Schiff-Base Thiadiazole-Modified Hydrogels: A Comprehensive Review of Biomedical Applications

Authors

  • Safa Muslah Department of Chemistry, College of Science, University of Al-Nahrain
  • Khalid Zainulabdeen Department of Chemistry, College of Science, University of Al-Nahrain
  • Emad Yousif Department of Chemistry, College of Science, University of Al-Nahrain
  • Safaa Mohamed Department of Chemistry, College of Basic Education, Al Shirqat, Tikrit University, Tikrit, Iraq
  • Nany Hairunisa Department of Occupational Medicine, Faculty of Medicine, Universitas Trisakti, Jakarta, IndonesiaDepartment of Occupational Medicine, Faculty of Medicine, Universitas Trisakti, Jakarta, Indonesia
  • Amra Bratovcic Department of Physical Chemistry and Electrochemistry, Faculty of Technology, University of Tuzla, Tuzla, Bosnia and Herzegovina
  • Amamer Redwan Department of Chemistry, Faculty of Science, Bani Waleed University, Bani Waleed, Libya

DOI:

https://doi.org/10.29194/NJES.28030323

Keywords:

Hydrogels, Schiff-Base, Thiadiazole, Biomedical Application

Abstract

Hydrogels are among the most versatile material classes used in biomedical applications. The material is of considerable interest in various fields of medicine due to its excellent features, such as high-water content, biocompatibility, and adjustable mechanical properties. The highlighted study thoroughly reviews Schiff-base thiadiazole-modified hydrogels as a novel functional material class, emphasizing their applicability in medical science. The addition of the Schiff-base and free thiazole groups to the hydrogel matrix introduces new antimicrobial activity, drug delivery, and bioadhesive attributes. An elaborate description of the methods employed to copolymerize thermoresponsive hydrogels with carbazole of thiadiazole as a binding group through free radical polymerization and visible light initiation is given under the first step of this general approach. The section on these hydrogels' physical and chemical properties was then added with a bias on morphological characterization, water uptake studies, and mechanical properties of the materials. After that, the discussion on more applications commenced, and among these, the following sections study them in the field of life-saving biomedical devices such as wound healing, tissue engineering, delivery of drugs, and biosensing prepared biosensing. A key emphasis is given to those interaction modes between Schiff-base thiadiazole groups and the biological systems that fulfil the hydrogels' healing mechanisms. These interaction modes, which include [specific modes], play a crucial role in the hydrogels' healing mechanism. The mentioned scholarship, in addition, dwells on the issues and barriers of such materials and gives thorough and valid judgements about the present and future of the matter. This review and the hard evaluation provide a thorough insight into Schiff-base thiadiazole-modified hydrogels' transformative impacts across the entire biomedicine area. A new approach is achieved by this review, in which the audience is made conscious and fully informed by presenting the most recent discoveries concerning the potential of Schiff-base thiadiazole-modified hydrogels to bring about innovative biomedical applications.

Downloads

Download data is not yet available.

Author Biography

  • Emad Yousif, Department of Chemistry, College of Science, University of Al-Nahrain

    Department of Chemistry, College of Science, University of Al-Nahrain

References

J. Xu, Y. Liu, and S. Hsu, “Hydrogels based on Schiff base linkages for biomedical applications,” Molecules, vol. 24, no. 16, p. 3005, Aug. 2019, doi: 10.3390/molecules24163005. DOI: https://doi.org/10.3390/molecules24163005

P. Innocenzi, “Overview of the sol–gel process,” in Springer Handbook of Aerogels, Cham: Springer International Publishing, 2023, pp. 53–69, doi: 10.1007/978-3-030-27322-4_2. DOI: https://doi.org/10.1007/978-3-030-27322-4_2

T. Takei, R. Yoshihara, S. Danjo, Y. Fukuhara, C. Evans, R. Tomimatsu, and M. Yoshida, “Hydrophobically-modified gelatin hydrogel as a carrier for charged hydrophilic drugs and hydrophobic drugs,” Int. J. Biol. Macromol., vol. 149, pp. 140–147, Jan. 2020, doi: 10.1016/j.ijbiomac.2020.01.227. DOI: https://doi.org/10.1016/j.ijbiomac.2020.01.227

S. Ghosh, S. Ghosh, H. Sharma, R. Bhaskar, S. S. Han, and J. K. Sinha, “Harnessing the power of biological macromolecules in hydrogels for controlled drug release in the central nervous system: A review,” Int. J. Biol. Macromol., vol. 254, p. 127708, Jan. 2024, doi: 10.1016/j.ijbiomac.2023.127708. DOI: https://doi.org/10.1016/j.ijbiomac.2023.127708

