Comprehensive Survey of the State-of-the-Art Deep Learning Models for Diabetic Retinopathy Detection and Grading Using Retinal Fundus Photography

Authors

  • Noor Ali Sadek Department of Biomedical Engineering, Al- Nahrain University, Bagdad- Iraq.
  • Ziad Tarik Al-Dahan Department of Biomedical Engineering, Al- Nahrain University, Bagdad- Iraq.
  • Suzan Amana Rattan AlKindy College of Medicine, University of Baghdad, Baghdad- Iraq.

DOI:

https://doi.org/10.29194/NJES.27020155

Keywords:

Diabetic Retinopathy, CNN models, DR Datasets Classification

Abstract

In order to avoid losing sense of sight in a large portion of the working population, Diabetic Retinopathy (DR) identification during broad examination for diabetes is crucial. To prevent blindness in the future, early illness detection and measurement of disease development are essential. DR is diagnosed through medical image analysis. After the success of Deep Learning (DL) in other applications in the real world, it is considered a vital tool for upcoming health sector applications, providing solutions with accurate results for medical image analysis. This review provides a comprehensive survey of the state-of-the-art DL models for DR detection and grading using retinal fundus photography. This review thoroughly examined and summarized 81 relevant publications that were published through IEEE Xplore, Web of Science, PubMed, and Scopus between 2018 and 2023 based on the available database with binary or multiclass CNN classification models as well as the main preprocessing techniques. According to the findings of this review, transfer learning has proven to be an excellent technique for addressing the problems of limited resources for data for DR analysis. CNN models having tens or hundreds of layers are the most frequently utilized frameworks for DR classification. The most extensively utilized datasets for DR categorization are Aptos 2019 and EyePACS. Although DL has attained or surpassed human-level DR classification accuracy, there is still more work to be done in real-world clinical procedures.

Downloads

Download data is not yet available.

References

I Kocur and S Resnikoff. Visual impairment and blindness in Europe and their prevention. British Journal of Ophthalmology, 86(7):716–722, 2002. DOI: https://doi.org/10.1136/bjo.86.7.716

Jennifer Evans, Cleone Rooney, Fred Ashwood, Nairupa Dattani, and Richard Wormald. Blindness and partial sight in England and wales: April 1990-march 1991. Health Trends, 28(1):5–12, 1996.

Strategic Policy Sector et al. State of the nation 2012. Science Technology and Innnovation Council, 2013.

NHS. Diabetic eye screening: Your screening results. https://www.nhs.uk/conditions/diabetic-eye-screening/#your-screening-results, 2018. [Online; accessed 23/01/2024].

Bo Wu, Weifang Zhu, Fei Shi, Shuxia Zhu, and Xinjian Chen. Automatic detection of microaneurysms in retinal fundus images. Computerized Medical Imaging and Graphics, 55:106 – 112, 2017. Special Issue on Ophthalmic Medical Image Analysis. DOI: https://doi.org/10.1016/j.compmedimag.2016.08.001

G S Scotland, P McNamee, A D Fleming, K A Goatman, S Philip, G J Prescott, P F Sharp, G J Williams, W Wykes, G P Leese, and J A Olson. Costs and consequences of automated algorithms versus manual grading for the detection of referable diabetic retinopathy. British Journal of Ophthalmology, 94(6):712–719, 2010. DOI: https://doi.org/10.1136/bjo.2008.151126

A Tufail, V Kapetanakis, S Salas-Vega, C Egan, C Rudisill, C Owen, and Rudnicka R. An observational study to assess if automated diabetic retinopathy image assessment software can replace one or more steps of manual imaging grading and to determine their cost-effectiveness. Health Technology Assessment, 20(92):172, 2016. DOI: https://doi.org/10.3310/hta20920

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information Processing Systems 25, pages 1097–1105. Curran Associates, Inc., 2012.

C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Going deeper with convolutions. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 1–9, June 2. DOI: https://doi.org/10.1109/CVPR.2015.7298594

Daniel Shu Wei Ting, Gemmy Chui Ming Cheung, and Tien Yin Wong. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clinical & Experimental Ophthalmology, 44(4):260–277, 2015. DOI: https://doi.org/10.1111/ceo.12696

World Health Organization. World health organization - global report on diabetes, 2016.

