Mathematical Modeling and Advanced Control of the Refinery Processes: A Review

Authors

  • Laith S. Mahmood Midland Refineries Company, Ministry of Oil, Baghdad, Iraq
  • Khalid M. Mousa Al-zobai Department of Chemical Engineering, Al Nahrain University, Baghdad, Iraq.
  • Salam K. Al-Dawery University of Nizwa, Sultanate of Oman.

DOI:

https://doi.org/10.29194/NJES.28020253

Keywords:

Modeling and advanced control, Distillation column, Model Predictive Control, Fuzzy logic control, Artificial Neural Network.

Abstract

The oil industry has a direct impact on the economic feasibility of other sectors and is considered to be the most important energy source used to turn the wheels of other industries. Therefore, it was necessary to pay attention and continuously develop this industry, to find the best modern techniques for designing, pre-commissioning and controlling process, to improve efficiency, preserve energy and achieve the highest production of costly components with the highest purity of the product. This study aims to provide a literary analysis of the stages of development and progress of the dynamics and control of the petroleum industry, in particular the distillation column, because it is multivariable with high interaction between control cycles, nonlinear behaviour and large gains. Control processes have undergone many developments and modernizations to achieve the best results. Various control methods have been used, ranging from simple proportional-integral-derivative controller (PID) to advanced control strategies such as model predictive control (MPC), multivariate model predictive control (MMPC), fuzzy logic control (FLC), quadratic dynamic matrix control (QDMC), artificial neural network control (ANN) and other advanced control techniques. The authors concluded from the review that the advanced control strategies superior than the conventional methods.

Downloads

Download data is not yet available.

Author Biography

  • Khalid M. Mousa Al-zobai, Department of Chemical Engineering, Al Nahrain University, Baghdad, Iraq.

    Prof. in Chemical Engineering Department, Al Nahrain University, Baghdad, Iraq

References

A. Wahid and R. Adi, “Modeling and Control of Multivariable Distillation Column Using Model Predictive Control Using Unisim,” Sinergi, vol. 20, no. 1, p. 14, 2016, doi: 10.22441/sinergi.2016.1.003. DOI: https://doi.org/10.22441/sinergi.2016.1.003

L. Tugashova, R. Bazhenov, U. Abdyldaeva, I. Korosteleva, and E. Muromtseva, “A simulation modeling approach used in the crude oil refining process,” in Journal of Physics: Conference Series, IOP Publishing, 2022, p. 62003. DOI: https://doi.org/10.1088/1742-6596/2373/6/062003

J. Haydary and T. Pavlík, “Steady-state and dynamic simulation of crude oil distillation using ASPEN Plus and ASPEN Dynamics,” Pet. Coal, vol. 51, no. November 2016, pp. 100–109, 2009, [Online]. Available: http://www.vurup.sk/pc/vol51_2009/issue2/pdf/pc_2_2009_haydary_014.pdf

S. Enagandula and J. B. Riggs, “Distillation control configuration selection based on product variability prediction,” Control Eng. Pract., vol. 14, no. 7, pp. 743–755, 2006, doi: 10.1016/j.conengprac.2005.03.011. DOI: https://doi.org/10.1016/j.conengprac.2005.03.011

P. Agachi, Z. Nagy, V. Cristea, and A. Imre-Lucaci, Model Based Control - Case Studies in Process Engineering. 2006. doi: 10.1002/9783527609475. DOI: https://doi.org/10.1002/9783527609475

B. Lipták, “Distillation control and optimization, part 3,” vol. 20, pp. 49–54, Apr. 2007.

V. K. P. Domingos, N. Manuel, C. M. M. Faria, F. R. Cangue, and A. A. C. Barros, “Numerical simulation of oil refining tower,” Stud. Eng. Exact Sci., vol. 5, no. 2, pp. e6113–e6113, 2024. DOI: https://doi.org/10.54021/seesv5n2-052

C. R. Sergeant, “An Introduction to Mathematical Modeling,” J. Oper. Res. Soc., vol. 30, no. 4, pp. 394–395, 1979, doi: 10.1057/jors.1979.92. DOI: https://doi.org/10.1057/jors.1979.92