J. M. Bemmelen, “Der Hydrogel und das kristallinische Hydrat des Kupferoxydes,” Z. Chem. Ind. Kolloide, vol. 1, no. 7, pp. 213–214, 1907, doi: 10.1007/BF01830147. DOI: https://doi.org/10.1007/BF01830147

P. Shrivastava, N. Vishwakarma, L. Gautam, and S. P. Vyas, “Magnetically responsive polymeric gels and elastomeric system(s) for drug delivery,” in Smart Polymeric Nano-Constructs in Drug Delivery, Elsevier, 2023, pp. 129–150, doi: 10.1016/b978-0-323-91248-8.00012-x. DOI: https://doi.org/10.1016/B978-0-323-91248-8.00012-X

G. de Souza Hassemer, R. Colet, R. N. de Melo, B. Fischer, Y. H. Lin, A. Junges, and E. Valduga, “Production of poly(3-hydroxybutyrate) (P(3HB)) from different agroindustry byproducts by Bacillus megaterium,” Biointerface Res. Appl. Chem., vol. 11, pp. 14278–14289, 2021, doi: 10.33263/BRIAC116.1427814289. DOI: https://doi.org/10.33263/BRIAC116.1427814289

S. Koltzenburg, M. Maskos, and O. Nuyken, Polymer Chemistry, 2nd ed., Springer Nature, 2023, doi: 10.1007/978-3-662-64929-9. DOI: https://doi.org/10.1007/978-3-662-64929-9

M. Gorbunova, A. Ovcharuk, and L. Lemkina, “Biocide physically cross-linked hydrogels based on carrageenan and guanidinium polyampholytes for wound healing applications,” Int. J. Biol. Macromol., vol. 278, p. 134948, 2024. [DOI not yet available] DOI: https://doi.org/10.1016/j.ijbiomac.2024.134948

E. M. Ahmed, “Hydrogel: Preparation, characterization, and applications: A review,” J. Adv. Res., vol. 6, no. 2, pp. 105–121, Mar. 2015, doi: 10.1016/j.jare.2013.07.006. DOI: https://doi.org/10.1016/j.jare.2013.07.006

P. M. Kharkar, K. L. Kiick, and A. M. Kloxin, “Designing degradable hydrogels for orthogonal control of cell microenvironments,” Chem. Soc. Rev., vol. 42, no. 17, pp. 7335–7372, Sep. 2013, doi: 10.1039/c3cs60040h. DOI: https://doi.org/10.1039/C3CS60040H

K. H. Jeong, D. Park, and Y. C. Lee, “Polymer-based hydrogel scaffolds for skin tissue engineering applications: A mini-review,” J. Polym. Res., vol. 24, no. 7, p. 112, Jul. 2017, doi: 10.1007/s10965-017-1278-4. DOI: https://doi.org/10.1007/s10965-017-1278-4

W. Zhao, X. Jin, Y. Cong, Y. Liu, and J. Fu, “Degradable natural polymer hydrogels for articular cartilage tissue engineering,” J. Chem. Technol. Biotechnol., vol. 88, no. 3, pp. 327–339, Mar. 2013, doi: 10.1002/jctb.3970. DOI: https://doi.org/10.1002/jctb.3970

S. H. Mohamed, E. Yousif, A. S. Hameed, D. S. Ahmed, K. Zainulabdeen, H. M. Saleh, and M. Bufaroosha, “Morphology and performance of polyvinyl chloride thin films doped with polyorganosilanes against photodegradation,” Silicon, vol. 15, no. 9, pp. 4027–4038, Sep. 2023, doi: 10.1007/s12633-023-02317-6. DOI: https://doi.org/10.1007/s12633-023-02317-6

S. Tyagi, N. R. Rao, A. Pathak, A. Maurya, and I. Ali, “Novel approaches for colon site-specific drug delivery: An overview of recent advancements,” J. Pharm. Negative Results, pp. 4479–4495, 2022. [DOI not available] DOI: https://doi.org/10.47750/pnr.2022.13.S08.575

P. Mankotia, K. Sharma, V. Sharma, and V. Kumar, “Interpenetrating polymer networks in sustained drug-releasing,” in Adv. Biopolymeric Syst. Drug Delivery, Springer, 2020, pp. 195–232, doi: 10.1007/978-3-030-46923-8_9. DOI: https://doi.org/10.1007/978-3-030-46923-8_9

