Crude Oil Demulsification Using Electro-Coalescence Method: A Comprehensive Review
DOI:
https://doi.org/10.29194/NJES.28020195Keywords:
Electro-Coalescence, Demulsification, Electrode Geometry, Water-in-Oil Emulsions, Electrode MaterialsAbstract
The separation of water from crude oil emulsions is a critical and complex challenge in petroleum production and processing. Water-in-oil (W/O) emulsions increase viscosity, pose corrosion risks, reduce refining efficiency, and raise significant environmental concerns. Traditional separation methods often struggle with stable emulsions containing small droplets due to limitations in cost, environmental impact, and effectiveness. Electro-coalescence demulsification has emerged as a promising technique that applies electric fields to enhance droplet coalescence, facilitating efficient water removal. This comprehensive review examines the influence of electrode geometry on electro-coalescence systems in depth, synthesizes key findings from numerous studies, and provides a detailed analysis of electrode spacing calculations, critical conditions for effective demulsification, and optimal operational parameters. By exploring these aspects comprehensively, the review offers insights into how electrode design affects demulsification efficiency, guiding future advancements in crude oil processing and contributing to more sustainable practices in the petroleum industry.
Downloads
References
S. Kokal, “Crude Oil Emulsions: A State-of-The-Art Review,” SPE Production & Facilities, vol. 20, no. 01, pp. 5–13, 2005, doi: 10.2118/77497-pa.
N. H. R. Abdurahman Y.M.; Azhari N. H.; Hayder B.A., “Pipeline transportation of viscous crudes as concentrated oil-in-water emulsions,” J Pet Sci Eng, vol. 90, no. NA, pp. 139–144, 2012, doi: 10.1016/j.petrol.2012.04.025.
J. A. Sjöblom Narve; Auflem Inge Harald; Brandal Øystein; Havre Trond Erik; Sæther Ø.; Westvik Arild; Johnsen Einar Eng; Kallevik Harald, “Our current understanding of water-in-crude oil emulsions. - Recent characterization techniques and high pressure performance,” Adv Colloid Interface Sci, vol. 100, no. NA, pp. 399–473, 2003, doi: 10.1016/s0001-8686(02)00066-0.
Z. Liu, L. Zou, J. Qiao, C. Shi, and X. Liu, “The influence of the viscosity of crude oil on liquid-dynamic noise characteristics in the volute shell of oil transfer pump,” Measurement (Lond), vol. 197, Jun. 2022, doi: 10.1016/j.measurement.2022.111285.
N. E. ; T. Shlegel P.P.; Strizhak Pavel A., “Influence of viscosity, surface and interfacial tensions on the liquid droplet collisions,” Chem Eng Sci, vol. 220, no. NA, pp. 115639-NA, 2020, doi: 10.1016/j.ces.2020.115639.
Y. Liu et al., “Experimental Study on Water-in-Heavy-Oil Droplets Stability and Viscosity Variations in the Dilution Process of Water-in-Heavy-Oil Emulsions by Light Crude Oil,” Energies (Basel), vol. 17, no. 2, Jan. 2024, doi: 10.3390/en17020332.
M.-H. K. Ese Peter K., “Stabilization of water-in-oil emulsions by naphthenic acids and their salts: Model compounds, role of pH, and soap: Acid ratio,” J Dispers Sci Technol, vol. 25, no. 3, pp. 253–261, 2004, doi: 10.1081/dis-120038634.
C. F. Flores Eugenio A.; Hernández E.; Castro Laura V.; García A.; Álvarez Fernando Carballo; Vázquez Flavio, “Anion and cation effects of ionic liquids and ammonium salts evaluated as dehydrating agents for super-heavy crude oil: Experimental and theoretical points of view,” J Mol Liq, vol. 196, no. 196, pp. 249–257, 2014, doi: 10.1016/j.molliq.2014.03.044.
Z. M. Z. Wang Jian, “Corrosion of multiphase flow pipelines: the impact of crude oil,” Corrosion Reviews, vol. 34, no. 1–2, pp. 17–40, 2016, doi: 10.1515/corrrev-2015-0053.
