Investigating the Future in Ureteral Stent Biomaterials and Design: A Review

Authors

DOI:

https://doi.org/10.29194/NJES.27020243

Keywords:

Ureteric Stents, Ureteral Stent Encrustation, Biomaterials, Complications, Novel Technology

Abstract

In today's world, Urinary Tract disorders such as obstructions whatever the causes (stricture, stones), are prevalent and can be extremely dangerous and painful for individuals. One of the most important instruments in the Urological sector for a variety of clinical diseases is the Ureteral stent, a minimally invasive surgical tool for relieving blockages and facilitating kidney-to-Bladder drainage.

     This review addressed the problems of biofilm formation and polymers currently available for use as new biomaterials in new Ureteral stent designs, providing a comprehensive update on recent developments in stent development. It also evaluated the various biomaterials that found application as Ureteral stents in relation to various issues such as encrustation, bacterial colonization, urinary tract infections, and related clinical issues. This study concluded with a discussion of biomaterials' potential applications and the design in the Urinary Tract.

Downloads

Download data is not yet available.

Author Biographies

  • Halah Hadi Salih, Dept. of Bio-Medical Engineering, Al-Nahrain University, Baghdad-Iraq.

    Dept. of Bio-Medical Engineering

    PHD student

  • Nabeel Kadim Abid AlSahib, Dept. of Bio-Medical Engineering, Al-Nahrain University, Baghdad-Iraq.

    Dept. of Bio-Medical Engineering, 

  • Hayder Ismael Jawad, Dept. of Urology, Al Yarmuk Teaching Hospital, Baghdad-Iraq.

    Department of Urology

References

C. Janssen, D. Lange, B. Chew, Ureteral stents—future developments[J], Br. J. Med. Surg. Urol. 5 (2012) (S11-S7). DOI: https://doi.org/10.1016/S1875-9742(12)60004-4

LM, Sosa RE. Ureteroscopy and retrograde ureteral access In Walsh PC, Retick AB, Vaughan. ED, Wein AJ, eds. Campbell’s Urology. 8th ed. Philadelphia: Elsevier Science, 2002, chapter 97.

Ho CH, Chen SC, Chung SD, et al. Determining the appropriate length of a double-pigtail ureteral stent by both stent configurations and related symptoms. J Endourol 2008;22: 1427–1431. DOI: https://doi.org/10.1089/end.2008.0037

Sabbuba N, Hughes G, Stickler DJ. The migration of Proteus mirabilis and other urinary tract pathogens over Foley catheters. BJU Int 2002;89:55–60. DOI: https://doi.org/10.1046/j.1464-4096.2001.01721.x

Lasser M, Pareek G. Smith’s textbook of endourology: Wiley-Blackwell; 2012. Most recent works on stent design, materials, and coatings (within the last 3 years).

Wilks SA, Fader MJ, Keevil CW. Novel insights into the Proteus mirabilis crystalline biofilm using real-time imaging. PLoS One. 2015;10(10):e0141711. DOI: https://doi.org/10.1371/journal.pone.0141711

Jiang J, Zhu FQ, Jiang Q, Wang LF. Extraction of a long-forgotten ureteral stent by ureteroscopic pneumatic lithotripsy. Chinese Med J-Peking. 2004;117(9):1435–6.

Lai DH, He YZ, Dai YP, Li T, Chen ML, Li X. A long-forgotten indwelling Single-J stent in a transplanted kidney. Jcpsp-J Coll Physici. 2014;24: S152–S4.

Oh SJ, Ku JH, Byun SS, et al. Systemic chemotherapy in patients with indwelling ureteral stenting. Int J Urol 2005;12: 548–551. DOI: https://doi.org/10.1111/j.1442-2042.2005.01089.x

Dakkak Y, Janane A, Ould-Ismail T, Ghadouane M, Ameur A, Abbar M. Management of encrusted ureteral stents. Afr J Urol. 2012;18(3):131–4. https://doi.org/10.1016/j.afju.2012.08.013. DOI: https://doi.org/10.1016/j.afju.2012.08.013

Brotherhood H, Lange D, Chew BH. Advances in ureteral stents. Transl Androl Urol. 2014;3(3):314–9. https://doi.org/10.3978/j. issn.2223-4683.2014.06.06.

