioja, E. Ravussin, W. Abbott, J. K. Zawadzki, A. Young, et al., "Familial dependence of the resting metabolic rate," N. Engl. J. Med., vol. 315, no. 2, pp. 96-100, 1986. DOI: 10.1056/NEJM198607103150205 DOI: https://doi.org/10.1056/NEJM198607103150205
R. J. Shephard and Y. Aoyagi, "Measurement of human energy expenditure, with particular reference to field studies: an historical perspective," Eur. J. Appl. Physiol., vol. 112, no. 8, pp. 2785-2815, 2012. DOI: 10.1007/s00421-011-2268-6 DOI: https://doi.org/10.1007/s00421-011-2268-6
R. Mundal, J. Erikssen, and K. Rodahl, "Assessment of physical activity by questionnaire and personal interview with particular reference to fitness and coronary mortality," Eur. J. Appl. Physiol. Occup. Physiol., vol. 56, no. 3, pp. 245-252, 1987. DOI: 10.1007/BF00690888 DOI: https://doi.org/10.1007/BF00690888
W. B. Kannel, "Habitual level of physical activity and risk of coronary heart disease: the Framingham study," Can. Med. Assoc. J., vol. 96, no. 12, pp. 811-812, 1967.
K. J. Kaiyala and D. S. Ramsay, "Direct animal calorimetry, the underused gold standard for quantifying the fire of life," Comp. Biochem. Physiol. A Mol. Integr. Physiol., vol. 158, pp. 252-264, 2011. DOI: 10.1016/j.cbpa.2010.04.013 DOI: https://doi.org/10.1016/j.cbpa.2010.04.013
W. S. Zhang, "Construction, calibration and testing of a decimeter-size heat-flow calorimeter," Thermochim. Acta, vol. 499, pp. 128-132, 2010. DOI: 10.1016/j.tca.2009.11.013 DOI: https://doi.org/10.1016/j.tca.2009.11.013
D. Ndahimana and E. K. Kim, "Measurement methods for physical activity and energy expenditure: a review," Clin. Nutr. Res., vol. 6, no. 2, pp. 68-80, Apr. 2017. DOI: 10.7762/cnr.2017.6.2.68 DOI: https://doi.org/10.7762/cnr.2017.6.2.68
A. D. Sylvester, S. G. Lautzenheiser, and P. A. Kramer, "A review of musculoskeletal modelling of human locomotion," Interface Focus, vol. 11, no. 5, 2021. DOI: 10.1098/rsfs.2020.0060 DOI: https://doi.org/10.1098/rsfs.2020.0060
Q. Meng, Q. Zeng, Q. Xie, C. Fei, B. Kong, X. Lu, H. Wang, and H. Yu, "Flexible lower limb exoskeleton systems: a review," NeuroRehabilitation, vol. 50, no. 4, pp. 367-390, 2022. DOI: 10.3233/NRE-210300 DOI: https://doi.org/10.3233/NRE-210300
T. Bacek, M. Moltedo, B. Serrien, K. Langlois, B. Vanderborght, S. Member, D. Lefeber, and C. Rodriguez-Guerrero, "Human musculoskeletal and energetic adaptations to unilateral robotic knee gait assistance," IEEE Trans. Biomed. Eng., 2022. DOI: 10.1109/TBME.2021.3114737 DOI: https://doi.org/10.1109/TBME.2021.3114737
N. A. Bianco, P. W. Franks, J. L. Hicks, and S. L. Delp, "Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: a simulation study," PLoS ONE, vol. 17, no. 1, Jan. 2022. DOI: 10.1371/journal.pone.0261318
M. Cardona and C. E. García Cena, "Biomechanical analysis of the lower limb: a full-body musculoskeletal model for muscle-driven simulation," IEEE Access, vol. 7, pp. 92709-92723, 2019. DOI: 10.1109/ACCESS.2019.2927515 DOI: https://doi.org/10.1109/ACCESS.2019.2927515
Y. Wang, X. Li, P. Huang, G. Li, and P. Fang, "An analysis of biomechanical characteristics of gait based on the musculoskeletal model," in Proc. IEEE Int. Conf. Cyborg Bionic Syst. (CBS), Shenzhen, China, 2018, pp. 151-154. DOI: 10.1109/CBS.2018.8612292 DOI: https://doi.org/10.1109/CBS.2018.8612292