Z. M. L. Wang Qing Yu; Wang Jian; Han Xia; Zhu Wei; Zhang Jian; Song Guang-Ling, “Corrosion mitigation behavior of an alternately wetted steel electrode in oil/water media,” Corros Sci, vol. 152, no. NA, pp. 140–152, 2019, doi: 10.1016/j.corsci.2019.03.008.
S. Hailan et al., “Purification of colloidal oil in water emulsions by cationic adsorbent prepared from recycled polyethylene waste,” Process Safety and Environmental Protection, vol. 183, pp. 771–781, Mar. 2024, doi: 10.1016/j.psep.2024.01.042.
N. A. K. E. Sima Ali; Reiahisamani Narges; Rasekh Behnam, “Bio-based remediation of petroleum-contaminated saline soils: Challenges, the current state-of-the-art and future prospects.,” J Environ Manage, vol. 250, no. NA, p. 109476, 2019, doi: 10.1016/j.jenvman.2019.109476.
C. B. Z. ; S. de Oliveira W. J.; Santana C. F.; Santana Cesar Costapinto; Dariva Cláudio; Franceschi Elton; Guarnieri Ricardo A.; Fortuny Montserrat; Santos Alexandre F., “Rheological Properties of Water-in-Brazilian Crude Oil Emulsions: Effect of Water Content, Salinity, and pH,” Energy & Fuels, vol. 32, no. 8, pp. 8880–8890, 2018, doi: 10.1021/acs.energyfuels.8b01227.
A. M. Asatekin Anne M., “Oil industry wastewater treatment with fouling resistant membranes containing amphiphilic comb copolymers.,” Environ Sci Technol, vol. 43, no. 12, pp. 4487–4492, 2009, doi: 10.1021/es803677k.
J. W. Wu Wei; Shihong Li; Zhong Qi; Liu Fu; Zheng Jinhuan; Wang Jiping, “The effect of membrane surface charges on demulsification and fouling resistance during emulsion separation,” J Memb Sci, vol. 563, no. NA, pp. 126–133, 2018, doi: 10.1016/j.memsci.2018.05.065.
W. Faisal and F. Almomani, “A critical review of the development and demulsification processes applied for oil recovery from oil in water emulsions,” Chemosphere, vol. 291, Mar. 2022, doi: 10.1016/j.chemosphere.2021.133099.
M. I. Zoubeik Mohamed; Salama Amgad; Henni Amr, “New Developments in Membrane Technologies Used in the Treatment of Produced Water: A Review,” Arab J Sci Eng, vol. 43, no. 5, pp. 2093–2118, 2017, doi: 10.1007/s13369-017-2690-0.
R. J. ; dos R. Cassella Luis Gustavo T.; Santelli Ricardo Erthal; Oliveira Eliane Padua, “Direct determination of manganese in produced waters from petroleum exploration by Electrothermal Atomic Absorption Spectrometry using Ir-W as permanent modifier.,” Talanta, vol. 85, no. 1, pp. 415–419, 2011, doi: 10.1016/j.talanta.2011.03.084.
A. P. Fakhru’l-Razi Alireza; Abdullah Luqman Chuah; Biak Dayang Radiah Awang; Madaeni Sayed Siavash; Abidin Zurina Zainal, “Review of technologies for oil and gas produced water treatment,” J Hazard Mater, vol. 170, no. 2, pp. 530–551, 2009, doi: 10.1016/j.jhazmat.2009.05.044.
Z. V. Khatib Paul, “Water to Value - Produced Water Management for Sustainable Field Development of Mature and Green Fields,” Journal of Petroleum Technology, vol. 55, no. 01, pp. 26–28, 2003, doi: 10.2118/0103-0026-jpt.
M. J. Nasiri Iman; Parniankhoy Behdad, “Oil and Gas Produced Water Management: A Review of Treatment Technologies, Challenges, and Opportunities,” Chem Eng Commun, vol. 204, no. 8, pp. 990–1005, 2017, doi: 10.1080/00986445.2017.1330747.