Scameciu I, Lupu S, Pricop C, Morbidity SC. Impact on quality of life in patients with indwelling ureteral stents: a 10-year clinical experience. Pak J Med Sci. 2015;31(3):522–6. https://doi.org/10. 12669/pjms.313.6759. Most recent works on stent design, materials, and coatings (within the last 3 years). DOI: https://doi.org/10.12669/pjms.313.6759

Giannarini G, Keeley FX, Valent F, Manassero F, Mogorovich A, Autorino R, et al. Predictors of morbidity in patients with indwelling ureteric stents: results of a prospective study using the validated Ureteric Stent Symptoms Questionnaire. BJU Int. 2011;107(4): 648–54. https://doi.org/10.1111/j.1464-410X.2010.09482.x. DOI: https://doi.org/10.1111/j.1464-410X.2010.09482.x

Singh I, Gupta NP, Hemal AK, Aron M, Seth A, Dogra PN. Severely encrusted polyurethane ureteral stents: management and analysis of potential risk factors. Urology. 2001;58(4):526– 31. https://doi.org/10.1016/S0090-4295(01)01317-6. DOI: https://doi.org/10.1016/S0090-4295(01)01317-6

Axelsson H, Scho¨nebeck J, Winblad B. Surface structure of unused and used catheters. A scanning electron microscopic study. Scand J Urol Nephrol 1977;11:283–287. DOI: https://doi.org/10.3109/00365597709179966

Ratner B. Biomaterials science: Academic Press; 2012.

Wei-Jun F, Zhong-Xin W, Gang L, Fu-Zhai C, Yuanyuan Z, Xu Z. Comparison of a biodegradable ureteral stent versus the traditional double-J stent for the treatment of ureteral injury: an experimental study. Biomed Mater. 2012;7(6):065002. DOI: https://doi.org/10.1088/1748-6041/7/6/065002

Docimo SG and Dewolf WC: High failure rate of indwelling ureteral stents in patients with extrinsic obstruction: experience at 2 institutions. J Urol 1989; 142: 277. DOI: https://doi.org/10.1016/S0022-5347(17)38729-3

Wong LM, Cleeve LK, Milner AD, et al: Malignant ureteral obstruction: outcomes after the intervention. Have things changed? J Urol 2007; 178: 178. DOI: https://doi.org/10.1016/j.juro.2007.03.026

Leibovici D, Cooper A, Lindner A, Ostrowsky R, Kleinmann J, Velikanov S, et al. Ureteral stents: morbidity and impact on quality of life. Israel Med Assoc J. 2005;7(8):491–4.

N. Venkatesan, S. Shroff, K. Jeyachandran, M. Doble, Effect of uropathogens on in vitro encrustation of polyurethane double J ureteral stents[J], Urol. Res. 39 (1) (2010) 29–37.

P. Tenke, B. Koves, C. Hung, H. Kumon, K. Nagy, S.J. Hultgren, et al., Biofilm and Urogenital Infections, INTECH Open Access Publisher.

Saint S, Chenoweth CE. Biofilms and catheter-associated urinary tract infections. Infect Dis Clin North Am 2003;17: 411–432. DOI: https://doi.org/10.1016/S0891-5520(03)00011-4

N. Venkatesan, S. Shroff, K. Jeyachandran, and M. Doble, “Effect of uropathogens on in vitro encrustation of polyurethane double J ureteral stents,” Urol. Res., vol. 39, no. 1, pp. 29–37, Feb. 2011.

D. S. Jones, M. C. Bonner, S. P. Gorman, M. Akay, and P. F. Keane, “Sequential polyurethane-poly(methylmethacrylate) interpenetrating polymer networks as ureteral biomaterials: Mechanical properties and comparative resistance to urinary encrustation,” J. Mater. Sci. Mater. Med., vol. 8, no. 11, pp. 713–717, Nov. 1997.