W. L. Nelson, “Petroleum Refinery Engineering, W.L Nelson- 4th Edition.pdf,” 1969.

A. Maro, Naufal Wahid and Syafiq, “Multi Input Multi Output (MIMO) Control 2x2 at Vacuum Distillation Unit for LVGO, MVGO, and HVGO Production,” E3S Web Conf., vol. 67, pp. 1–5, 2018, doi: 10.1051/e3sconf/20186703012. DOI: https://doi.org/10.1051/e3sconf/20186703012

J. B. Riggs, “Improve distillation column control,” Chem. Eng. Prog., vol. 94, pp. 31–47, 1998, [Online]. Available: https://api.semanticscholar.org/CorpusID:114152610

R. A. Koort, “Separation technologies: Advances and priorities,” Humphrey (JL) and Associates, Austin, TX (USA), 1991.

D. D. Gonçalves, F. G. Martins, and S. F. De Azevedo, “Dynamic simulation and control: application to atmospheric distillation unit of crude oil refinery,” Comput. Aided Chem. Eng., vol. 28, 2010.

B. Mahmoudzadeh and M. Masoumi, “Dynamic simulation and control of a distillation column using Effective Relative Gain Array,” World Acad. Sci. Eng. Technol., vol. 76, Apr. 2011.

C. Pǎtruţ, C. S. Bîldea, I. Liţǎ, and A. A. Kiss, “Cyclic distillation - Design, control and applications,” Sep. Purif. Technol., vol. 125, pp. 326–336, 2014, doi: 10.1016/j.seppur.2014.02.006. DOI: https://doi.org/10.1016/j.seppur.2014.02.006

L. Cong, L. Chang, and X. Liu, “Nonlinear-wave based analysis and modeling of heat integrated distillation column,” Sep. Purif. Technol., vol. 150, pp. 119–131, 2015, doi: 10.1016/j.seppur.2015.06.038. DOI: https://doi.org/10.1016/j.seppur.2015.06.038

A. Dhanral and N. Devarajan, “Decentralized PI controller design for non linear multivariable systems based on ideal decoupler,” J. Theor. Appl. Inf. Technol., vol. 64, pp. 568–574, Jun. 2014.

V. D. Hajare and B. M. Patre, “Decentralized PID controller for TITO systems using characteristic ratio assignment with an experimental application,” ISA Trans., vol. 59, pp. 385–397, 2015, doi: 10.1016/j.isatra.2015.10.008. DOI: https://doi.org/10.1016/j.isatra.2015.10.008

B. Tyreus and W. L. Luyben, “Control of a Binary Distillation Column with Sidestream Drawoff,” Ind. Eng. Chem. Process Des. Dev., vol. 14, no. 4, pp. 391–398, 1975, doi: 10.1021/i260056a007. DOI: https://doi.org/10.1021/i260056a007

B. A. Ogunnaike, J. P. Lemaire, M. Morari, and W. H. Ray, “Advanced multivariable control of a pilot‐plant distillation column,” AIChE J., vol. 29, no. 4, pp. 632–640, 1983, doi: 10.1002/aic.690290417. DOI: https://doi.org/10.1002/aic.690290417

B. A. Ogunnaike, Control systems design for multivariable systems with multiple time delays. The University of Wisconsin-Madison, 1981.

I. M. Alatlql and Wihi. L. Luyben, “Control of a Complex Sidestream Column/Stripper Distillation Configuration,” Ind. Eng. Chem. Process Des. Dev., vol. 25, no. 3, pp. 762–767, 1986, doi: 10.1021/i200034a028. DOI: https://doi.org/10.1021/i200034a028

M. Han and S. won Park, “Control of Complex Distillation Configurations Using a Nonlinear Wave Theory,” IFAC Proc. Vol., vol. 27, no. 2, pp. 419–425, 1994, doi: 10.1016/s1474-6670(17)48187-0. DOI: https://doi.org/10.1016/S1474-6670(17)48187-0

M. Han and S. Park, “Control of High-Purity Distillation Column Using a Nonlinear Wave Theory,” vol. 39, no. 5, 1993. DOI: https://doi.org/10.1002/aic.690390507

