Influence of Environmental Fluctuations on Non-Diffracting Beams Used to Secure Data

Authors

  • Kamal H. Kadem Dept. of Laser and Optoelectronics Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Mohammed F. Mohammed Dept. of Laser and Optoelectronics Engineering, Al-Nahrain University, Baghdad, Iraq.

DOI:

https://doi.org/10.29194/NJES.28040531

Keywords:

Free-Space, Optical Communication, Optifusion, Non-Diffracting Beams, Atmospheric Turbulence, Scintillation Index, Overlap, Strehl Ratio

Abstract

This study simulates a free-space optical communication system that uses optical beams with varying responses to atmospheric disturbances to secure transmitted data. Atmospheric turbulence was modeled with high accuracy to replicate real-world conditions closely. Non-diffracting beams were generated and used to represent optical beams and compared in two scenarios, conventional data transmission, and optifusion data protection. This approach facilitated a comprehensive analysis of the transmission environment and the effectiveness of optifusion, identifying the most suitable non-diffracting beam types for secure data propagation. By analyzing the values of key performance metrics of the selected non-diffracting beams across different weather conditions and long propagation distances, the study demonstrated the simulation system's reliability and the optifusion method's effectiveness in enhancing data security. The results showed that non-diffracting beams resist atmospheric turbulences strongly, emphasizing their potential for secure, long-range free-space optical communications.

Downloads

Download data is not yet available.

References

H. M. Razaq and W. K. Saad, "Review of Free Space Optical Communication: Advantages and Disadvantages," in Proc. 10th Int. Conf. Wireless Netw. Mobile Commun. (WINCOM), Istanbul, Turkey, Oct. 2023, pp. 1–5. doi: 10.1109/WINCOM59760.2023.10322932. DOI: https://doi.org/10.1109/WINCOM59760.2023.10322932

A. K. Majumdar, Advanced Free Space Optics (FSO): A Systems Approach, 1st ed., Springer Series in Optical Sciences. New York, NY, USA: Springer, 2015. doi: 10.1007/978-1-4939-0918-6. DOI: https://doi.org/10.1007/978-1-4939-0918-6

S. Sawhil, S. Agarwal, Y. Singhal, and P. Bhardwaj, "An Overview of Free Space Optical Communication," Int. J. Eng. Trends Technol. (IJETT), vol. 55, no. 3, pp. 120–125, Jan. 2018. doi: 10.14445/22315381/IJETT-V55P223. DOI: https://doi.org/10.14445/22315381/IJETT-V55P223

Z. Zalevsky, G. S. Buller, T. Chen, M. Cohen, and R. Barton-Grimley, "Light detection and ranging (LiDAR): introduction," J. Opt. Soc. Am. A, vol. 38, no. 11, pp. LID1–LID2, Nov. 2021. doi: 10.1364/JOSAA.445792. DOI: https://doi.org/10.1364/JOSAA.445792

S. Mane, "Overview on Remote Sensing Technologies: Challenges and Applications," ASTROEX Research Association, Dec. 2022. [Online].Available:https://www.researchgate.net/publication/366216574.

M. C. Roggemann and B. M. Welsh, Imaging Through Turbulence, 1st ed. Boca Raton, FL, USA: CRC Press, 1996. doi: 10.1201/9780203751282. DOI: https://doi.org/10.1201/9780203751282

D. C. Cowan, J. Recolons, L. C. Andrews, and C. Y. Young, "Propagation of flattened Gaussian beams in the atmosphere: a comparison of theory with a computer simulation model," Proc. SPIE - Atmospheric Propagation III, vol. 6215, pp. 62150B, 2006. doi: 10.1117/12.669601. DOI: https://doi.org/10.1117/12.669601

J. P. Amaral, J. C. A. Rocha, E. J. S. Fonseca, and A. J. Jesus-Silva, "Method to define non-diffracting optical beams mimicking the shape of simple plane curves," Appl. Opt., vol. 58, no. 13, pp. 3659–3663, 2019. doi: 10.1364/AO.58.003659. DOI: https://doi.org/10.1364/AO.58.003659