D. L. F. Daniel-David A.; Pezron Isabelle; Dalmazzone Christine; Noik Christine; Barré Loïc; Komunjer L., “Destabilisation of Water-in-Crude Oil Emulsions by Silicone Copolymer Demulsifiers,” Oil & Gas Science and Technology - Revue de l’IFP, vol. 63, no. 1, pp. 165–173, 2008, doi: 10.2516/ogst:2008002.
B. W. Huang Jie; Zhang Wei; Fu Cheng; Wang Ying; Liu Xiangbin, “Screening and Optimization of Demulsifiers and Flocculants Based on ASP Flooding-Produced Water,” Processes, vol. 7, no. 4, pp. 239-NA, 2019, doi: 10.3390/pr7040239.
W. Y. Kang Xia; Yang Hongbin; Zhao Yilu; Huang Zitong; Hou Xiaoyu; Sarsenbekuly Bauyrzhan; Zhu Zhou; Wang Pengxiang; Zhang Xiangfeng; Geng Jie; Aidarova Saule, “Demulsification performance, behavior and mechanism of different demulsifiers on the light crude oil emulsions,” Colloids Surf A Physicochem Eng Asp, vol. 545, no. NA, pp. 197–204, 2018, doi: 10.1016/j.colsurfa.2018.02.055.
F. Fallah, M. Khorasani, and M. Ebrahimi, “Comparative study of gel emulsification and direct mechanical emulsification methods,” Colloids Surf A Physicochem Eng Asp, vol. 492, pp. 207–212, Mar. 2016, doi: 10.1016/j.colsurfa.2015.12.018.
H. S. Z. Lee Chaolun; Yang Bao, “Separations of Water-In-Oil Emulsions by Electrostatic Field at the Elevated Temperature,” J Appl Mech Eng, vol. 07, no. 04, p. NA-NA, 2018, doi: 10.4172/2168-9873.1000312.
M. ; G. Mousavichoubeh Mojtaba; Shariaty-Niassar Mojtaba, “Electro-coalescence of an aqueous droplet at an oil–water interface,” Chemical Engineering and Processing: Process Intensification, vol. 50, no. 3, pp. 338–344, 2011, doi: 10.1016/j.cep.2010.09.017.
S. H. G. Mousavi Mojtaba; Buckley M., “Electro-coalescence of water drops in oils under pulsatile electric fields,” Chem Eng Sci, vol. 120, no. NA, pp. 130–142, 2014, doi: 10.1016/j.ces.2014.08.055.
M. ; G. Mousavichoubeh Mojtaba; Shariaty-Niassar Mojtaba, “Electro-coalescence of an aqueous droplet at an oil–water interface,” Chemical Engineering and Processing: Process Intensification, vol. 50, no. 3, pp. 338–344, 2011, doi: 10.1016/j.cep.2010.09.017.
S. H. G. Mousavi Mojtaba; Buckley M., “Electro-coalescence of water drops in oils under pulsatile electric fields,” Chem Eng Sci, vol. 120, no. NA, pp. 130–142, 2014, doi: 10.1016/j.ces.2014.08.055.
Y. C. Shi Jiaqing; Pan Zehao, “Experimental Study on the Performance of a Novel Compact Electrostatic Coalescer with Helical Electrodes,” Energies (Basel), vol. 14, no. 6, pp. 1733-NA, 2021, doi: 10.3390/en14061733.
J. S. ; G. Eow Mojtaba, “Electrocoalesce-separators for the separation of aqueous drops from a flowing dielectric viscous liquid,” Sep Purif Technol, vol. 29, no. 1, pp. 63–77, 2002, doi: 10.1016/s1383-5866(02)00093-x.
J. S. ; G. Eow Mojtaba, “Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology,” Chemical Engineering Journal, vol. 85, no. 2, pp. 357–368, 2002, doi: 10.1016/s1385-8947(01)00250-9.