I. M. Alatiqi, “Practical Procedure for Multivariable Control Systems Design.,” IFAC Proc. Ser., vol. 19, no. 1, pp. 115–120, 1986, doi: 10.1016/s1474-6670(17)59875-4. DOI: https://doi.org/10.1016/S1474-6670(17)59875-4

A. Koggersbøl and S. B. Jørgensen, “Control Structures for a Sidestream Distillation Column Separating a Ternary Mixture,” IFAC Proc. Vol., vol. 25, no. 5, pp. 213–218, 1992, doi: 10.1016/s1474-6670(17)50994-5. DOI: https://doi.org/10.1016/S1474-6670(17)50994-5

C. Remberg, M. Flender, G. Wozny, G. Fieg, and F. N. Fett, “Controllability of Sidestream Distillation Columns,” IFAC Proc. Vol., vol. 27, no. 7, pp. 165–171, 1994, doi: 10.1016/s1474-6670(17)47981-x. DOI: https://doi.org/10.1016/S1474-6670(17)47981-X

V. Gokhale, H. Munsif, and J. B. Riggs, “Comparison of Advanced Distillation Control Techniques,” IFAC Proc. Vol., vol. 27, no. 2, pp. 351–356, 1994, doi: 10.1016/s1474-6670(17)48176-6. DOI: https://doi.org/10.1016/S1474-6670(17)48176-6

J. J. Macias, P. Angelov, and X. Zhou, “A method for predicting quality of the crude oil distillation,” Proc. 2006 Int. Symp. Evol. Fuzzy Syst. EFS’06, vol. 00, pp. 214–220, 2006, doi: 10.1109/ISEFS.2006.251167. DOI: https://doi.org/10.1109/ISEFS.2006.251167

A. Nevado, L. M. Oñate, J. Sanz, R. Alcalde, and K. Slaven, “Temperature optimization of a naphtha splitter unit,” Adv. Electr. Comput. Eng., vol. 8, no. 1, pp. 7–16, 2008, doi: 10.4316/aece.2008.01002. DOI: https://doi.org/10.4316/aece.2008.01002

A. Wahid and A. Ahmad, “Multivariable Control of A 4x4 Process in Distillation Column,” TeknoSim, no. Oktober, pp. 368–372, 2008.

A. Ahmad and A. Wahid, “Application of Model Predictive Control (Mpc) Tuning Strategy in Multivariable Control of Distillation Column,” Reaktor, vol. 11, no. 2, p. 66, 2007, doi: 10.14710/reaktor.11.2.66-70. DOI: https://doi.org/10.14710/reaktor.11.2.66-70

V. T. Minh and A. M. Abdul Rani, “Modeling and control of distillation column in a petroleum process,” Math. Probl. Eng., vol. 2009, 2009, doi: 10.1155/2009/404702. DOI: https://doi.org/10.1155/2009/404702

G. Valencia Palomo, F. R. López Estrada, C. M. Astorga Zaragoza, D. Juárez Romero, and F. Rivas Cruz, “Multivariable predictive control with constraint handling for distillation columns,” Amca, pp. 1–6, 2007.

C. R. Porfírio and D. Odloak, “Optimizing model predictive control of an industrial distillation column,” Control Eng. Pract., vol. 19, no. 10, pp. 1137–1146, 2011, doi: 10.1016/j.conengprac.2011.06.003. DOI: https://doi.org/10.1016/j.conengprac.2011.06.003

K. Rarnesh, S. R. Abd Shukor, and N. Aziz, Nonlinear model predictive control of a distillation column using NARX model, vol. 27, no. C. Elsevier Inc., 2009. doi: 10.1016/S1570-7946(09)70653-4. DOI: https://doi.org/10.1016/S1570-7946(09)70653-4

K. Mousa, Simulation on Dynamics and Control of Distillation Column. 2010.

R. Sivakumar, K. S. Manic, V. Nerthiga, R. Akila, and K. Balu, “Application of Fuzzy Model Predictive Control in Multivariable Control of Distillation Column,” Int. J. Chem. Eng. Appl., vol. 1, no. 1, pp. 38–42, 2010, doi: 10.7763/ijcea.2010.v1.7. DOI: https://doi.org/10.7763/IJCEA.2010.V1.7