W. C. Pinheiro, H. B. Ferraz, M. C. F. Castro, and L. L. Menegaldo, "An OpenSim-based closed-loop biomechanical wrist model for subject-specific pathological tremor simulation," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 32, pp. 1100-1108, 2024. DOI: 10.1109/TNSRE.2024.3373433 DOI: https://doi.org/10.1109/TNSRE.2024.3373433
A. MajidiRad, Y. Yihun, J. Desai, and N. A. Hakansson, "Simulation of exoskeleton alignment and its effect on the knee extensor and flexor muscles," in Proc. IEEE EMBC, Berlin, Germany, 2019, pp. 4093-4096. DOI: 10.1109/EMBC.2019.8856640 DOI: https://doi.org/10.1109/EMBC.2019.8856640
J. Li, Y. Lyu, S. Miller, Z. Jin, and X. Hua, "Development of a finite element musculoskeletal model with the ability to predict contractions of three-dimensional muscles," J. Biomech., vol. 94, 2019. DOI: 10.1016/j.jbiomech.2019.07.042 DOI: https://doi.org/10.1016/j.jbiomech.2019.07.042
Y. T. Yap, D. Gouwanda, A. A. Gopalai, and Y. Z. Chong, "Musculoskeletal gait simulation to investigate biomechanical effect of knee brace," ASME J. Biomech. Eng., vol. 145, no. 2, p. 024502, Feb. 2023. DOI: 10.1115/1.4055564 DOI: https://doi.org/10.1115/1.4055564
M. Cardona and C. Garcia Cena, "Musculoskeletal modeling as a tool for biomechanical analysis of normal and pathological gait," in Biomechanics in Applications, Springer, 2019. doi: 10.1007/978-3-030-30648-9_124. DOI: 10.1007/978-3-030-30648-9_124 DOI: https://doi.org/10.1007/978-3-030-30648-9_124
H. Baskar and S. M. R. Nadaradjane, "Minimization of metabolic cost of muscles based on human exoskeleton modeling: a simulation," Int. J. Biomed. Eng. Sci., vol. 3, no. 4, pp. 1-9, 2016. DOI: 10.5121/ijbes.2016.3401 DOI: https://doi.org/10.5121/ijbes.2016.3401
N. A. Bianco, P. W. Franks, J. L. Hicks, and S. L. Delp, "Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: a simulation study," PLoS ONE, vol. 17, no. 1, Jan. 2022. DOI: 10.1371/journal.pone.0261318 DOI: https://doi.org/10.1371/journal.pone.0261318
M. K. MacLean and D. P. Ferris, "Energetics of walking with a robotic knee exoskeleton," J. Appl. Biomech., vol. 35, no. 5, pp. 320-326, 2019. DOI: 10.1123/jab.2018-0384 DOI: https://doi.org/10.1123/jab.2018-0384
D. S. Pamungkas, W. Caesarendra, S. Susanto, H. Soebakti, and R. Analia, "Overview: types of lower limb exoskeletons," Electronics, vol. 8, no. 11, p. 1283, 2019. DOI: 10.3390/electronics8111283 DOI: https://doi.org/10.3390/electronics8111283
F. Giovacchini, F. Vannetti, M. Fantozzi, M. Cempini, M. Cortese, A. Parri, and N. Vitiello, "A lightweight active orthosis for hip movement assistance," Robot. Auton. Syst., vol. 73, pp. 123-134, 2015. DOI: 10.1016/j.robot.2014.08.015 DOI: https://doi.org/10.1016/j.robot.2014.08.015
R. Baud, A. Ortlieb, J. Olivier, M. Bouri, and H. Bleuler, "HIBSO hip exoskeleton: toward a wearable and autonomous design," Mech. Mach. Sci., vol. 48, pp. 185-195, 2018. DOI: 10.1007/978-3-319-59972-4_14 DOI: https://doi.org/10.1007/978-3-319-59972-4_14
Q. Wu, X. Wang, F. Du, and X. Zhang, "Design and control of a powered hip exoskeleton for walking assistance," Int. J. Adv. Robot. Syst., vol. 12, p. 18, 2015. DOI: 10.5772/59757 DOI: https://doi.org/10.5772/59757
A. T. Asbeck, K. Schmidt, and C. J. Walsh, "Soft exosuit for hip assistance," Robot. Auton. Syst., vol. 73, pp. 102-110, 2015. DOI: 10.1016/j.robot.2014.09.025 DOI: https://doi.org/10.1016/j.robot.2014.09.025