Deborah Broadbent, JA Scott, Jiten Vora, and S P Harding. Prevalence of diabetic eye disease in an inner city population: The Liverpool Diabetic Eye Study. Eye (London, England), 13 ( Pt 2):160–5, 05 1999. DOI: https://doi.org/10.1038/eye.1999.43

Rohini Mathur, Ian Douglas, Krishnan Bhaskaran, and Liam Smeeth. Diabetic eye disease: A UK incidence and prevalence study. British Medical Journal, 2017. [Online; accessed 25/12/2023].

Wei Wang and Amy C. Y. Lo. Diabetic retinopathy: Pathophysiology and treatments. International Journal of Molecular Sciences, 19(6), 2018. DOI: https://doi.org/10.3390/ijms19061816

Abdhish R Bhavsar and Neal H Atebara. Diabetic retinopathy. Medscape, 2019.

Donald S. Fong, Lloyd P. Aiello, Frederick L. Ferris, and Ronald Klein. Diabetic retinopathy. Diabetes Care, 27(10):2540–2553, 2004. DOI: https://doi.org/10.2337/diacare.27.10.2540

Health Jade. Vision in diabetic retinopathy patient, 2018. Online; accessed 24/07/2023.

Early Treatment Diabetic Retinopathy Study Research Group, Grading diabetic retinopathy from stereoscopic color fundus photographs—An extension of the modified Airlie House classification: ETDRS report number 10, Ophthalmology, vol. 127, no. 4S, pp. S99–S119, Apr. 2020. DOI: https://doi.org/10.1016/j.ophtha.2020.01.030

C. P. Wilkinson, ‘‘Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales,’’ Ophthalmology, vol. 110, no. 9, pp. 1677–1682, Sep. 2003. DOI: https://doi.org/10.1016/S0161-6420(03)00475-5

S. Zachariah, W. Wykes, and D. Yorston, ‘‘Grading diabetic retinopathy (DR) using the Scottish grading protocol,’’ Community Eye Health, vol. 28, no. 92, pp. 72–73, Jan. 2015.

National Eye Insitute. Structure of the human eye. https://nei.nih.gov/ health/diabetic/retinopathy, 2018. [Online; accessed 24/04/2023].

K. C. Pathak, R. B. Shah, R. R. Tharakan, B. N. Patel, and D. C. Jariwala, ‘‘Deep learning for diabetic retinopathy detection and classification based on fundus images: A review,’’ Comput Biol Med., vol. 135, Jul. 2021, Art. no. 104599.

E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, R. Ordonez, P. Massin, and A. Erginay, B. Charton, and J.-C. Klein, ‘‘Feedback on a publicly distributed image database: The messidor database,’’ Image Anal. Stereol., vol. 33, no. 3, pp. 231–234, 2014. DOI: https://doi.org/10.5566/ias.1155

Kaggle. (2015). Diabetic Retinopathy Detection. [Online]. Available: https://kaggle.com/competitions/diabetic-retinopathy-detection.

Kaggle. (2019). Aptos 2019 Blindness Detection. [Online]. Available: https://kaggle.com/competitions/aptos2019-

M. D. Abrámoff, J. C. Folk, D. P. Han, J. D. Walker, D. F. Williams, S. R. Russell, P. Massin, B. Cochener, P. Gain, L. Tang, M. Lamard, D. C. Moga, G. Quellec, and M. Niemeijer, ‘‘Automated analysis of retinal images for detection of referable diabetic retinopathy,’’ JAMA Ophthalmol., vol. 131, no. 3, pp. 351–357, Mar. 2013. DOI: https://doi.org/10.1001/jamaophthalmol.2013.1743

(2007). Diaretdb1 Dataset. [Online]. Available: http://www.it.lut.fi/ project/imageret/diaretdb1/

L. Giancardo, F. Meriaudeau, T. P. Karnowski, Y. Li, S. Garg, K. W. Tobin, and E. Chaum, ‘‘Exudate-based diabetic macular edema detection in fundus images using publicly available datasets,’’ Med. Image Anal., vol. 16, no. 1, pp. 216–226, Jan. 2012. DOI: https://doi.org/10.1016/j.media.2011.07.004