Z. Zou, D. Yu, Z. Hu, N. Guo, L. Yu, and W. Feng, “State space modeling and predictive control of a binary batch distillation column,” Proc. World Congr. Intell. Control Autom., vol. 2, pp. 6252–6256, 2006, doi: 10.1109/WCICA.2006.1714285. DOI: https://doi.org/10.1109/WCICA.2006.1714285

S. Kemaloǧlu, E. Ö. Kuzu, and D. G. Ö. Çetin, “Model predictive control of a crude distillation unit an industrial application,” IFAC Proc. Vol., vol. 7, no. PART 1, pp. 880–885, 2009, doi: 10.3182/20090712-4-tr-2008.00144. DOI: https://doi.org/10.3182/20090712-4-TR-2008.00144

M. Annergren, D. Kauven, C. A. Larsson, M. G. Potters, Q. Tran, and L. Özkan, On the way to autonomous model predictive control: A distillation column simulation study, vol. 46, no. 32 PART 1. IFAC, 2013. doi: 10.3182/20131218-3-IN-2045.00057. DOI: https://doi.org/10.3182/20131218-3-IN-2045.00057

A. Giwa and S. Karacan, “State space model predictive control of a reactive distillation process,” Int. J. Pure Appl. Sci. Technol., vol. 12, no. 2, pp. 1–14, 2012.

J. Drgoňa, M. Klaučo, R. Valo, J. Bendžala, and M. Fikar, “Model identification and predictive control of a laboratory binary distillation column,” Proc. 2015 20th Int. Conf. Process Control. PC 2015, vol. 2015-July, pp. 357–362, 2015, doi: 10.1109/PC.2015.7169989. DOI: https://doi.org/10.1109/PC.2015.7169989

P. A. Martin, D. Odloak, and F. Kassab, “Robust model predictive control of a pilot plant distillation column,” Control Eng. Pract., vol. 21, no. 3, pp. 231–241, 2013, doi: 10.1016/j.conengprac.2012.10.004. DOI: https://doi.org/10.1016/j.conengprac.2012.10.004

M. Morari and J. C. Doyles, “Robust Control of Ill-Conditioned Plants: High-Purity Distillation,” IEEE Trans. Automat. Contr., vol. 33, no. 12, pp. 1092–1105, 1988, doi: 10.1109/9.14431. DOI: https://doi.org/10.1109/9.14431

I. Morsi and L. M. El-Din, “SCADA system for oil refinery control,” Meas. J. Int. Meas. Confed., vol. 47, no. 1, pp. 5–13, 2014, doi: 10.1016/j.measurement.2013.08.032. DOI: https://doi.org/10.1016/j.measurement.2013.08.032

A. Raimondi, A. Favela, L. E. Garza, A. Vargas, and R. Morales-Menendez, Design of an adaptive predictive control strategy for a MIMO process, vol. 46, no. 2. IFAC, 2013. doi: 10.3182/20130204-3-FR-2033.00035. DOI: https://doi.org/10.3182/20130204-3-FR-2033.00035

A. Raimondi, A. Favela-Contreras, F. Beltrán-Carbajal, A. Piñón-Rubio, and J. Luis de la Peña-Elizondo, “Design of an adaptive predictive control strategy for crude oil atmospheric distillation process,” Control Eng. Pract., vol. 34, pp. 39–48, 2015, doi: 10.1016/j.conengprac.2014.09.014. DOI: https://doi.org/10.1016/j.conengprac.2014.09.014

D. F. Ahmed and M. Y. Nawaf, “Design of Multivariable Control System of a Distillation Tower via Simulation Using MATLAB/Simulink,” Tikrit J. Eng. Sci., vol. 26, no. 3, pp. 51–61, 2019, doi: 10.25130/tjes.26.3.07. DOI: https://doi.org/10.25130/tjes.26.3.07

D. F. Ahmed and M. Y. Nawaf, “Simulation Study in Control System Configuration of a Distillation Column,” J. Chem. Eng. Process Technol., vol. 09, no. 04, 2018, doi: 10.4172/2157-7048.1000388. DOI: https://doi.org/10.4172/2157-7048.1000388

