Preparation and Characterization of Biochar from New Precursor

Authors

  • Douha S. Khudair Department of Chemical Engineering, University of Al-Nahrain, Baghdad - Iraq.
  • Yasser I. Abdul-Aziz Department of Chemical Engineering, University of Al-Nahrain, Baghdad - Iraq.

DOI:

https://doi.org/10.29194/NJES.27040441

Keywords:

Biochar, Peganum Harmala Seeds, Adsorption, Heavy Metal Ions, Kinetic Isotherm Models

Abstract

The purpose of this study is to investigate the potential of biochar derived from Peganum harmala (Pgh) seeds as an adsorbent material for wastewater treatment. Biochar is a cost-efficient, ecologically friendly, and effective bio-sorbent for a wide range of pollutants in wastewater. Researchers are investigating the production of biochar from novel biomass sources. Phosphoric acid (H3PO4) was utilized in a chemical activation technique to produce biochar at various concentrations (20%, 30%, and 40%). The pyrolysis process lasted three hours at 600°C in a tube furnace with an inert nitrogen gas atmosphere. Elemental analysis, Brunauer-Emmett-Teller (BET) nitrogen adsorption, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX), The biochar was characterized using several techniques, including elemental analysis, X-ray diffraction, Fourier transform infrared spectroscopy (FTIR), Brunauer-Emmett-Teller (BET) nitrogen adsorption, scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDX). The findings demonstrate the significant potential of Pgh seed-derived biochar as an inexpensive and ecologically acceptable sorbent material. A large surface area (691.58 m2g−1) was achieved at 600◦C for three hours with 40% H3PO4 activation. 

Downloads

Download data is not yet available.

References

J. Andas, M. L. A. Rahman, and M. S. M. Yahya, “Preparation and Characterization of Activated Carbon from Palm Kernel Shell,” in IOP Conference Series: Materials Science and Engineering, Institute of Physics Publishing, Aug. 2017. doi: 10.1088/1757-899X/226/1/012156. DOI: https://doi.org/10.1088/1757-899X/226/1/012156

M. Iwanow, T. Gärtner, V. Sieber, and B. König, “Activated carbon as catalyst support: Precursors, preparation, modification and characterization,” Beilstein Journal of Organic Chemistry, vol. 16. Beilstein-Institut Zur Forderung der Chemischen Wissenschaften, pp. 1188–1202, Jun. 02, 2020. doi: 10.3762/bjoc.16.104. DOI: https://doi.org/10.3762/bjoc.16.104

Y. R. Abdulmajeed, N. Al-Huda, and J. Mahmood, “Production of High Surface Area Activated Carbon from Grass (Imperata),” Iraqi Journal of Chemical and Petroleum Engineering, vol. 19, no. 2, pp. 33–37, 2018, [Online]. Available: www.iasj.net DOI: https://doi.org/10.31699/IJCPE.2018.2.6

X. , L. S. , L. Y. , G. Y. , Z. G. , H. X. , W. X. , L. S. , & J. L. Tan, “Biochar as potential sustainable precursors for activated carbon production: Multiple applications in environmental protection and energy storage,” vol. 227, pp. 359–372, May 2017, doi: https://doi.org/10.1016/j.biortech.2016.12.083. DOI: https://doi.org/10.1016/j.biortech.2016.12.083

N. Hagemann, K. Spokas, H. P. Schmidt, R. Kägi, M. A. Böhler, and T. D. Bucheli, “Activated carbon, biochar and charcoal: Linkages and synergies across pyrogenic carbon’s ABCs,” Water (Switzerland), vol. 10, no. 2. MDPI AG, Feb. 09, 2018. doi: 10.3390/w10020182. DOI: https://doi.org/10.3390/w10020182

H. Tounsadi, A. Khalidi, M. Abdennouri, and N. Barka, “Activated carbon from Diplotaxis Harra biomass: Optimization of preparation conditions and heavy metal removal,” J Taiwan Inst Chem Eng, vol. 59, pp. 348–358, Feb. 2016, doi: 10.1016/j.jtice.2015.08.014. DOI: https://doi.org/10.1016/j.jtice.2015.08.014

M. S. Reza et al., “Preparation of activated carbon from biomass and its’ applications in water and gas purification, a review,” Arab Journal of Basic and Applied Sciences, vol. 27, no. 1. Taylor and Francis Ltd., pp. 208–238, Jan. 01, 2020. doi: 10.1080/25765299.2020.1766799. DOI: https://doi.org/10.1080/25765299.2020.1766799

M. J. Ahmed and S. K. Theydan, “Adsorption of cephalexin onto activated carbons from Albizia lebbeck seed pods by microwave-induced KOH and K2CO3 activations,” Chemical Engineering Journal, vol. 211–212, pp. 200–207, Nov. 2012, doi: 10.1016/j.cej.2012.09.089. DOI: https://doi.org/10.1016/j.cej.2012.09.089