E-Ophtha. Accessed: Apr. 2023. [Online]. Available: http://www. adcis.net/en/Download-Third-Party/E-Ophtha.html

P. Prentašic, S. Loncaric, Z. Vatavuk, G. Bencic, M. Subašic, T. Petkovic, L. Dujmovic, M. Malenica-Ravlic, N. Budimlija, and R. Tadic, ‘‘Diabetic retinopathy image database (DRiDB): A new database for diabetic retinopathy screening programs research,’’ in Proc. 8th Int. Symp. Image Signal Process. Anal. (ISPA), Sep. 2013, pp. 711–716. DOI: https://doi.org/10.1109/ISPA.2013.6703830

P. Porwal, S. Pachade, R. Kamble, M. Kokare, G. Deshmukh, V. Sahasrabuddhe, and F. Meriaudeau, ‘‘Indian diabetic retinopathy image dataset (IDRiD): A database for diabetic retinopathy screening research,’’ Data, vol. 3, no. 3, p. 25, Jul. 2018. DOI: https://doi.org/10.3390/data3030025

T. Li, Y. Gao, K. Wang, S. Guo, H. Liu, and H. Kang, ‘‘Diagnostic assessment of deep learning algorithms for diabetic retinopathy screening,’’ Inf. Sci., vol. 501, pp. 511–522, Oct. 2019. DOI: https://doi.org/10.1016/j.ins.2019.06.011

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E. Howard, Wayne E. Hubbard, and Lawrence D. Jackel. Handwritten digit recognition with a backpropagation network. In D. S. Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 396–404. Morgan-Kaufmann, 1990.

Aurlien Gron. Hands-On Machine Learning with Scikit-Learn and Tensor Flow Concepts, Tools, and Techniques to Build Intelligent Systems. O’REILLY, 2017.

Geoffrey E. Hinton and Simon Osindero. A fast learning algorithm for deep belief nets. Neural Computation, 18, 2006. DOI: https://doi.org/10.1162/neco.2006.18.7.1527

G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury. Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. IEEE Signal Processing Magazine, 29(6):82–97, Nov 2012. DOI: https://doi.org/10.1109/MSP.2012.2205597

Kaggle: Platform for predictive modelling and analytics competitions. Available at https://www.kaggle.com/. 245

Nada Elgendy and Ahmed Elragal. Big data analytics: A literature review paper. In Petra Perner, editor, Advances in Data Mining. Applications and Theoretical Aspects, pages 214–227. Springer International Publishing, 2014. DOI: https://doi.org/10.1007/978-3-319-08976-8_16

Md. Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Mahmudul Hasan, Brian C. Van Esesn, Abdul A. S. Awwal, and Vijayan K. Asari. The history began from alexnet: A comprehensive survey on deep learning approaches. Computing Research Repository, abs/1803.01164, 2018.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks. Computing Research Repository, abs/1608.06993, 2016. DOI: https://doi.org/10.1109/CVPR.2017.243

Md. Zahangir Alom, Tarek M. Taha, Christopher Yakopcic, Stefan Westberg, Mahmudul Hasan, Brian C Van Esesn, Abdul Awwal, and Vijayan Asari. The history began from alexnet: A comprehensive survey on deep learning approaches. Arxiv, 03 2018.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large scale image recognition. Computing Research Repository, abs/1409.1556, 2014.

Z. Zhao, K. Zhang, X. Hao, J. Tian, M. C. Heng Chua, L. Chen, and X. Xu, ‘‘BiRA-Net: Bilinear attention net for diabetic retinopathy grading,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2019, pp. 1385–1389. DOI: https://doi.org/10.1109/ICIP.2019.8803074

C. K. Lam, D. Yi, M. Guo, and T. Lindsey, ‘‘Automated detection of diabetic retinopathy using deep learning,’’ AMIA Summits Transl. Sci. Proc., vol. 2018, pp. 147–155, May 2018.