J. S. ; G. Eow Mojtaba, “Drop–drop coalescence in an electric field: the effects of applied electric field and electrode geometry,” Colloids Surf A Physicochem Eng Asp, vol. 219, no. 1, pp. 253–279, 2003, doi: 10.1016/s0927-7757(03)00051-7.
J. S. ; G. Eow Mojtaba, “Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology,” Chemical Engineering Journal, vol. 85, no. 2, pp. 357–368, 2002, doi: 10.1016/s1385-8947(01)00250-9.
S. H. G. Mousavi Mojtaba; Buckley M., “Electro-coalescence of water drops in oils under pulsatile electric fields,” Chem Eng Sci, vol. 120, no. NA, pp. 130–142, 2014, doi: 10.1016/j.ces.2014.08.055.
S. T. Mhatre Rochish, “Electrocoalescence in non-uniform electric fields: An experimental study,” Chemical Engineering and Processing: Process Intensification, vol. 96, no. NA, pp. 28–38, 2015, doi: 10.1016/j.cep.2015.07.025.
S. S. Luo Jarrod; Luo Tengfei, “Effect of electric field non-uniformity on droplets coalescence,” Phys Chem Chem Phys, vol. 18, no. 43, pp. 29786–29796, 2016, doi: 10.1039/c6cp06085d.
S. T. Mhatre Rochish, “Electrocoalescence in non-uniform electric fields: An experimental study,” Chemical Engineering and Processing: Process Intensification, vol. 96, no. NA, pp. 28–38, 2015, doi: 10.1016/j.cep.2015.07.025.
H. K. Hadidi Reza; Manshadi Mohammad K.D., “Numerical simulation of a novel non-uniform electric field design to enhance the electrocoalescence of droplets,” European Journal of Mechanics - B/Fluids, vol. 80, no. NA, pp. 206–215, 2020, doi: 10.1016/j.euromechflu.2019.10.010.
N. A. F. Kakhki Mohammad; Rahimpour Mohammad Reza, “Effect of current frequency on crude oil dehydration in an industrial electrostatic coalescer,” J Taiwan Inst Chem Eng, vol. 67, no. NA, pp. 1–10, 2016, doi: 10.1016/j.jtice.2016.06.021.
J. S. ; G. Eow Mojtaba, “Electrostatic enhancement of coalescence of water droplets in oil: a review of the technology,” Chemical Engineering Journal, vol. 85, no. 2, pp. 357–368, 2002, doi: 10.1016/s1385-8947(01)00250-9.
J. S. ; G. Eow Mojtaba; Sharif Adel O., “Experimental studies of deformation and break-up of aqueous drops in high electric fields,” Colloids Surf A Physicochem Eng Asp, vol. 225, no. 1, pp. 193–210, 2003, doi: 10.1016/s0927-7757(03)00330-3.
M. M. Ghadiri C.M.; Arteaga P.A.; Tüzün Ugur; Formisani Brunello, “Evaluation of the single contact electrical clamping force,” Chem Eng Sci, vol. 61, no. 7, pp. 2290–2300, 2006, doi: 10.1016/j.ces.2005.05.009.
S. Mhatre et al., “Electrostatic phase separation: A review,” Apr. 01, 2015, Institution of Chemical Engineers. doi: 10.1016/j.cherd.2015.02.012.
K. M. ; A. AlAqad Abdalla M.; Al Hamouz Othman Charles S.; Saleh Tawfik A., “Silver nanoparticles decorated graphene modified Carbon paste electrode for molecular methimazole determination,” Chemical Data Collections, vol. 11–12, no. NA, pp. 168–182, 2017, doi: 10.1016/j.cdc.2017.09.003.
Z.-Y. L. Luo Shu-Shen; Mo Dong-Chuan, “Cauliflower-like Nickel with Polar Ni(OH)2/NiO x F y Shell to Decorate Copper Meshes for Efficient Oil/Water Separation.,” ACS Omega, vol. 4, no. 24, pp. 20486–20492, 2019, doi: 10.1021/acsomega.9b02152.