I. M. L. Pataro, M. V. A. Da Costa, and B. Joseph, “Advanced simulation and analysis of MIMO dead time compensator and predictive controller for ethanol distillation process,” IFAC-PapersOnLine, vol. 52, no. 1, pp. 160–165, 2019, doi: 10.1016/j.ifacol.2019.06.054. DOI: https://doi.org/10.1016/j.ifacol.2019.06.054

Y. Shin, R. Smith, and S. Hwang, “Development of model predictive control system using an artificial neural network: A case study with a distillation column,” J. Clean. Prod., vol. 277, p. 124124, 2020, doi: 10.1016/j.jclepro.2020.124124. DOI: https://doi.org/10.1016/j.jclepro.2020.124124

A. Wahid and Z. H. Brillianto, “Multivariable model predictive control (4x4) of methanol-water separation in dimethyl ether production,” AIP Conf. Proc., vol. 2255, no. September, 2020, doi: 10.1063/5.0013764. DOI: https://doi.org/10.1063/5.0013764

A. Wahid, “Distillation Column Control using Multiple Model Predictive Control based on Representative Model Predictive Control Method,” no. October, 2015.

A. Wahid and A. Ahmad, “Improved multi-model predictive control to reject very large disturbances on a distillation column,” Int. J. Technol., vol. 7, no. 6, pp. 962–971, 2016, doi: 10.14716/ijtech.v7i6.3524. DOI: https://doi.org/10.14716/ijtech.v7i6.3524

A. Al-Jlibawi, M. L. Bin Othman, M. S. Al-Huseiny, I. Bin Aris, and S. Bahari, “Efficient soft sensor modelling for advanced manufacturing systems by applying hybrid intelligent soft computing techniques,” Int. J. Simul. Syst. Sci. Technol., vol. 19, no. 3, pp. 15.1-15.7, 2018, doi: 10.5013/IJSSST.a.19.03.15. DOI: https://doi.org/10.5013/IJSSST.a.19.03.15

A. Al-Jlibawi, M. L. Bin Othman, M. S. Al-Huseiny, I. Bin Aris, and S. Bahari, “The efficiency of soft sensors modelling in advanced control systems in oil refinery through the application of hybrid intelligent data mining techniques,” J. Phys. Conf. Ser., vol. 1529, no. 5, pp. 0–12, 2020, doi: 10.1088/1742-6596/1529/5/052049. DOI: https://doi.org/10.1088/1742-6596/1529/5/052049

A. Hussein Humod Al Jlibawi, M. L. Othman, A. Ishak, B. S. Moh Noor, and A. H. M. S. Sajitt, “Optimization of Distribution Control System in Oil Refinery by Applying Hybrid Machine Learning Techniques,” IEEE Access, vol. 10, pp. 3890–3903, 2022, doi: 10.1109/ACCESS.2021.3134931. DOI: https://doi.org/10.1109/ACCESS.2021.3134931

F. Al Kalbani and J. Zhang, “Inferential Composition Control of a Distillation Column Using Active Disturbance Rejection Control with Soft Sensors,” Sensors, vol. 23, no. 2, p. 1019, 2023. DOI: https://doi.org/10.3390/s23021019

A. H. Elsheikh, E. M. S. El-Said, M. Abd Elaziz, M. Fujii, and H. R. El-Tahan, “Water distillation tower: Experimental investigation, economic assessment, and performance prediction using optimized machine-learning model,” J. Clean. Prod., vol. 388, p. 135896, 2023. DOI: https://doi.org/10.1016/j.jclepro.2023.135896

C. Li and C. Wang, “Application of Artificial Neural Network in the Control and Optimization of Distillation Tower,” arXiv Prepr. arXiv2107.13713, 2021.