C.-H. Hua, T. Huynh-The, K. Kim, S.-Y. Yu, T. Le-Tien, G. H. Park, J. Bang, W. A. Khan, S.-H. Bae, and S. Lee, ‘‘Bimodal learning via trilogy of skip-connection deep networks for diabetic retinopathy risk progression identification,’’ Int. J. Med. Informat., vol. 132, Dec. 2019, Art. no. 103926. DOI: https://doi.org/10.1016/j.ijmedinf.2019.07.005

M. Shaban, Z. Ogur, A. Mahmoud, A. Switala, A. Shalaby, H. Abu Khalifeh, M. Ghazal, L. Fraiwan, G. Giridharan, H. Sandhu, and A. S. El-Baz, ‘‘A convolutional neural network for the screening and staging of diabetic retinopathy,’’ PLoS ONE, vol. 15, no. 6, Jun. 2020, Art. no. e0233514. DOI: https://doi.org/10.1371/journal.pone.0233514

X. Zhang, F. Li, D. Li, Q. Wei, X. Han, B. Zhang, H. Chen, Y. Zhang, B. Mo, B. Hu, D. Ding, X. Li, W. Yu, and Y. Chen, ‘‘Automated detection of severe diabetic retinopathy using deep learning method,’’ Graefe’s Arch. Clin. Experim. Ophthalmol., vol. 260, no. 3, pp. 849–856, Mar. 2022. DOI: https://doi.org/10.1007/s00417-021-05402-x

M. T. Hagos and S. Kant, ‘‘Transfer learning-based detection of DR from small dataset,’’ arXiv:1905.07203.

S. Rêgo, M. Dutra-Medeiros, F. Soares, and M. Monteiro-Soares, ‘‘Screening for DR using an automated diagnostic system based on deep learning: Diagnostic accuracy assessment,’’ Ophthalmologica, vol. 244, no. 3, pp. 250–257, Oct. 2020. DOI: https://doi.org/10.1159/000512638

J. Cao, J. Chen, X. Zhang, Q. Yan, and Y. Zhao, ‘‘Attentional mechanisms and improved residual networks for DR severity classification,’’ J. Healthcare Eng., vol. 2022, pp. 1–10, Mar. 2022. DOI: https://doi.org/10.1155/2022/9585344

C. Suedumrong, K. Leksakul, P. Wattana, and P. Chaopaisarn, ‘‘Application of deep convolutional neural networks VGG-16 and GoogLeNet for level DR detection,’’ in Proc. Future Technol. Conf., vol. 2, Nov. 2021, pp. 56–65. DOI: https://doi.org/10.1007/978-3-030-89880-9_5

G. Kumar, S. Chatterjee, and C. Chattopadhyay, ‘‘DRISTI: A hybrid deep neural network for DR diagnosis,’’ Signal, Image Video Process., vol. 15, no. 8, pp. 1679–1686, Apr. 2021. DOI: https://doi.org/10.1007/s11760-021-01904-7

P. Saranya, S. Prabakaran, R. Kumar, and E. Das, ‘‘Blood vessel segmentation in retinal fundus images for proliferative DR screening using deep learning,’’ Vis. Comput., vol. 38, no. 3, pp. 977–992, Jan. 2021. DOI: https://doi.org/10.1007/s00371-021-02062-0

F. Li, Z. Liu, H. Chen, M. Jiang, X. Zhang, and Z. Wu, ‘‘Automatic detection of DR in retinal fundus photographs based on deep learning algorithm,’’ Transl. Vis. Sci. Technol., vol. 8, no. 6, p. 4, Nov. 2019. DOI: https://doi.org/10.1167/tvst.8.6.4

A. Bora, S. Balasubramanian, B. Babenko, S. Virmani, S. Venugopalan, A. Mitani, G. de Oliveira Marinho, J. A. Cuadros, P. Ruamviboonsuk, G. S. Corrado, L. H. Peng, D. R. Webster, A. V. Varadarajan, N. Hammel, Y. Liu, and P. Bavishi, ‘‘Predicting risk of developing DR using deep learning,’’ Lancet Digit. health, vol. 3, no. 1, pp. e10–e19, Nov. 2020. DOI: https://doi.org/10.1016/S2589-7500(20)30250-8