H. F. A. Makki Imama Raed, “Aluminum Rubbish as a Coagulant for Oily Wastewater Treatment,” Journal of Engineering, vol. 22, no. 7, pp. 55–71, 2016, doi: 10.31026/j.eng.2016.07.04.
H. H. Yuan Zhiming; Shen Liwei; Xu Junbo; Feng Xuening; Yang Ying; Zhang Zejun; Luo Yue; Yan Xuemin; Mi Yuanzhu, “Demulsification of crude oil emulsion using carbonized cotton/silica composites,” Colloids Surf A Physicochem Eng Asp, vol. 617, no. NA, pp. 126421-NA, 2021, doi: 10.1016/j.colsurfa.2021.126421.
A. Y. L. ; L. Tang Cheng Hao; Wang Yuxiang; Kan CW, “Effect of Hydrophilic-lipophilic Balance (HLB) Values of PEG-based Non-ionic Surfactant on Reverse Micellar Dyeing of Cotton Fibre with Reactive Dyes in Non-aqueous Medium,” Fibers and Polymers, vol. 19, no. 4, pp. 894–904, 2018, doi: 10.1007/s12221-018-8061-y.
L. Z. Kang Liang; Yao Shuang; Duan Chongxiong, “A new architecture of super-hydrophilic β-SiAlON/graphene oxide ceramic membrane for enhanced anti-fouling and separation of water/oil emulsion,” Ceram Int, vol. 45, no. 13, pp. 16717–16721, 2019, doi: 10.1016/j.ceramint.2019.05.195.
T. Liang, J. R. Hou, M. Qu, J. X. Xi, and I. Raj, “Application of nanomaterial for enhanced oil recovery,” Apr. 01, 2022, China University of Petroleum Beijing. doi: 10.1016/j.petsci.2021.11.011.
R. V. Mateos S.; Valiente Mercedes; Díez-Pascual Ana M.; San Andrés María Paz, “Comparison of Anionic, Cationic and Nonionic Surfactants as Dispersing Agents for Graphene Based on the Fluorescence of Riboflavin,” Nanomaterials (Basel), vol. 7, no. 11, pp. 403-NA, 2017, doi: 10.3390/nano7110403.
M. Mousavichoubeh, M. Shariaty-Niassar, and M. Ghadiri, “The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil,” Chem Eng Sci, vol. 66, no. 21, pp. 5330–5337, Nov. 2011, doi: 10.1016/j.ces.2011.07.019.
J. S. ; G. Eow Mojtaba; Sharif Adel O., “Electrostatic and hydrodynamic separation of aqueous drops in a flowing viscous oil,” Chemical Engineering and Processing: Process Intensification, vol. 41, no. 8, pp. 649–657, 2002, doi: 10.1016/s0255-2701(01)00183-0.
J. S. ; G. Eow Mojtaba; Sharif Adel O.; Williams T.J., “Electrostatic enhancement of coalescence of water droplets in oil: a review of the current understanding,” Chemical Engineering Journal, vol. 84, no. 3, pp. 173–192, 2001, doi: 10.1016/s1385-8947(00)00386-7.
J. S. ; G. Eow Mojtaba, “Drop–drop coalescence in an electric field: the effects of applied electric field and electrode geometry,” Colloids Surf A Physicochem Eng Asp, vol. 219, no. 1, pp. 253–279, 2003, doi: 10.1016/s0927-7757(03)00051-7.
J. S. ; G. Eow Mojtaba, “Electrocoalesce-separators for the separation of aqueous drops from a flowing dielectric viscous liquid,” Sep Purif Technol, vol. 29, no. 1, pp. 63–77, 2002, doi: 10.1016/s1383-5866(02)00093-x.
M. S.-N. Mousavichoubeh Mojtaba; Ghadiri Mojtaba, “The effect of interfacial tension on secondary drop formation in electro-coalescence of water droplets in oil,” Chem Eng Sci, vol. 66, no. 21, pp. 5330–5337, 2011, doi: 10.1016/j.ces.2011.07.019.