N. Zhao and J. Lu, “Review of Neural Network Algorithm and its Application in Temperature Control of Distillation Tower,” J. Eng. Res. Reports, no. February, pp. 50–61, 2021, doi: 10.9734/jerr/2021/v20i417294. DOI: https://doi.org/10.9734/jerr/2021/v20i417294

A. A. de Morais Júnior, J. C. Finiz Filho, L. O. A. Rojas, and R. P. Brito, “Inferential control strategies using neural soft sensor in a high purity distillation column,” Cad. Pedagógico, vol. 21, no. 5, pp. e4402–e4402, 2024. DOI: https://doi.org/10.54033/cadpedv21n5-160

et al Woolf, Peter, Chemical process dynamics and controls, vol. 27, no. 2. 2024. [Online]. Available: https://eng.libretexts.org/Bookshelves/Industrial_and_Systems_Engineering/Chemical_Process_Dynamics_and_Controls_(Woolf)

E. R. Baliyan and Akram Taher Ahmed Ali Al Zubidai, “A Studt on Mathmatical Modelling of Distillation Column in A Petroleum Process", 2020.

B. Bequette, Process Control, Modeling, Design, and Simulation. 2003. [Online]. Available: https://elmoukrie.com/wp-content/uploads/2022/06/process-control-modeling-design-and-simulation-b.-wayne-bequette-z-lib.org_.pdf

P. Kurniawati, Distillation Control Optimization and Tuning Fundamentals and Strategies, vol. 01. 2017.

D. R. Coughanowr and S. E. LeBlanc, “Process systems analysis and control,” McGraw-Hill, p. 630, 2009, [Online]. Available: http://www.slideshare.net/accelerate786/process-systems-analysis-and-control-third-edition

M. L. Luyben and W. L. Luyben, “Essentials of Process Control McGraw-Hill Chemical Engineering Series,” Essentials Process Control, p. 584, 1997.

William_L_Luyben, “Process Modelling Stimulation and Control,” 1996.

R. Rengaswamy, B. Srinivasan, and N. P. Bhatt, Process Control Fundamentals, vol. 11, no. 1. 2020. [Online]. Available: http://scioteca.caf.com/bitstream/handle/123456789/1091/RED2017-Eng-8ene.pdf?sequence=12&isAllowed=y%0Ahttp://dx.doi.org/10.1016/j.regsciurbeco.2008.06.005%0Ahttps://www.researchgate.net/publication/305320484_Sistem Pembetungan Terpusat Strategi Melestari.

R. Kawathekar and J. B. Riggs, “Nonlinear model predictive control of a reactive distillation column,” Control Eng. Pract., vol. 15, no. 2, pp. 231–239, 2007, doi: 10.1016/j.conengprac.2006.07.004. DOI: https://doi.org/10.1016/j.conengprac.2006.07.004

R. G. Silva and W. H. Kwong, “Nonlinear model predictive control of chemical processes,” Brazilian J. Chem. Eng., vol. 16, no. 1, pp. 83–99, 1999. DOI: https://doi.org/10.1590/S0104-66321999000100008

M. V. Pavan Kumar and N. Kaistha, “Decentralized control of a kinetically controlled ideal reactive distillation column,” Chem. Eng. Sci., vol. 63, no. 1, pp. 228–243, 2008, doi: 10.1016/j.ces.2007.09.029. DOI: https://doi.org/10.1016/j.ces.2007.09.029

M. Alhajeri and M. Soroush, “Tuning guidelines for model-predictive control,” Ind. Eng. Chem. Res., vol. 59, no. 10, pp. 4177–4191, 2020. DOI: https://doi.org/10.1021/acs.iecr.9b05931

B. H. Bisowarno and Y. C. Tian, “Adaptive control of an ETBE reactive distillation column,” J. Chem. Eng. Japan, vol. 37, no. 2, pp. 210–216, 2004, doi: 10.1252/jcej.37.210. DOI: https://doi.org/10.1252/jcej.37.210

J. Love, Process Automation Handbook. 2007. doi: 10.1007/978-1-84628-282-9. DOI: https://doi.org/10.1007/978-1-84628-282-9

F. G. Shinskey, “Process control systems,” 1996.

and M. R. K. M. Passino, S. Yurkovich, Fuzzy control. 2009. doi: 10.1109/IEMBS.2009.5332539. DOI: https://doi.org/10.1109/IEMBS.2009.5332539

Z. E. Dawood, “Study on Control of CSTR Using Intelligent Strategies,” Al-Nahrain J. Eng. Sci., vol. 18, no. 2, pp. 294–303, 2015.