M. C. Hacker and A. G. Mikos, “Synthetic polymers,” in Principles of Regenerative Medicine, 2nd ed., Academic Press, 2011, pp. 587–622, doi: 10.1016/B978-0-12-381422-7.10033-1. DOI: https://doi.org/10.1016/B978-0-12-381422-7.10033-1

L. Weng, X. Chen, and W. Chen, “Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan,” Biomacromolecules, vol. 8, no. 4, pp. 1109–1115, Apr. 2007, doi: 10.1021/bm0610065. DOI: https://doi.org/10.1021/bm0610065

H. A. Talaat, M. H. Sorour, A. G. Aboulnour, H. F. Shaalan, E. M. Ahmed, A. M. Awad, and M. A. Ahmed, “Development of a multicomponent fertilizing hydrogel with relevant techno-economic indicators,” Am.-Euras. J. Agric. Environ. Sci., vol. 3, no. 5, pp. 764–770, 2008. [DOI not available]

Q. Tong and G. Zhang, “Rapid synthesis of a superabsorbent from a saponified starch and acrylonitrile/AMPS graft copolymers,” Carbohydr. Polym., vol. 62, no. 1, pp. 74–79, Oct. 2005, doi: 10.1016/j.carbpol.2005.07.016. DOI: https://doi.org/10.1016/j.carbpol.2005.07.016

S. Rout, “Smart superabsorbents and other bio-based superabsorbents,” in Bio-based Superabsorbents: Recent Trends, Types, Applications and Recycling, Singapore: Springer Nature Singapore, 2023, pp. 145–160. [DOI not available] DOI: https://doi.org/10.1007/978-981-99-3094-4_8

S. Bashir, M. Hina, J. Iqbal, A. H. Rajpar, and K. Remesh, “Fundamental concepts of hydrogels: Synthesis, properties, and their applications,” Polymers, vol. 12, no. 2702, 2020, doi: 10.3390/polym12122702. DOI: https://doi.org/10.3390/polym12112702

J. Huang, Y. Deng, J. Ren, G. Chen, G. Wang, F. Wang, and X. Wu, “Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery,” Carbohydr. Polym., vol. 186, pp. 54–63, 2018, doi: 10.1016/j.carbpol.2017.12.015. DOI: https://doi.org/10.1016/j.carbpol.2018.01.025

X. Zhou, Y. Li, S. Chen, Y. Fu, S. Wang, G. Li, L. Tao, Y. Wei, X. Wang, and J. F. Liang, “Dynamic agent of an injectable and self-healing drug-loaded hydrogel for embolization therapy,” Colloids Surf. B Biointerfaces, vol. 172, pp. 601–607, 2018, doi: 10.1016/j.colsurfb.2018.09.042. DOI: https://doi.org/10.1016/j.colsurfb.2018.09.016

L. Han, Y. N. Zhang, X. Lu, K. F. Wang, Z. M. Wang, and H. P. Zhang, “Polydopamine nanoparticles modulating stimuli-responsive PNIPAM hydrogels with cell/tissue adhesiveness,” ACS Appl. Mater. Interfaces, vol. 8, no. 42, pp. 29088–29100, 2016, doi: 10.1021/acsami.6b09592. DOI: https://doi.org/10.1021/acsami.6b11043

X. Zhao, H. Wu, B. L. Guo, R. N. Dong, Y. S. Qiu, and P. X. Ma, “Antibacterial anti-oxidant electroactive injectable hydrogel as self-healing wound dressing with hemostasis and adhesiveness for cutaneous wound healing,” Biomaterials, vol. 122, pp. 34–47, 2017, doi: 10.1016/j.biomaterials.2017.01.011. DOI: https://doi.org/10.1016/j.biomaterials.2017.01.011

T. C. Tseng, L. Tao, F. Y. Hsieh, Y. Wei, I. M. Chiu, and S. H. Hsu, “An injectable, self-healing hydrogel to repair the central nervous system,” Adv. Mater., vol. 27, no. 25, pp. 3518–3524, Jul. 2015, doi: 10.1002/adma.201500522. DOI: https://doi.org/10.1002/adma.201500762

F. Y. Hsieh, L. Tao, Y. Wei, and S. H. Hsu, “A novel biodegradable self-healing hydrogel to induce blood capillary formation,” NPG Asia Mater., vol. 9, p. e363, Mar. 2017, doi: 10.1038/am.2017.23. DOI: https://doi.org/10.1038/am.2017.23

S. Hafeez, H. W. Ooi, F. L. C. Morgan, C. Mota, M. Dettin, C. Van Blitterswijk, L. Moroni, and M. B. Baker, “Viscoelastic oxidized alginates with reversible imine type crosslinks: Self-healing, injectable, and bioprintable hydrogels,” Gels, vol. 4, no. 4, p. 85, Nov. 2018, doi: 10.3390/gels4040085. DOI: https://doi.org/10.3390/gels4040085