J. Li et al., “Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents,” Sustainability (Switzerland), vol. 14, no. 23, Dec. 2022, doi: 10.3390/su142315579. DOI: https://doi.org/10.3390/su142315579

N. K. Gupta, P. Prakash, P. Kalaichelvi, and K. N. Sheeba, “The effect of temperature and hemicellulose-lignin, cellulose-lignin, and cellulose-hemicellulose on char yield from the slow pyrolysis of rice husk,” Energy Sources, Part A: Recovery, Utilization and Environmental Effects, vol. 38, no. 10, pp. 1428–1434, May 2016, doi: 10.1080/15567036.2014.941518. DOI: https://doi.org/10.1080/15567036.2014.941518

M. Boshir Ahmed, M. Abu Hasan Johir, J. L. Zhou, H. Hao Ngo, L. D. Nghiem, and H. Johir, “Activated carbon preparation from biomass feedstock: Clean production and carbon dioxide adsorption,” Journal of Cleaner Production , vol. 225, pp. 405–413, 2019, doi: DOI:10.1016/j.jclepro.2019.03.342. DOI: https://doi.org/10.1016/j.jclepro.2019.03.342

D. Das, D. P. Samal, and M. BC, “Preparation of Activated Carbon from Green Coconut Shell and its Characterization,” Journal of Chemical Engineering & Process Technology, vol. 06, no. 05, 2015, doi: 10.4172/2157-7048.1000248. DOI: https://doi.org/10.4172/2157-7048.1000248

Y. Elmaguana, N. Elhadiri, M. Bouchdoug, M. Benchanaa, and A. Jaouad, “Optimization of preparation conditions of activated carbon from walnut cake using response surface methodology,” 2018. [Online]. Available: http://revues.imist.ma/?journal=morjchem&page=login

M. Calderoni, M. Altare, L. Mastracci, F. Grillo, L. Cornara, and A. Pagano, “Potential risks of plant constituents in dietary supplements: Qualitative and quantitative analysis of Peganum harmala seeds,” Molecules, vol. 26, no. 5, 2021, doi: 10.3390/molecules26051368. DOI: https://doi.org/10.3390/molecules26051368

M. Mahmoudian, H. Jalilpour, and P. Salehian, “Toxicity of Peganum harmala: Review and a Case Report,” 2002. [Online]. Available: http://ijpt.iums.ac.ir

E. Köseoʇlu and C. Akmil-Başar, “Preparation, structural evaluation and adsorptive properties of activated carbon from agricultural waste biomass,” Advanced Powder Technology, vol. 26, no. 3, pp. 811–818, May 2015, doi: 10.1016/j.apt.2015.02.006. DOI: https://doi.org/10.1016/j.apt.2015.02.006

M. Ullah et al., “The effective removal of heavy metals from water by activated carbon adsorbents of Albizia lebbeck and Melia azedarach seed shells,” Soil and Water Research, vol. 15, no. 1, pp. 30–37, 2020, doi: 10.17221/212/2018-SWR. DOI: https://doi.org/10.17221/212/2018-SWR

M. M. N. Aljumaili and Y. I. Abdul-Aziz, “High surface area peat moss biochar and its potential for Chromium metal adsorption from aqueous solutions,” S Afr J Chem Eng, vol. 46, pp. 22–34, Oct. 2023, doi: 10.1016/j.sajce.2023.06.006. DOI: https://doi.org/10.1016/j.sajce.2023.06.006

S. Timur, I. C. Kantarli, S. Onenc, and J. Yanik, “Characterization and application of activated carbon produced from oak cups pulp,” J Anal Appl Pyrolysis, vol. 89, no. 1, pp. 129–136, 2010, doi: 10.1016/j.jaap.2010.07.002. DOI: https://doi.org/10.1016/j.jaap.2010.07.002

T. Tay, S. Ucar, and S. Karagöz, “Preparation and characterization of activated carbon from waste biomass,” J Hazard Mater, vol. 165, no. 1–3, pp. 481–485, Jun. 2009, doi: 10.1016/j.jhazmat.2008.10.011. DOI: https://doi.org/10.1016/j.jhazmat.2008.10.011

T. Khadiran, M. Z. Hussein, Z. Zainal, and R. Rusli, “Textural and Chemical Properties of Activated Carbon Prepared from Tropical Peat Soil by Chemical Activation Method,” 2015. DOI: https://doi.org/10.15376/biores.10.1.986-1007

S. M. Yakout and G. Sharaf El-Deen, “Characterization of activated carbon prepared by phosphoric acid activation of olive stones,” Arabian Journal of Chemistry, vol. 9, pp. S1155–S1162, Nov. 2016, doi: 10.1016/j.arabjc.2011.12.002. DOI: https://doi.org/10.1016/j.arabjc.2011.12.002