F. Li, Y. Wang, T. Xu, L. Dong, L. Yan, M. Jiang, X. Zhang, H. Jiang, Z. Wu, and H. Zou, ‘‘Deep learning-based automated detection for DR and diabetic macular oedema in retinal fundus photographs,’’ Eye, vol. 36, no. 7, pp. 1433–1441, Jul. 2021. DOI: https://doi.org/10.1038/s41433-021-01552-8

S. Qummar, F. G. Khan, S. Shah, A. Khan, S. Shamshirband, Z. U. Rehman, I. A. Khan, and W. Jadoon, ‘‘A deep learning ensemble approach for DR detection,’’ IEEE Access, vol. 7, pp. 150530–150539, 2019. DOI: https://doi.org/10.1109/ACCESS.2019.2947484

M. Ashikur, M. Arifur, and J. Ahmed, ‘‘Automated detection of DR using deep residual learning,’’ Int. J. Comput. Appl., vol. 177, no. 42, pp. 25–32, Mar. 2020. DOI: https://doi.org/10.5120/ijca2020919927

M. S. Sallam, A. L. Asnawi, and R. F. Olanrewaju, ‘‘DR grading using ResNet convolutional neural network,’’ in Proc. IEEE Conf. Big Data Anal. (ICBDA), Nov. 2020, pp. 73–78. DOI: https://doi.org/10.1109/ICBDA50157.2020.9289822

W. Zhang, J. Zhong, S. Yang, Z. Gao, J. Hu, Y. Chen, and Z. Yi, ‘‘Automated identification and grading system of DR using deep neural networks,’’ Knowl.-Based Syst., vol. 175, pp. 12–25, Jul. 2019. DOI: https://doi.org/10.1016/j.knosys.2019.03.016

C. Bhardwaj, S. Jain, and M. Sood, ‘‘Deep learning–based DR severity grading system employing quadrant ensemble model,’’ J. Digit. Imag., vol. 34, no. 2, pp. 440–457, Mar. 2021. DOI: https://doi.org/10.1007/s10278-021-00418-5

S. Seth and B. Agarwal, ‘‘A hybrid deep learning model for detecting DR,’’ J. Statist. Manage. Syst., vol. 21, no. 4, pp. 569–574, Jun. 2018. DOI: https://doi.org/10.1080/09720510.2018.1466965

Y.-P. Liu, Z. Li, C. Xu, J. Li, and R. Liang, ‘‘Referable DR identification from eye fundus images with weighted path for convolutional neural network,’’ Artif. Intell. Med., vol. 99, Aug. 2019, Art. no. 101694. DOI: https://doi.org/10.1016/j.artmed.2019.07.002

P. Shah, D. K. Mishra, M. P. Shanmugam, B. Doshi, H. Jayaraj, and R. Ramanjulu, ‘‘Validation of deep convolutional neural network-based algorithm for detection of DR—Artificial intelligence versus clinician for screening,’’ Indian J. Ophthalmol., vol. 68, pp. 398–405, Feb. 2020. DOI: https://doi.org/10.4103/ijo.IJO_966_19

A. K. Gangwar and V. Ravi, ‘‘DR detection using transfer learning and deep learning,’’ in Evolution in Computational Intelligence, vol. 1176. Singapore: Springer, Sep. 2020, pp. 679–689. DOI: https://doi.org/10.1007/978-981-15-5788-0_64

X. Feng, S. Zhang, L. Xu, X. Huang, and Y. Chen, ‘‘Robust classification model for DR based on the contrastive learning method with a convolutional neural network,’’ Appl. Sci., vol. 12, no. 23, p. 12071, Nov. 2022. DOI: https://doi.org/10.3390/app122312071

B. K. Anoop, ‘‘Binary classification of DR-DR using CNN with fundus colour images,’’ Mater. Today, Proc., vol. 58, pp. 212–216, Jan. 2022. DOI: https://doi.org/10.1016/j.matpr.2022.01.466

P. Macsik, J. Pavlovicova, J. Goga, and S. Kajan, ‘‘Local binary CNN for DR classification on fundus images,’’ Acta Polytechnica Hungarica, vol. 19, no. 7, pp. 27–45, 2022. DOI: https://doi.org/10.12700/APH.19.7.2022.7.2