R. M. Rabinow, B.E. Ding, Y.S. Qin, C. McHalsky, M.L. Schneider, J.H. Ashline, K.A. Shelbourn, T.L. Albrecht, B. Rabinow, Y. Ding, and C. Qin, “Biomaterials with permanent hydrophilic surfaces and low protein adsorption properties,” J. Biomater. Sci. Polym. Ed., vol. 6, no. 1, pp. 91–109, Jan. 1995.

Society of Plastics Engineers Technical Conference, ANTEC ’96: Plastics--Racing Into the Future : Conference Proceedings, May 5-10, Indianapolis. Society of Plastics Engineers, 1996.

M. B. Chan-Park, A. Zhu, C. Sing Lim, and H. Chean Lim, “Argon-plasma-assisted graft polymerization of thick hydrogels with controllable water swelling on Chronoflex,” J. Adhes. Sci. Technol., vol. 18, no. 14, pp. 1663–1673, 2004.

M. M. Tunney, P. F. Keane, D. S. Jones, and S. P. Gorman, “Comparative assessment of ureteral stent biomaterial encrustation,” Biomaterials, vol. 17, no. 15, pp. 1541–1546, Aug. 1996.

B. Silverstein, K. M. Witkin, V. H. Frankos, and A. I. Terr, “Assessing the role of the biomaterial Aquavene in patient reactions to Landmark midline catheters,” Regul. Toxicol. Pharmacol., vol. 25, no. 1, pp. 60–67, 1997.

N. Venkatesan, S. Shroff, K. Jayachandran, and M. Doble, “Polymers as ureteral stents,” J. Endourol., vol. 24, no. 2, pp. 191–8, 2010.

H. K. Mardis, R. M. Kroeger, J. J. Morton, and J. M. Donovan, “Comparative evaluation of materials used for internal ureteral stents,” J. Endourol., vol. 7, no. 2, pp. 105–15, 1993.

M. M. Tunney, P. F. Keane, D. S. Jones, and S. P. Gorman, “Comparative assessment of ureteral stent biomaterial encrustation,” Biomaterials, vol. 17, no. 15, pp. 1541–1546, Aug. 1996.

Tunney MM, Keane PF, Jones DS, Gorman SP. Comparative assessment of ureteral stent biomaterial encrustation. Biomaterials. 1996;17(15):1541–6. https://doi.org/10.1016/0142-9612(96) 89780-8.

Hofmann R, Hartung R. Ureteral stents—materials and new forms. World J Urol. 1989;7(3):154–7. DOI: https://doi.org/10.1007/BF01637374

Gadzhiev, N., Gorelov, D., Malkhasyan, V. et al. Comparison of silicone versus polyurethane ureteral stents: a prospective controlled study. BMC Urol 20, 10 (2020). https://doi.org/10.1186/s12894-020-0577-y. DOI: https://doi.org/10.1186/s12894-020-0577-y

Kirby RS, Heard SR, Miller P, Eardley I, Holmes S, Vale J, et al. Use of the Asi titanium stent in the management of bladder outflow obstruction due to benign prostatic hyperplasia. J Urol. 1992;148(4):1195–7. DOI: https://doi.org/10.1016/S0022-5347(17)36858-1

Song H-Y, Park H, Suh T-S, Ko G-Y, Kim T-H, Kim E-S, et al. Recurrent traumatic urethral strictures near the external sphincter: treatment with a covered, retrievable, expandable nitinol stent— initial results. Radiology. 2003;226(2):433–40. https://doi.org/10. 1148/radiol.2262012160. DOI: https://doi.org/10.1148/radiol.2262012160

Lugmayr H, Pauer W. Self-expanding metal stents for palliative treatment of malignant ureteral obstruction. Am J Roentgenol. 1992;159(5):1091–4. https://doi.org/10.2214/ajr.159.5.1384298. DOI: https://doi.org/10.2214/ajr.159.5.1384298