S. Afroze and T. K. Sen, “A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents,” Water Air Soil Pollut, vol. 229, no. 7, Jul. 2018, doi: 10.1007/s11270-018-3869-z. DOI: https://doi.org/10.1007/s11270-018-3869-z

Y. H. Chiu and L. Y. Lin, “Effect of activating agents for producing activated carbon using a facile one-step synthesis with waste coffee grounds for symmetric supercapacitors,” J Taiwan Inst Chem Eng, vol. 101, pp. 177–185, Aug. 2019, doi: 10.1016/j.jtice.2019.04.050. DOI: https://doi.org/10.1016/j.jtice.2019.04.050

and S. H. Qu Deyang, “Studies of the activated carbons used in double-layer supercapacitors,” J Power Sources, vol. 109, no. 2, pp. 403–411, Jul. 2002, doi: 10.1016/S0378-7753(02)00108-8. DOI: https://doi.org/10.1016/S0378-7753(02)00108-8

A. B. D. Nandiyanto, R. Oktiani, and R. Ragadhita, “How to read and interpret ftir spectroscope of organic material,” Indonesian Journal of Science and Technology, vol. 4, no. 1, pp. 97–118, 2019, doi: 10.17509/ijost.v4i1.15806. DOI: https://doi.org/10.17509/ijost.v4i1.15806

J. Coates, “Interpretation of Infrared Spectra, A Practical Approach.”

Y. E. Lee, J. H. Jo, I. T. Kim, and Y. S. Yoo, “Chemical characteristics and NaCl component behavior of biochar derived from the salty food waste by water flushing,” Energies (Basel), vol. 10, no. 10, Oct. 2017, doi: 10.3390/en10101555. DOI: https://doi.org/10.3390/en10101555

R. Xiao and W. Yang, “Influence of temperature on organic structure of biomass pyrolysis products,” Renew Energy, vol. 50, pp. 136–141, Feb. 2013, doi: 10.1016/j.renene.2012.06.028. DOI: https://doi.org/10.1016/j.renene.2012.06.028

H. Yang, R. Yan, H. Chen, D. H. Lee, and C. Zheng, “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel, vol. 86, no. 12–13, pp. 1781–1788, Aug. 2007, doi: 10.1016/j.fuel.2006.12.013. DOI: https://doi.org/10.1016/j.fuel.2006.12.013

T. Mao, Q. Su, and Y. Cheng, “Statistical method of pore size distribution of disordered mesoporous materials based on electron microscope imaging,” in Journal of Physics: Conference Series, Institute of Physics, 2022. doi: 10.1088/1742-6596/2321/1/012008. DOI: https://doi.org/10.1088/1742-6596/2321/1/012008

G. Zou, J. She, S. Peng, Q. Yin, H. Liu, and Y. Che, “Two-dimensional SEM image-based analysis of coal porosity and its pore structure,” Int J Coal Sci Technol, vol. 7, no. 2, pp. 350–361, Jun. 2020, doi: 10.1007/s40789-020-00301-8. DOI: https://doi.org/10.1007/s40789-020-00301-8

C. Cardell, A. Yebra, and R. E. Van Grieken, “Applying Digital Image Processing to SEM-EDX and BSE Images to Determine and Quantify Porosity and Salts with Depth in Porous Media,” 2002. DOI: https://doi.org/10.1007/s006040200063

Abdullah et al., A Method to Measure Pore Size Distribution of Porous Materials Using Scanning Electron Microscopy Images. American Institute of Physics, 2010. doi: DOI:10.1063/1.3515554. DOI: https://doi.org/10.1063/1.3515554

V. Balasundram et al., “Thermal Characterization of Malaysian Biomass via Thermogravimetric Analysis,” 2018. [Online]. Available: https://jest.utm.my/index.php/jest DOI: https://doi.org/10.11113/jest.v1n1.6

M. J. Serapiglia, K. D. Cameron, A. J. Stipanovic, and L. B. Smart, “Analysis of biomass composition using high-resolution thermogravimetric analysis and percent bark content for the selection of shrub willow bioenergy crop varieties,” Bioenergy Res, vol. 2, no. 1–2, pp. 1–9, Jun. 2009, doi: 10.1007/s12155-008-9028-4. DOI: https://doi.org/10.1007/s12155-008-9028-4

Downloads

Published

20-12-2024

How to Cite

[1]
D. S. Khudair and Y. I. Abdul-Aziz, “Preparation and Characterization of Biochar from New Precursor”, NJES, vol. 27, no. 4, pp. 441–449, Dec. 2024, doi: 10.29194/NJES.27040441.

Similar Articles

71-80 of 98

You may also start an advanced similarity search for this article.