S. Sridar, P. H. Nguyen, M. Zhu, Q. P. Lam, and P. Polygerinos, "Development of a soft-inflatable exosuit for knee rehabilitation," in Proc. IEEE Int. Conf. Intell. Robots Syst., Vancouver, Canada, Sep. 2017, pp. 3722-3727. DOI: 10.1109/IROS.2017.8206220 DOI: https://doi.org/10.1109/IROS.2017.8206220
K. A. Witte, A. M. Fatschel, and S. H. Collins, "Design of a lightweight, tethered, torque-controlled knee exoskeleton," in Proc. IEEE Int. Conf. Rehabil. Robot., London, UK, Jul. 2017, pp. 1646-1653. DOI: 10.1109/ICORR.2017.8009484 DOI: https://doi.org/10.1109/ICORR.2017.8009484
R. K. P. S. Ranaweera, R. A. R. C. Gopura, T. S. S. Jayawardena, and G. K. I. Mann, "Development of a passively powered knee exoskeleton for squat lifting," J. Robot. Netw. Artif. Life, vol. 5, pp. 45-52, 2018. DOI: 10.2991/jrnal.2018.5.1.11 DOI: https://doi.org/10.2991/jrnal.2018.5.1.11
S. Yu, T. H. Huang, D. Wang, B. Lynn, D. Sayd, V. Silivanov, and H. Su, "Design and control of a quasi-direct drive soft hybrid knee exoskeleton for injury prevention during squatting," arXiv preprint, arXiv:1902.07106, 2019. DOI: 10.1109/LRA.2019.2931427 DOI: https://doi.org/10.1109/LRA.2019.2931427
J. Wang, X. Li, T. H. Huang, S. Yu, Y. Li, T. Chen, and H. Su, "Comfort-centered design of a lightweight and backdrivable knee exoskeleton," IEEE Robot. Autom. Lett., vol. 3, pp. 4265-4272, 2018. DOI: 10.1109/LRA.2018.2864352
L. M. Mooney and H. M. Herr, "Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton," J. Neuroeng. Rehabil., vol. 13, p. 4, 2016. DOI: 10.1186/s12984-016-0111-3 DOI: https://doi.org/10.1186/s12984-016-0111-3
A. T. Asbeck, S. M. M. de Rossi, K. G. Holt, and C. J. Walsh, "A biologically inspired soft exosuit for walking assistance," Int. J. Robot. Res., vol. 34, pp. 744-762, 2015. DOI: 10.1177/0278364914562476 DOI: https://doi.org/10.1177/0278364914562476
Y. Bai, X. Gao, J. Zhao, F. Jin, F. Dai, and Y. Lv, "A portable ankle-foot rehabilitation orthosis powered by electric motor," Open Mech. Eng. J., vol. 9, pp. 982-991, 2015. DOI: 10.2174/1874155X01509010982 DOI: https://doi.org/10.2174/1874155X01509010982
J. Carberry, G. Hinchly, J. Buckerfield, E. Tayler, T. Burton, S. Madgwick, and R. Vaidyanathan, "Parametric design of an active ankle foot orthosis with passive compliance," in Proc. IEEE Symp. Comput.-Based Med. Syst., Bristol, UK, Jun. 2011. DOI: 10.1109/CBMS.2011.5999151 DOI: https://doi.org/10.1109/CBMS.2011.5999151
Y. L. Park, B. R. Chen, D. Young, L. Stirling, R. J. Wood, E. Goldfield, and R. Nagpal, "Bio-inspired active soft orthotic device for ankle foot pathologies," in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., San Francisco, USA, Sep. 2011, pp. 4488-4495. DOI: 10.1109/IROS.2011.6094933 DOI: https://doi.org/10.1109/IROS.2011.6094933
G. Chen, P. Qi, Z. Guo, and H. Yu, "Mechanical design and evaluation of a compact portable knee-ankle-foot robot for gait rehabilitation," Mech. Mach. Theory, vol. 103, pp. 51-64, 2016. DOI: 10.1016/j.mechmachtheory.2016.04.012 DOI: https://doi.org/10.1016/j.mechmachtheory.2016.04.012
S. Rossi, F. Patane, F. del Sette, and P. Cappa, "WAKE-up: a wearable ankle knee exoskeleton," in Proc. IEEE RAS/EMBS Int. Conf. Biomed. Robot. Biomechatronics, São Paulo, Brazil, Aug. 2014, pp. 504-507. DOI: 10.1109/BIOROB.2014.6913827 DOI: https://doi.org/10.1109/BIOROB.2014.6913827
H. Kazerooni, R. Steger, and L. Huang, "Hybrid control of the Berkeley Lower Extremity Exoskeleton (BLEEX)," Int. J. Robot. Res., vol. 25, pp. 561-573, 2006. DOI: 10.1177/0278364906065505 DOI: https://doi.org/10.1177/0278364906065505