J. Sjöblom, S. Mhatre, S. Simon, R. Skartlien, and G. Sørland, “Emulsions in external electric fields,” Aug. 01, 2021, Elsevier B.V. doi: 10.1016/j.cis.2021.102455.
D. E. Hagness, Y. Yang, R. D. Tilley, and J. J. Gooding, “The application of an applied electrical potential to generate electrical fields and forces to enhance affinity biosensors,” Biosens Bioelectron, vol. 238, p. 115577, Oct. 2023, doi: 10.1016/j.bios.2023.115577.
Y. Zhou, B. Li, M. Zhang, Z. Sun, Z. Wang, and J. Wang, “Effect of dielectrophoresis on the coalescence of binary droplets under a non-uniform electric field,” Chem Eng Sci, vol. 224, p. 115739, Oct. 2020, doi: 10.1016/j.ces.2020.115739.
S. Roy, V. Anand, and R. M. Thaokar, “Breakup and non-coalescence mechanism of aqueous droplets suspended in castor oil under electric field,” J Fluid Mech, vol. 878, pp. 820–833, Nov. 2019, doi: 10.1017/jfm.2019.665.
K. Wang et al., “Efficient electro-demulsification of O/W emulsions and simultaneous oil removal enabled by a multiscale porous biocarbon electrode,” Chemical Engineering Journal, vol. 481, Feb. 2024, doi: 10.1016/j.cej.2024.148655.
S. V. Less Regis, “The electrocoalescers’ technology: Advances, strengths and limitations for crude oil separation,” J Pet Sci Eng, vol. 81, no. NA, pp. 57–63, 2012, doi: 10.1016/j.petrol.2011.12.003.
T. K. Szymborski Piotr M.; Hołyst Robert; Garstecki Piotr, “Ionic polarization of liquid-liquid interfaces; dynamic control of the rate of electro-coalescence,” Appl Phys Lett, vol. 99, no. 9, pp. 094101-NA, 2011, doi: 10.1063/1.3629783.
C. S. Lesaint Øyvind; Glomm Wilhelm R.; Simon Sébastien; Sjöblom Johan, “Dielectric response as a function of viscosity for two crude oils with different conductivities,” Colloids Surf A Physicochem Eng Asp, vol. 369, no. 1, pp. 20–26, 2010, doi: 10.1016/j.colsurfa.2010.07.011.
H. W. ; U. Yarranton P.; Sztukowski Danuta M., “Effect of interfacial rheology on model emulsion coalescence II. Emulsion coalescence.,” J Colloid Interface Sci, vol. 310, no. 1, pp. 253–259, 2007, doi: 10.1016/j.jcis.2007.01.098.
O. W. Urdahl N.J.; Førdedal H.; Williams T.J.; Bailey A.G., Compact Electrostatic Coalescer Technology, vol. NA, no. NA. 2001. doi: NA.
J. S. ; G. Eow Mojtaba; Sharif Adel O., “Experimental studies of deformation and break-up of aqueous drops in high electric fields,” Colloids Surf A Physicochem Eng Asp, vol. 225, no. 1, pp. 193–210, 2003, doi: 10.1016/s0927-7757(03)00330-3.
A. M. B. Imano Abderrahmane, “Deformation of water droplets on solid surface in electric field.,” J Colloid Interface Sci, vol. 298, no. 2, pp. 869–879, 2006, doi: 10.1016/j.jcis.2005.12.041.
B. U. ; P. Felderhof D., “Longitudinal and transverse polarizability of the conducting double sphere,” J Appl Phys, vol. 88, no. 9, pp. 4947–4952, 2000, doi: 10.1063/1.1315325.
J. de A. Dong Valmor F.; Tsouris Costas, “Effects of Applied Electric Fields on Drop—Interface and Drop—Drop Coalescence*,” J Dispers Sci Technol, vol. 23, no. 1–3, pp. 155–166, 2002, doi: 10.1080/01932690208984196.