D. W. R. Balkenende, S. M. Winkler, and P. B. Messersmith, “Marine-inspired polymers in medical adhesion,” Eur. Polym. J., vol. 116, pp. 134–143, Jul. 2019, doi: 10.1016/j.eurpolymj.2019.03.059. DOI: https://doi.org/10.1016/j.eurpolymj.2019.03.059

L. Han, X. Lu, M. Wang, D. Gan, W. Deng, K. Wang, L. Fang, K. Liu, C. W. Chan, and Y. Tang, “A mussel-inspired conductive, self-adhesive, and self-healable tough hydrogel as cell stimulators and implantable bioelectronics,” Small, vol. 13, no. 2, p. 1601916, Jan. 2017, doi: 10.1002/smll.201601916. DOI: https://doi.org/10.1002/smll.201601916

C. S. McKay and M. G. Finn, “Click chemistry in complex mixtures: Bioorthogonal bioconjugation,” Chem. Biol., vol. 21, no. 9, pp. 1075–1101, Sep. 2014, doi: 10.1016/j.chembiol.2014.09.002. DOI: https://doi.org/10.1016/j.chembiol.2014.09.002

R. S. Trask, H. R. Williams, and I. P. Bond, “Self-healing polymer composites: Mimicking nature to enhance performance,” Bioinspir. Biomim., vol. 2, no. 1, p. P01, Mar. 2007, doi: 10.1088/1748-3182/2/1/P01. DOI: https://doi.org/10.1088/1748-3182/2/1/P01

Z. Zhang, C. He, and X. Chen, “Hydrogels based on pH-responsive reversible carbon–nitrogen double-bond linkages for biomedical applications,” Mater. Chem. Front., vol. 2, no. 9, pp. 1765–1778, 2018, doi: 10.1039/C8QM00317C. DOI: https://doi.org/10.1039/C8QM00317C

J. Huang, Y. Deng, J. Ren, G. Chen, G. Wang, F. Wang, and X. Wu, “Novel in situ forming hydrogel based on xanthan and chitosan re-gelifying in liquids for local drug delivery,” Carbohydr. Polym., vol. 186, pp. 54–63, 2018, doi: 10.1016/j.carbpol.2017.12.015. DOI: https://doi.org/10.1016/j.carbpol.2018.01.025

D. Y. Ko, U. P. Shinde, B. Yeon, and B. Jeong, “Recent progress of in situ formed gels for biomedical applications,” Prog. Polym. Sci., vol. 38, no. 3–4, pp. 672–701, 2013, doi: 10.1016/j.progpolymsci.2012.08.002. DOI: https://doi.org/10.1016/j.progpolymsci.2012.08.002

Y. Xu, Y. Li, Q. Chen, L. Fu, L. Tao, and Y. Wei, “Injectable and self-healing chitosan hydrogel based on imine bonds: Design and therapeutic applications,” Int. J. Mol. Sci., vol. 19, no. 8, p. 2198, Jul. 2018, doi: 10.3390/ijms19082198. DOI: https://doi.org/10.3390/ijms19082198

H. Wang and S. C. Heilshorn, “Adaptable hydrogel networks with reaction-controlled mechanics to precisely structure tissue interfaces,” Adv. Mater., vol. 34, no. 22, p. 2203121, Jun. 2022, doi: 10.1002/adma.202203121.

S.-H. Hsiao and S.-H. Hsu, “Synthesis and characterization of dual stimuli-sensitive biodegradable polyurethane soft hydrogels for 3D cell-laden bioprinting,” ACS Appl. Mater. Interfaces, vol. 10, no. 35, pp. 29273–29287, Aug. 2018, doi: 10.1021/acsami.8b08362. DOI: https://doi.org/10.1021/acsami.8b08362

K. M. Galler, L. Aulisa, K. R. Regan, R. N. D’Souza, and J. D. Hartgerink, “Self-assembling multidomain peptide hydrogels: Designed susceptibility to enzymatic cleavage allows enhanced cell migration and spreading,” J. Am. Chem. Soc., vol. 132, no. 9, pp. 3217–3223, Mar. 2010, doi: 10.1021/ja9104654. DOI: https://doi.org/10.1021/ja910481t

C.-T. Huang, L. Kumar Shrestha, K. Ariga, and S.-H. Hsu, “A graphene–polyurethane composite hydrogel as a potential bioink for 3D bioprinting and differentiation of neural stem cells,” J. Mater. Chem. B, vol. 5, pp. 8854–8864, 2017, doi: 10.1039/C7TB02203A. DOI: https://doi.org/10.1039/C7TB01594A