Y.-X. Ren, H. He, H. Tang, and K. K. Y. Wong, "Non-diffracting light wave: Fundamentals and biomedical applications," Front. Phys., vol. 9, Art. 698343, 2021. doi: 10.3389/fphy.2021.698343. DOI: https://doi.org/10.3389/fphy.2021.698343

K. H. Kadem and M. F. Mohammed, "OptiFusion steganography method based on masking OFDM signal in Gaussian beam intensity," J. Opt., Oct. 2024. doi: 10.1007/s12596-024-02253-7. DOI: https://doi.org/10.1007/s12596-024-02253-7

S. Sahoo, C. Panda, U. Bhanja, "Performance evaluation of an OFDM-FSO-steganography model, in 2023 International Conference on Microwave," Optical, and Communication Engineering (ICMOCE), IEEE, 2023, pp. 1-6. doi: 10.1109/ICMOCE57812.2023.10166349. DOI: https://doi.org/10.1109/ICMOCE57812.2023.10166349

H. Song, A. Almaiman, H. Song, Z. Zhao, R. Zhang, K. Pang, C. Liu, L. Li, K. Manukyan, S. Zach, N. Cohen, M. Tur, A.E. Willner, "Hiding a low-intensity 50-Gbit/s QPSK free-space OAM beam using an orthogonal co-axial high-intensity 50-Gbit/s QPSK beam," Appl. Opt, 2020. doi: 10.1364/AO.396386. DOI: https://doi.org/10.1364/AO.396386

R. K. Tyson and B. W. Frazier, Field Guide to Adaptive Optics, 2nd ed., vol. FG24. Bellingham, WA, USA: SPIE Press, 2012. doi: 10.1117/3.923078. DOI: https://doi.org/10.1117/3.923078

F. Wang, W. Du, Q. Yuan, D. Liu, and S. Feng, "A survey of structure of atmospheric turbulence in atmosphere and related turbulent effects," Atmosphere, vol. 12, no. 12, pp. 1–14, Dec. 2021. doi: 10.3390/atmos12121608. DOI: https://doi.org/10.3390/atmos12121608

L. C. Andrews and R. L. Phillips, Laser Beam Propagation through Random Media, 2nd ed. Bellingham, WA, USA: SPIE Press, 2005, pp. 11–366. doi: 10.1117/3.626196. DOI: https://doi.org/10.1117/3.626196

F. L. dos Santos, L. Botero-Bolívar, C. H. Venner, and L. D. de Santana, "Modelling the Dissipation Range of von Kármán Turbulence Spectrum," in AIAA AVIATION Forum, Aug. 2021, pp. 1–18. doi: 10.2514/6.2021-2292. DOI: https://doi.org/10.2514/6.2021-2292

M. A. Cox, N. Mphuthi, I. Nape, N. P. Mashaba, L. Cheng, and A. Forbes, "Structured light in turbulence," IEEE J. Sel. Topics Quantum Electron., vol. 27, no. 2, pp. 7500521, Mar. 2021. doi: 10.1109/JSTQE.2020.3023790. DOI: https://doi.org/10.1109/JSTQE.2020.3023790

K. S. Shaik, "Atmospheric Propagation Effects Relevant to Optical Communications," TDA Prog. Rep., vol. 42-94, Jet Propulsion Laboratory, California Institute of Technology, Apr.–Jun. 1988.[Online].Available:https://ntrs.nasa.gov/citations/20040191353.

