Effects of Composite Material Layers on the Mechanical Properties for Partial Foot Prosthetic Socket
DOI:
https://doi.org/10.29194/NJES21020253Keywords:
Partial Foot Socket, Tensile, Fatigue, Laminated CompositesAbstract
In this work, nine types of laminated composite materials used for experimental study to investigate the tensile and fatigue properties of partial foot prosthetic socket which fabricated by using vacuum pressure system . The composite material matrix were Lamination 80:20and reinforced with nine types of laminations (perlon, n-glass, fiber glass and carbon) by variation of thickness according to lamination. Results show that the mechanical properties were improved by increasing the two layers of carbon fiber, fiber glass and n-glass layers instead of zero layer with six layers of perlon lead to the increased in(yield strength ?y, ultimate tensile strength ?ult and modules of elasticity E with (71% ,76% and 58%) respectively for carbon fiber, (20% , 19% and 40%) for fiber glass and ( 22% , 5.5% and 29% ) for n-glass. Results show that (3perlon+2carbon fiber+3perlon) gives the best value of mechanical properties and has higher Endurance limit stresses (?e) which increase lifetime for the patient . It is recommend to use this type of lamination for the layup partial foot prosthetic socket because it meets the demand lamination layers for acceptable mechanical properties and its minimizing the cost of socket lamination to suitable costing value.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Author(s) Rights
- Each author retains the right to use the work for non-commercial purposes as well as for further research and spoken presentations.
- Each author retains the right to use the illustrations and research data in his/her future work.
- Only one offprint is provided free for each author. The authors can order offprints at the proof stage at certain rates depending on the number of additional copies required and the year of publication.
Publisher Rights
The publisher of the journal has full rights for publication of the submitted manuscripts, electronic and facsimile formats and for electronic capture, reproduction and licensing in all formats now and in perpetuity in the original and all derivative works.