S. Nacy, N. Hussein, S. M. Nacy, N. H. Ghaeb, and M. M. Abdallh, "A review of lower limb exoskeletons," iiste.org, 2016.
W. Wei, S. Zha, Y. Xia, J. Gu, and X. Lin, "A hip active assisted exoskeleton that assists the semi-squat lifting," Appl. Sci., vol. 10, no. 7, 2020. DOI: 10.3390/app10072424 DOI: https://doi.org/10.3390/app10072424
N. Khalid Al-Hayali, J. Salman Chiad, S. Nacy, and O. Hussein, "A review of passive and quasi-passive lower limb exoskeletons for gait rehabilitation," J. Mech. Eng. Res. Dev., vol. 4, 2021. DOI: 10.22153/kej.2021.12.007 DOI: https://doi.org/10.22153/kej.2021.12.007
C.-Y. Cheng, S. Okamoto, P. Li, Y. Akiyama, C. Qiu, and Y. Yamada, "Encouragement of squat-lifting: feasibility study of a highly usable passive knee assistive device," in Proc. IEEE/SICE Int. Symp. Syst. Integr., Honolulu, USA, 2020, pp. 504-508. DOI: 10.1109/SII46433.2020.9025902 DOI: https://doi.org/10.1109/SII46433.2020.9025902
S. Nacy, N. Hussein, S. M. Nacy, N. H. Ghaeb, and M. M. Abdallh, "A review of lower limb exoskeletons," iiste.org, 2016.
F. Abdulmajeed, S. Al-Kaabi, M. Awad, D. Gan, and K. Khalaf, "Modeling, simulation and proof-of-concept of an augmentation ankle exoskeleton with a manually-selected variable stiffness mechanism," Ann. Robot. Autom., vol. 1, pp. 13-17, 2020. DOI: 10.17352/ara.000004 DOI: https://doi.org/10.17352/ara.000004
P. Song, X. Mo, J. Zhou, and Q. Lv, "Research on sensing system design and gait recognition for the military exoskeleton," Mach. Des. Manuf., vol. S2, pp. 175-177, 2018.
H. Li, Research on the Control Technology of Individual Soldier Lower Extremity Exoskeleton System, North Univ. China, 2013.