N. Venkatesan, S. Shroff, K. Jeyachandran, and M. Doble, “Effect of uropathogens on in vitro encrustation of polyurethane double J ureteral stents,” Urol. Res., vol. 39, no. 1, pp. 29–37, Feb. 2011. DOI: https://doi.org/10.1007/s00240-010-0280-7

D. S. Jones, M. C. Bonner, S. P. Gorman, M. Akay, and P. F. Keane, “Sequential polyurethane-poly(methylmethacrylate) interpenetrating polymer networks as ureteral biomaterials: Mechanical properties and comparative resistance to urinary encrustation,” J. Mater. Sci. Mater. Med., vol. 8, no. 11, pp. 713–717, Nov. 1997.

R. M. Rabinow, B.E. Ding, Y.S. Qin, C. McHalsky, M.L. Schneider, J.H. Ashline, K.A. Shelbourn, T.L. Albrecht, B. Rabinow, Y. Ding, and C. Qin, “Biomaterials with permanent hydrophilic surfaces and low protein adsorption properties,” J. Biomater. Sci. Polym. Ed., vol. 6, no. 1, pp. 91–109, Jan. 1995. DOI: https://doi.org/10.1163/156856295X00788

Society of Plastics Engineers Technical Conference, ANTEC ’96: Plastics--Racing Into the Future: Conference Proceedings, May 5-10, Indianapolis. Society of Plastics Engineers, 1996.

M. B. Chan-Park, A. Zhu, C. Sing Lim, and H. Chean Lim, “Argon-plasma-assisted graft polymerization of thick hydrogels with controllable water swelling on Chronoflex,” J. Adhes. Sci. Technol., vol. 18, no. 14, pp. 1663–1673, 2004. DOI: https://doi.org/10.1163/1568561042411303

M. M. Tunney, P. F. Keane, D. S. Jones, and S. P. Gorman, “Comparative assessment of ureteral stent biomaterial encrustation,” Biomaterials, vol. 17, no. 15, pp. 1541–1546, Aug. 1996.

N. Venkatesan, S. Shroff, K. Jayachandran, and M. Doble, “Polymers as ureteral stents,” J. Endourol., vol. 24, no. 2, pp. 191–8, 2010. DOI: https://doi.org/10.1089/end.2009.0516

B. Silverstein, K. M. Witkin, V. H. Frankos, and A. I. Terr, “Assessing the role of the biomaterial Aquavene in patient reactions to Landmark midline catheters,” Regul. Toxicol. Pharmacol., vol. 25, no. 1, pp. 60–67, 1997. DOI: https://doi.org/10.1006/rtph.1996.1057

Mardis HK, KROEGER RM, MORTON JJ, DONOVAN JM. Comparative evaluation of materials used for internal ureteral stents. J Endourol. 1993;7(2):105–15. DOI: https://doi.org/10.1089/end.1993.7.105

M. M. Tunney, P. F. Keane, D. S. Jones, and S. P. Gorman, “Comparative assessment of ureteral stent biomaterial encrustation,” Biomaterials, vol. 17, no. 15, pp. 1541–1546, Aug. 1996. DOI: https://doi.org/10.1016/0142-9612(96)89780-8

S. Laaksovirta, T. Välimaa, T. Isotalo, P. Törmälä, M. Talja, and T. L. J. Tammela, “Encrustation and strength retention properties of the self-expandable, biodegradable, self-reinforced L-lactide-glycolic acid co-polymer 80:20 spiral urethral stent in vitro,” J. Urol., vol. 170, no. 2 pt 1, pp. 468–71, 2003. DOI: https://doi.org/10.1097/01.ju.0000076389.88489.af

Laaksovirta S, Laurila M, Isotalo T, Välimaa T, Tammela TL, Törmälä P and Talja M. Rabbit muscle and urethral in situ biocompatibility properties of the self-reinforced L-lactide-glycolic acid copolymer 80: 20 spiral stent. J Urol 2002; 167: 1527-1531. DOI: https://doi.org/10.1016/S0022-5347(05)65357-8