A. Zilouchian and M. Jamshidi, Intelligent Control Systems Using Soft Computing Methodologies. 2001. doi: 10.1201/9781420058147. DOI: https://doi.org/10.1201/9781420058147

D. F. Ahmed, “Fuzzy logic Control of Chemical Processes,” Eng. Technol. J., vol. 33, no. 1 Part (A) Engineering, 2015. DOI: https://doi.org/10.30684/etj.33.1A.1

K. M. M. Al-zobai and D. S. Makki, “Conventional and Fuzzy Control for First Order Plus Dead Time Process Using Different Tuning Methods,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 12104. DOI: https://doi.org/10.1088/1757-899X/1094/1/012104

E. Trillas and L. Eciolaza, “Fuzzy logic,” Springer Int. Publ. DOI, vol. 10, pp. 973–978, 2015. DOI: https://doi.org/10.1007/978-3-319-14203-6

P. Hájek, Metamathematics of fuzzy logic, vol. 4. Springer Science & Business Media, 2013.

L. A. Zadeh, “Fuzzy sets,” Inf. Control, vol. 8, no. 3, pp. 338–353, 1965. DOI: https://doi.org/10.1016/S0019-9958(65)90241-X

L. A. Zadeh, “A rationale for fuzzy control,” in Fuzzy Sets, Fuzzy Logic, And Fuzzy Systems: Selected Papers by Lotfi A Zadeh, World Scientific, 1996, pp. 123–126. DOI: https://doi.org/10.1142/9789814261302_0009

L. A. Zadeh, “Making computers think like people [fuzzy set theory],” IEEE Spectr., vol. 21, no. 8, pp. 26–32, 1984. DOI: https://doi.org/10.1109/MSPEC.1984.6370431

S. N. Vassilyev, A. Y. Kelina, Y. I. Kudinov, and F. F. Pashchenko, “Intelligent control systems,” Procedia Comput. Sci., vol. 103, pp. 623–628, 2017. DOI: https://doi.org/10.1016/j.procs.2017.01.088

M. Sugeno, Industrial applications of fuzzy control. Elsevier Science Inc., 1985.

A. L. Ralescu, Applied research in fuzzy technology: three years of research at the Laboratory for International Fuzzy Engineering (LIFE), Yokohama, Japan, vol. 1. Springer Science & Business Media, 2012.

K. Hirota, Industrial applications of fuzzy technology. Springer Science & Business Media, 2012.

C. Urrea, J. Kern, and J. Alvarado, “Design and evaluation of a new fuzzy control algorithm applied to a manipulator robot,” Appl. Sci., vol. 10, no. 21, p. 7482, 2020. DOI: https://doi.org/10.3390/app10217482

A. Nedungadi, Application of fuzzy logic to solve the robot inverse kinematic problem. SME, 1991.

D. F. Ahmed and I. H. Khalaf, “Fuzzy logic control of a catalytic naphtha unit,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 12147. DOI: https://doi.org/10.1088/1757-899X/1067/1/012147

P. N. Josiah, I. J. Otaraku, and B. O. Evbuomwan, “Servo and Regulatory Response of an Industrial Fluid Catalytic Cracking (FCC) Unit under Fuzzy Logic Supervisory Control,” Eng. Technol. J., vol. 41, no. 9, pp. 1139–1151, 2023. DOI: https://doi.org/10.30684/etj.2023.139485.1432

S. Yoshida and N. Wakabayashi, “A fuzzy logic controller for a rigid disk drive,” IEEE Control Syst. Mag., vol. 12, no. 3, pp. 65–70, 1992. DOI: https://doi.org/10.1109/37.165519

R. R. Yager and L. A. Zadeh, An introduction to fuzzy logic applications in intelligent systems, vol. 165. Springer Science & Business Media, 2012.