C. J. Walsh, K. Endo, and H. Herr, "A quasi-passive leg exoskeleton for load-carrying augmentation," Int. J. Hum. Robot., vol. 4, pp. 487-506, 2007. DOI: 10.1142/S0219843607001126 DOI: https://doi.org/10.1142/S0219843607001126
Z. F. Lerner, D. L. Damiano, H.-S. Park, A. J. Gravunder, and T. C. Bulea, "A robotic exoskeleton for treatment of crouch gait in children with cerebral palsy: design and initial application," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, pp. 650-659, 2017. DOI: 10.1109/TNSRE.2016.2595501 DOI: https://doi.org/10.1109/TNSRE.2016.2595501
J. Wang, X. Li, T.-H. Huang, S. Yu, Y. Li, T. Chen, A. Carriero, M. Oh-Park, and H. Su, "Comfort-centered design of a lightweight and backdrivable knee exoskeleton," IEEE Robot. Autom. Lett., vol. 3, pp. 4265-4272, 2018. DOI: 10.1109/LRA.2018.2864352 DOI: https://doi.org/10.1109/LRA.2018.2864352
A. R. Manzoori, D. Malatesta, J. Primavesi, A. Ijspeert, and M. Bouri, "Evaluation of controllers for augmentative hip exoskeletons and their effects on metabolic cost of walking: explicit versus implicit synchronization," Front. Bioeng. Biotechnol., vol. 12, 2024. DOI: 10.3389/fbioe.2024.1324587 DOI: https://doi.org/10.3389/fbioe.2024.1324587
A. Lakmazaheri, S. Song, B. B. Vuong, B. Biskner, D. M. Kado, and S. H. Collins, "Optimizing exoskeleton assistance to improve walking speed and energy economy for older adults," J. Neuroeng. Rehabil., vol. 2024, no. 1, p. 1. DOI: 10.1186/s12984-023-01287-5 DOI: https://doi.org/10.1186/s12984-023-01287-5
C. Livolsi, C. Sanz-Morere, A. Pergolini, A. Giffone, F. Giovacchini, P. Frioriksson, A. Alexandersson, C. Macchi, E. Trigili, and S. Crea, "Enhancing walking performance with a bilateral hip exoskeleton assistance in individuals with above-knee amputation," IEEE Trans. Neural Syst. Rehabil. Eng., 2024. DOI: 10.1109/TNSRE.2024.3425436 DOI: https://doi.org/10.1109/TNSRE.2024.3425436
L. Quinto, P. Pinheiro, S. B. Goncalves, I. Roupa, P. Simões, and M. Tavares da Silva, "Analysis of a passive ankle exoskeleton for reduction of metabolic costs during walking," Defence Technol., 2023. DOI: 10.1016/j.dt.2023.11.015 DOI: https://doi.org/10.1016/j.dt.2023.11.015
O. Kang, J. Yun, S. Seo, H.-M. Joe, H. Yi, and S. Lee, "A novel design of unpowered exoskeleton for loaded walking using only hip abduction torque," IEEE/ASME Trans. Mechatronics, 2023. DOI: 10.1109/TMECH.2023.3333339 DOI: https://doi.org/10.1109/TMECH.2023.3333339
D. Hu, C. Xiong, T. Wang, T. Zhou, J. Liang, and Y. Li, "Modulating energy among foot-ankle complex with an unpowered exoskeleton improves human walking economy," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 30, pp. 1961-1970, 2022. DOI: 10.1109/TNSRE.2022.3188870 DOI: https://doi.org/10.1109/TNSRE.2022.3188870
C. Wang, L. Dai, D. Shen, J. Wu, X. Wang, M. Tian, Y. Shi, and C. Su, "Design of an ankle exoskeleton that recycles energy to assist propulsion during human walking," IEEE Trans. Biomed. Eng., vol. 69, no. 3, pp. 1212-1224, Mar. 2022. DOI: 10.1109/TBME.2021.3120716
F. A. Panizzolo, E. Annese, A. Paoli, and G. Marcolin, "A single assistive profile applied by a passive hip flexion device can reduce the energy cost of walking in older adults," Appl. Sci., vol. 11, no. 6, p. 2851, 2021. DOI: 10.3390/app11062851 DOI: https://doi.org/10.3390/app11062851
G. M. Bryan, P. W. Franks, S. Song, R. Reyes, M. O'Donovan, K. Gregorczyk, and S. Collins, "Optimized hip-knee-ankle exoskeleton assistance reduces the metabolic cost of walking with worn loads," Sci. Rep., vol. 11, 2021. DOI: 10.21203/rs.3.rs-544617/v1 DOI: https://doi.org/10.21203/rs.3.rs-544617/v1
