A Robust Algorithm for Ear Recognition System Based on Self Organization Maps
Keywords:
Recognition System, Robust AlgorithmAbstract
This paper presents a robust algorithm for ear identification based on geometrical features of the ear and Kohnen Self Organization Maps (SOM). Using ears in identifying people has been interesting at least 100 years. The researches still discuss if the ears are unique or unique enough to be used as biometrics. Ear
shape applications are not commonly used, yet, but the area is interesting especially in crime investigation. In this paper we present the basics of using ear as biometric for person identification and authentication. High resolution ear images are taken by high resolution digital camera. Six images have been
taken for twenty three persons. Four geometrical distances were calculated for each image. These geometrical distances are used as an input to the unsupervised Kohonen self organization maps. The accuracy of identification were found to be equal to 98%, for the proposed system .We conclude that that
the proposed model gives faster and more accurate identification of persons based on the ear biometrics and it works as promising tool for person identification of persons from the mage of their ear for criminal investigation purposes.
Downloads
Downloads
Published
Issue
Section
License
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.