D. Seliktar, “Designing cell-compatible hydrogels for biomedical applications,” Science, vol. 336, no. 6085, pp. 1124–1128, Jun. 2012, doi: 10.1126/science.1214801. DOI: https://doi.org/10.1126/science.1214804

N. Boehnke, C. Cam, E. Bat, T. Segura, and H. D. Maynard, “Imine hydrogels with tunable degradability for tissue engineering,” Biomacromolecules, vol. 16, no. 7, pp. 2101–2108, Jul. 2015, doi: 10.1021/acs.biomac.5b00519. DOI: https://doi.org/10.1021/acs.biomac.5b00519

H. Chen, J. Cheng, L. Ran, K. Yu, B. Lu, G. Lan, F. Dai, and F. Lu, “An injectable self-healing hydrogel with adhesive and antibacterial properties effectively promotes wound healing,” Carbohydr. Polym., vol. 201, pp. 522–531, Nov. 2018, doi: 10.1016/j.carbpol.2018.08.090. DOI: https://doi.org/10.1016/j.carbpol.2018.08.090

X. F. Yang, G. Q. Liu, L. Peng, J. H. Guo, L. Tao, J. Y. Yuan, C. Y. Chang, Y. Wei, and L. N. Zhang, “Highly efficient self-healable and dual responsive cellulose-based hydrogels for controlled release and 3D cell culture,” Adv. Funct. Mater., vol. 27, no. 40, p. 1703174, Oct. 2017, doi: 10.1002/adfm.201703174. DOI: https://doi.org/10.1002/adfm.201703174

T. Manimaran, R. M. Anand, M. I. Jishala, and K. Gopalasatheeskumar, “Review on substituted 1,3,4-thiadiazole compounds,” Int. J. Pharm. Anal. Res., vol. 6, no. 2, pp. 222–231, 2017. [DOI not available]

L. Joseph, M. George, and P. Mathews, “A review on various biological activities of 1,3,4-thiadiazole derivatives,” J. Pharm. Chem. Biol. Sci., vol. 3, no. 2, pp. 329–345, 2015. [DOI not available]

A. Catalano, A. Carocci, I. Defrenza, M. Muraglia, A. Carrieri, F. V. Bambeke, A. Rosato, F. Corbo, and C. Franchini, “2-Aminobenzothiazole derivatives: Search for new antifungal agents,” Eur. J. Med. Chem., vol. 64, pp. 357–364, Jul. 2013, doi: 10.1016/j.ejmech.2013.03.064. DOI: https://doi.org/10.1016/j.ejmech.2013.03.064

L. Yurttaş, Y. Özkay, H. K. Gençer, and U. Acar, “Synthesis of some new thiazole derivatives and their biological activity evaluation,” J. Chem., vol. 2015, p. 464379, 2015, doi: 10.1155/2015/464379. DOI: https://doi.org/10.1155/2015/464379

M. C. Floros, J. F. Bortolatto, O. B. Oliveira, S. L. S. Salvador, and S. S. Narine, “Antimicrobial activity of amphiphilic triazole-linked polymers derived from renewable sources,” ACS Biomater. Sci. Eng., vol. 2, no. 3, pp. 336–343, Mar. 2016, doi: 10.1021/acsbiomaterials.5b00412. DOI: https://doi.org/10.1021/acsbiomaterials.5b00412

B. Hu, H. Zhao, Z. Chen, C. Xu, J. Zhao, and W. Zhao, “Efficient synthesis and bioactivity of novel triazole derivatives,” Molecules, vol. 23, no. 4, p. 709, Mar. 2018, doi: 10.3390/molecules23040709. DOI: https://doi.org/10.3390/molecules23040709

G. Serban, O. Stanasel, E. Serban, and S. Bota, “2-Amino-1,3,4-thiadiazole as a potential scaffold for promising antimicrobial agents,” Drug Des. Dev. Ther., vol. 12, pp. 1545–1566, May 2018, doi: 10.2147/DDDT.S155958. DOI: https://doi.org/10.2147/DDDT.S155958

Downloads

Published

29-09-2025

How to Cite

[1]
S. Muslah, “Schiff-Base Thiadiazole-Modified Hydrogels: A Comprehensive Review of Biomedical Applications”, NJES, vol. 28, no. 3, pp. 323–329, Sep. 2025, doi: 10.29194/NJES.28030323.

Similar Articles

21-30 of 120

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)