Z. Wang, X. Wu, Y. Zhang, C. Chen, S. Liu, Y. Liu, A. Peng, and Y. Ma, "A semi-active exoskeleton based on EMGs reduces muscle fatigue when squatting," Front. Neurorobot., vol. 15, 2021. DOI: 10.3389/fnbot.2021.625479 DOI: https://doi.org/10.3389/fnbot.2021.625479
M. Shepertycky, S. Burton, A. Dickson, Y.-F. Liu, and Q. Li, "Removing energy with an exoskeleton reduces the metabolic cost of walking," Sci. Rep., vol. 11, 2021. DOI: 10.1126/science.aba9947 DOI: https://doi.org/10.1126/science.aba9947
T. Zhou, C. Xiong, J. Zhang, W. Chen, and X. Huang, "Regulating metabolic energy among joints during human walking using a multiarticular unpowered exoskeleton," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 662-672, 2021. DOI: 10.1109/TNSRE.2021.3065389
P. W. Franks, G. M. Bryan, R. M. Martin, R. Reyes, A. C. Lakmazaheri, and S. H. Collins, "Comparing optimized exoskeleton assistance of the hip, knee, and ankle in single and multi-joint configurations," Wearable Technol., vol. 2, 2021. DOI: 10.1017/wtc.2021.14 DOI: https://doi.org/10.1017/wtc.2021.14
E. Etenzi, R. Borzuola, and A. M. Grabowski, "Passive-elastic knee-ankle exoskeleton reduces the metabolic cost of walking," J. Neuroeng. Rehabil., vol. 17, no. 1, 2020. DOI: 10.1186/s12984-020-00719-w DOI: https://doi.org/10.1186/s12984-020-00719-w
C. Wang, L. Dai, D. Shen, J. Wu, X. Wang, M. Tian, Y. Shi, and C. Su, "Design of an ankle exoskeleton that recycles energy to assist propulsion during human walking," IEEE Trans. Biomed. Eng., vol. 69, no. 3, pp. 1212-1224, Mar. 2022. DOI: 10.1109/TBME.2021.3120716 DOI: https://doi.org/10.1109/TBME.2021.3120716
C. Xiong, T. Zhou, L. Zhou, T. Wei, and W. Chen, "Multi-articular passive exoskeleton for reducing the metabolic cost during human walking," in Proc. Wearable Robotics Assoc. Conf. (WearRAcon), Scottsdale, AZ, USA, 2019, pp. 63-67. DOI: 10.1109/WEARRACON.2019.8719401 DOI: https://doi.org/10.1109/WEARRACON.2019.8719401
J. Kim, B. T. Quinlivan, L. A. Deprey, D. Arumukhom Revi, A. Eckert-Erdheim, P. Murphy, D. Orzel, and C. J. Walsh, "Reducing the energy cost of walking with low assistance levels through optimized hip flexion assistance from a soft exosuit," Sci. Rep., vol. 12, no. 1, p. 11004, Jun. 2022. DOI: 10.1038/s41598-022-14784-9 DOI: https://doi.org/10.1038/s41598-022-14784-9
L. Chen, C. Chen, Z. Wang, X. Ye, Y. Liu, and X. Wu, "A novel lightweight wearable soft exosuit for reducing the metabolic rate and muscle fatigue," Biosensors, vol. 11, no. 7, 2021. DOI: 10.3390/bios11070215 DOI: https://doi.org/10.3390/bios11070215
H. Barazesh and M. A. Sharbafi, "A biarticular passive exosuit to support balance control can reduce metabolic cost of walking," Bioinspir. Biomim., vol. 15, no. 3, 2020. DOI: 10.1088/1748-3190/ab70ed DOI: https://doi.org/10.1088/1748-3190/ab70ed
F. A. Panizzolo, G. M. Freisinger, N. Karavas, A. M. Eckert-Erdheim, C. Siviy, A. Long, R. A. Zifchock, M. E. LaFiandra, and C. J. Walsh, "Metabolic cost adaptations during training with a soft exosuit assisting the hip joint," Sci. Rep., vol. 9, no. 1, 2019. DOI: 10.1038/s41598-019-45914-5 DOI: https://doi.org/10.1038/s41598-019-45914-5
T. Zhou, C. Xiong, J. Zhang, W. Chen, and X. Huang, "Regulating metabolic energy among joints during human walking using a multiarticular unpowered exoskeleton," IEEE Trans. Neural Syst. Rehabil. Eng., vol. 29, pp. 662-672, 2021. DOI: 10.1109/TNSRE.2021.3065389 DOI: https://doi.org/10.1109/TNSRE.2021.3065389
J. B. Weir, "New methods for calculating metabolic rate with special reference to protein metabolism," J. Physiol., vol. 109, pp. 1-9, 1949. DOI: 10.1113/jphysiol.1949.sp004363 DOI: https://doi.org/10.1113/jphysiol.1949.sp004363
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Noor Abdul Kareem Shehab, Mahmud Rasheed Ismail

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.