N. Blaunstein and N. S. Kopeika, Optical Waves and Laser Beams in the Irregular Atmosphere. Boca Raton, FL, USA: CRC Press, 2018. ISBN: 978-1-138-10520-1. DOI: https://doi.org/10.1201/9780203732960-1

L. C. Andrews, "An Analytical Model for the Refractive Index Power Spectrum and Its Application to Optical Scintillations in the Atmosphere," J. Mod. Opt., vol. 39, no. 9, pp. 1849–1853, 1992. doi: 10.1080/09500349214551931. DOI: https://doi.org/10.1080/09500349214551931

L. C. Andrews, R. L. Phillips, and C. Y. Young, Laser Beam Scintillation with Applications. Bellingham, WA, USA: SPIE Press, 2001, ch. 2. doi: 10.1117/3.412858.ch2. DOI: https://doi.org/10.1117/3.412858

M. Alavinejad, B. Ghafary, and F. D. Kashani, "Analysis of the propagation of flat-topped beam with various beam orders through turbulent atmosphere," Opt. Lasers Eng., vol. 46, no. 1, pp. 1–5, Jan. 2008. doi: 10.1016/j.optlaseng.2007.07.003. DOI: https://doi.org/10.1016/j.optlaseng.2007.07.003

J. Demas, L. Rishøj, and S. Ramachandran, "Free-space beam shaping for precise control and conversion of modes in optical fiber," Opt. Express, vol. 23, no. 22, pp. 28531–28543, Nov. 2015. doi: 10.1364/OE.23.028531. DOI: https://doi.org/10.1364/OE.23.028531

R. Brüning, Y. Zhang, M. McLaren, M. Duparré, and A. Forbes, "Overlap relation between free space Laguerre Gaussian modes and step-index fiber modes," J. Opt. Soc. Am. A, vol. 32, no. 6, pp. 1024–1031, Jun. 2015. doi: 10.1364/JOSAA.32.001678. DOI: https://doi.org/10.1364/JOSAA.32.001678

Y. K. Chahine, S. A. Tedder, B. E. Vyhnalek, and A. C. Wroblewski, "Beam propagation through atmospheric turbulence using an altitude-dependent structure profile with non-uniformly distributed phase screens," Proc. SPIE, vol. 11272, pp. 1127215-1–1127215-12, 2020. doi: 10.1117/12.2543583. DOI: https://doi.org/10.1117/12.2543583

M. Mazilu, D. J. Stevenson, F. Gunn-Moore, and K. Dholakia, "Light beats the spread: ‘non-diffracting’ beams," Laser Photon. Rev., vol. 4, no. 4, pp. 529–537, Sep. 2010. doi: 10.1002/lpor.200910019 DOI: https://doi.org/10.1002/lpor.200910019

T. A. Vieira, I. S. V. Yepes, R. A. B. Suarez, M. R. R. Gesualdi, and M. Zamboni-Rached, "Optical reconstruction of non-diffracting beams via photorefractive holography," Appl. Phys. B, vol. 123, no. 134, pp. 1–12, 2017. doi: 10.1007/s00340-017-6711-1. DOI: https://doi.org/10.1007/s00340-017-6711-1

Z. Bouchal, "Nondiffracting optical beams: Physical properties, experiments, and applications," Czechoslovak J. Phys., vol. 53, no. 7, pp. 535–542, Jul. 2003. doi: 10.1023/A:1024802801048. DOI: https://doi.org/10.1023/A:1024802801048

I. S. V. Yepes, T. A. Vieira, R. A. B. Suarez, S. R. C. Fernandez, and M. R. R. Gesualdi, "Phase and intensity analysis of non-diffracting beams via digital holography," Opt. Commun., vol. 437, pp. 121–127, Dec. 2018. doi: 10.1016/j.optcom.2018.12.060. DOI: https://doi.org/10.1016/j.optcom.2018.12.060

Y. Yang, A. Forbes, and L. Cao, "A review of liquid crystal spatial light modulators: devices and applications," Opto-Electron. Sci., vol. 2, 2023. doi: 10.29026/oes.2023.230026. DOI: https://doi.org/10.29026/oes.2023.230026

Downloads

Published

20-12-2025

How to Cite

[1]
K. H. Kadem and M. . F. Mohammed, “Influence of Environmental Fluctuations on Non-Diffracting Beams Used to Secure Data”, NJES, vol. 28, no. 4, pp. 531–544, Dec. 2025, doi: 10.29194/NJES.28040531.

Similar Articles

1-10 of 183

You may also start an advanced similarity search for this article.