M. M. Farag, M. Fouad, and A. T. Abdel-Hamid, ‘‘Automatic severity classification of DR based on DenseNet and convolutional block attention module,’’ IEEE Access, vol. 10, pp. 38299–38308, 2022. DOI: https://doi.org/10.1109/ACCESS.2022.3165193

A. Bilal, G. Sun, S. Mazhar, A. Imran, and J. Latif, ‘‘A transfer learning and U-Net-based automatic detection of DR from fundus images,’’ Comput. Methods Biomechanics Biomed. Eng., Imag. Visualizat., vol. 10, no. 6, pp. 663–674, Nov. 2022. DOI: https://doi.org/10.1080/21681163.2021.2021111

M. R. Islam, L. F. Abdulrazak, M. Nahiduzzaman, M. O. F. Goni, M. S. Anower, M. Ahsan, J. Haider, and M. Kowalski, ‘‘Applying supervised contrastive learning for the detection of DR and its severity levels from fundus images,’’ Comput. Biol. Med., vol. 146, Jul. 2022, Art. no. 105602. DOI: https://doi.org/10.1016/j.compbiomed.2022.105602

Y. Kale and S. Sharma, ‘‘Detection of five severity levels of DR using ensemble deep learning model,’’ Multimedia Tools Appl., vol. 82, no. 12, pp. 19005–19020, Dec. 2022. DOI: https://doi.org/10.1007/s11042-022-14277-x

R. Pugal Priya, T. Saradadevi Sivarani, and A. Gnana Saravanan, ‘‘Deep long and short term memory based red fox optimization algorithm for DR detection and classification,’’ Int. J. Numer. Methods Biomed. Eng., vol. 38, no. 3, Mar. 2022, Art. no. e356. DOI: https://doi.org/10.1002/cnm.3560

M. Nahiduzzaman, M. R. Islam, M. O. F. Goni, M. S. Anower, M. Ahsan, J. Haider, and M. Kowalski, ‘‘DR identification using parallel convolutional neural network based feature extractor and ELM classifier,’’ Expert Syst. Appl., vol. 217, May 2023, Art. no. 119557. DOI: https://doi.org/10.1016/j.eswa.2023.119557

C.-L. Lin and K.-C. Wu, ‘‘Development of revised ResNet-50 for DR detection,’’ BMC Bioinf., vol. 24, no. 1, p. 157, Apr. 2023. DOI: https://doi.org/10.1186/s12859-023-05293-1

M. Jian, H. Chen, C. Tao, X. Li, and G. Wang, ‘‘Triple-DRNet: A triplecascade convolution neural network for DR grading using fundus images,’’ Comput. Biol. Med., vol. 155, Mar. 2023, Art. no. 106631. DOI: https://doi.org/10.1016/j.compbiomed.2023.106631

G. Alwakid, W. Gouda, M. Humayun, and N. Z. Jhanjhi, ‘‘Deep learning enhanced DR image classification,’’ Digit. Health, vol. 9, Aug. 2023, Art. no. 20552076231194942. DOI: https://doi.org/10.1177/20552076231194942

S. Zulaikha Beevi, ‘‘Multi-level severity classification for DR based on hybrid optimization enabled deep learning,’’ Biomed. Signal Process. Control, vol. 84, Jul. 2023, Art. no. 104736. DOI: https://doi.org/10.1016/j.bspc.2023.104736

A. R. Wahab Sait, ‘‘A lightweight DR detection model using a deep-learning technique,’’ Diagnostics, vol. 13, no. 19, p. 3120, Oct. 2023. DOI: https://doi.org/10.3390/diagnostics13193120

Downloads

Published

20-06-2024

How to Cite

[1]
N. A. Sadek, Z. T. Al-Dahan, and S. A. Rattan, “Comprehensive Survey of the State-of-the-Art Deep Learning Models for Diabetic Retinopathy Detection and Grading Using Retinal Fundus Photography”, NJES, vol. 27, no. 2, pp. 155–163, Jun. 2024, doi: 10.29194/NJES.27020155.

Similar Articles

1-10 of 67

You may also start an advanced similarity search for this article.