B. Kosko, Fuzzy engineering. Prentice-Hall, Inc., 1996.

A. Costa, A. De Gloria, P. Faraboschi, A. Pagni, and G. Rizzotto, “Hardware solutions for fuzzy control,” Proc. IEEE, vol. 83, no. 3, pp. 422–434, 1995. DOI: https://doi.org/10.1109/5.364488

S. Hirsch, “Soft Computing Fuzzy Logic Neural Networks And Distributed Artificial Intelligence,” Soft Comput., vol. 1, p. 4, 2016.

H. Takagi, “Cooperative System of Neural Networks and Fuzzy Logic and its Application to Consumer Peoducts,” Ind. Appl. Fuzzy Control Intell. Syst., 1994.

H.-J. Zimmermann, Fuzzy set theory—and its applications. Springer Science & Business Media, 2011.

H. Singh et al., “Real-life applications of fuzzy logic: Advances in fuzzy systems,” Adv. Fuzzy Syst., vol. 2013, pp. 1–3, 2013. DOI: https://doi.org/10.1155/2013/581879

L. Li and D. Qiu, “On the state minimization of fuzzy automata,” IEEE Trans. Fuzzy Syst., vol. 23, no. 2, pp. 434–443, 2014. DOI: https://doi.org/10.1109/TFUZZ.2014.2315620

R. Diaz-Robainas, A. Zilouchian, and M. Huang, “Fuzzy identification on finite training-set with known features,” Int. J. Autom. Soft Comput..

F. Huang, A. Sava, K. H. Adjallah, and Z. Wang, “Fuzzy model identification based on mixture distribution analysis for bearings remaining useful life estimation using small training data set,” Mech. Syst. Signal Process., vol. 148, p. 107173, 2021, doi: 10.1016/j.ymssp.2020.107173. DOI: https://doi.org/10.1016/j.ymssp.2020.107173

H. Wang and Y. Chen, “Application of artificial neural networks in chemical process control,” Asian J. Res. Comput. Sci., vol. 14, no. 1, pp. 22–37, 2022. DOI: https://doi.org/10.9734/ajrcos/2022/v14i130325

D. F. Ahmed, “Artificial neural network control of chemical processes,” Eng. Tech. J., vol. 32, 2014. DOI: https://doi.org/10.30684/etj.32.1A.14

E. A. Jalee and K. Aparna, “Neuro-fuzzy Soft Sensor Estimator for Benzene Toluene Distillation Column,” Procedia Technol., vol. 25, no. Raerest, pp. 92–99, 2016, doi: 10.1016/j.protcy.2016.08.085. DOI: https://doi.org/10.1016/j.protcy.2016.08.085

A. K. Singh, B. Tyagi, and V. Kumar, “Classical and neural network-based approach of model predictive control for binary continuous distillation column,” Chem. Prod. Process Model., vol. 9, no. 1, pp. 71–87, 2014, doi: 10.1515/cppm-2013-0013. DOI: https://doi.org/10.1515/cppm-2013-0013

T. R. Biyanto, B. L. Widjiantoro, A. A. Jabal, and T. Budiati, “Artificial neural network based modeling and controlling of distillation column system,” Int. J. Eng. Sci. Technol., vol. 2, no. 6, pp. 177–188, 2011, doi: 10.4314/ijest.v2i6.63709. DOI: https://doi.org/10.4314/ijest.v2i6.63709

D. F. Ahmed and Z. A. Khalaf, “Artificial neural network control of a multiple effect evaporators via simulation,” in IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2021, p. 12004. DOI: https://doi.org/10.1088/1757-899X/1094/1/012004

H. Wang and R. Mo, “Review of neural network algorithm and its application in reactive distillation,” Asian J. Chem. Sci., vol. 9, no. 3, pp. 20–29, 2021. DOI: https://doi.org/10.9734/ajocs/2021/v9i319073

Downloads

Published

19-07-2025

How to Cite

[1]
L. S. Mahmood, K. Alzobai, and S. K. Al-Dawery, “Mathematical Modeling and Advanced Control of the Refinery Processes: A Review”, NJES, vol. 28, no. 2, pp. 253–265, Jul. 2025, doi: 10.29194/NJES.28020253.

Similar Articles

51-60 of 189

You may also start an advanced similarity search for this article.