Lee, C.H.; Chen, C.J.; Liu, S.J.; Hsiao, C.Y.; Chen, J.K. The development of novel biodegradable bifurcation stents for the sustainable release of anti-proliferative sirolimus. Ann. Biomed. Eng. 2012, 40, 1961–1970. [CrossRef] [PubMed]. DOI: https://doi.org/10.1007/s10439-012-0556-x

Y. S. Song, J. T. Lee, and J. R. Youn, “Natural fiber reinforced PLA composites,” in AIP Conference Proceedings, 2010, vol. 1255, no. 1, pp. 261–263. DOI: https://doi.org/10.1063/1.3455601

J. Lumiaho, A. Heino, S. Aaltomaa, T. Välimaa, and M. Talja, “A short biodegradable helical spiral ureteric stent provides better antireflux and drainage properties than a double-J stent,” Scand. J. Urol. Nephrol., vol. 45, no. 2, pp. 129– 33, 2011. DOI: https://doi.org/10.3109/00365599.2010.544673

Lamba NMK, Woodhouse KA, and Cooper SL. Boca Raton, FL: polyurethanes in biomedical applications CRC press; 1998.

Clavica F, Zhao X, ElMahdy M, Drake MJ, Zhang X and Carugo D. Investigating the flow dynamics in the obstructed and stented ureter using a biomimetic artificial model. PLoS One 2014; 9: e87433. DOI: https://doi.org/10.1371/journal.pone.0087433

Anderson DL, Maerzke JT. Spiral ureteral stent. Google Patents; 1989.

Stoller ML, Schwartz BF, Frigstad JR, Norris L, Park JB, Magliochetti MJ. An in vitro assessment of the flow characteristics of spiral-ridged and smooth-walled JJ ureteric stents. BJU Int. 2000;85(6):628–31. DOI: https://doi.org/10.1046/j.1464-410x.2000.00489.x

Talja M, Multanen M, Välimaa T, and Törmälä P. Bioabsorbable SR-PLGA horn stent after antegrade endopyelotomy: a case report. J Endourol 2002; 16: 299-302. DOI: https://doi.org/10.1089/089277902760102785

Zhou XJ, Xu H, and Jiang HW. Research status and clinical prospects of degradable ureteral stent. J Clin Urol 2017; 32: 979-984.

Urinary tract stone disease. Springer; 2011.

Finney RP. Externally grooved ureteral stent. Google Patents; 1981.

Skolnick ML. Intra- and extraluminal fluid. In: Real-time ultrasound imaging in the abdomen. New York: Springer New York; 1981. p. 191–212. DOI: https://doi.org/10.1007/978-1-4612-5919-0_9

Taylor WN and McDougall IT. Minimally invasive ureteral stent retrieval. J Urol 2002; 168: 2020-2023. DOI: https://doi.org/10.1016/S0022-5347(05)64286-3

Kim KH, Cho KS, Ham WS, Hong SJ and Han KS. Early application of permanent metallic mesh stent in substitution for temporary polymeric ureteral stent reduces unnecessary ureteral procedures in patients with malignant ureteral obstruction. Urology 2015; 86: 459- 464. DOI: https://doi.org/10.1016/j.urology.2015.06.021

Finney RP. Experience with new double J-ureteral catheter stent. J Urol. 1978;120(6):678–81. DOI: https://doi.org/10.1016/S0022-5347(17)57326-7

Al-Aown A, Kyriazis I, Kallidonis P, Kraniotis P, Rigopoulos C, Karnabatidis D, et al. Ureteral stents: new ideas, new designs. Ther Adv Urol. 2010;2(2):85–92. https://doi.org/10.1177/ 1756287210370699. DOI: https://doi.org/10.1177/1756287210370699

Downloads

Published

29-08-2024

How to Cite

[1]
H. H. Salih, N. . Kadim, and H. I. Jawad, “Investigating the Future in Ureteral Stent Biomaterials and Design: A Review”, NJES, vol. 27, no. 2, pp. 243–250, Aug. 2024, doi: 10.29194/NJES.27020243.

Similar Articles

71-80 of 124

You may also start an advanced similarity search for this article.