Y. K. Han Joel; Maldarelli Charles, “Surfactant and dilatational viscosity effects on the deformation of liquid droplets in an electric field.,” J Colloid Interface Sci, vol. 607, no. Pt 1, pp. 900–911, 2021, doi: 10.1016/j.jcis.2021.07.105.
X. G. Niu Fabrice; deMello Andrew J.; Edel Joshua B., “Electro-coalescence of digitally controlled droplets.,” Anal Chem, vol. 81, no. 17, pp. 7321–7325, 2009, doi: 10.1021/ac901188n.
C. Lesaint, W. R. Glomm, L. E. Lundgaard, and J. Sjöblom, “Dehydration efficiency of AC electrical fields on water-in-model-oil emulsions,” Colloids Surf A Physicochem Eng Asp, vol. 352, no. 1–3, pp. 63–69, Dec. 2009, doi: 10.1016/j.colsurfa.2009.09.051.
C. B. Lesaint Gunnar; Lundgaard Lars E.; Ese Marit-Helen Glomm, “A novel bench size model coalescer: dehydration efficiency of AC fields on water-in-crude-oil emulsions,” IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 4, pp. 1–6, 2016, doi: 10.1109/tdei.2016.7556473.
A. K. A. Chesters, “The modelling of coalescence processes in fluid-liquid dispersions : a review of current understanding,” Chemical Engineering Research & Design, vol. 69, no. 4, pp. 259–270, 1991, doi: NA.
P. J. Bailes, “An electrical model for coalescers that employ pulsed DC fields,” Chemical Engineering Research & Design, vol. 73, no. 5, pp. 559–566, 1995, doi: NA.
J. ; R. Latham I. W., “Disintegration of Pairs of Water Drops in an Electric Field,” Proc R Soc Lond A Math Phys Sci, vol. 295, no. 1440, pp. 84–97, 1966, doi: 10.1098/rspa.1966.0227.
Y. Shen and A. R. Badireddy, “A Critical Review on Electric Field-Assisted Membrane Processes: Implications for Fouling Control, Water Recovery, and Future Prospects,” Membranes (Basel), vol. 11, no. 11, p. 820, Oct. 2021, doi: 10.3390/membranes11110820.
D. Niu et al., “Review of the application of pulsed electric fields (PEF) technology for food processing in China,” Food Research International, vol. 137, p. 109715, Nov. 2020, doi: 10.1016/j.foodres.2020.109715.
B. Bera, R. Khazal, and K. Schroën, “Coalescence dynamics in oil-in-water emulsions at elevated temperatures,” Sci Rep, vol. 11, no. 1, p. 10990, May 2021, doi: 10.1038/s41598-021-89919-5.
Z. Wang, S. Gu, and L. Zhou, “Research on the static experiment of super heavy crude oil demulsification and dehydration using ultrasonic wave and audible sound wave at high temperatures,” Ultrason Sonochem, vol. 40, pp. 1014–1020, Jan. 2018, doi: 10.1016/j.ultsonch.2017.08.037.
M. de O. Fortuny Cesar B. Z.; Melo Rosana L. F. V.; Nele Márcio; Coutinho Raquel C. C.; Santos Alexandre F., “Effect of Salinity, Temperature, Water Content, and pH on the Microwave Demulsification of Crude Oil Emulsions†,” Energy & Fuels, vol. 21, no. 3, pp. 1358–1364, 2007, doi: 10.1021/ef0603885.
C. Y. Lu Yongguang, “Pulsed electric field treatment combined with commercial enzymes converts major ginsenoside Rb1 to minor ginsenoside Rd,” Innovative Food Science & Emerging Technologies, vol. 22, no. NA, pp. 95–101, 2014, doi: 10.1016/j.ifset.2013.12.010.
C. H. Lyu Kang; Yang Nannan; Haijun Wang; Wang Jianping, “Combination of Thermosonication and Pulsed Electric Fields Treatments for Controlling Saccharomyces cerevisiae in Chinese Rice Wine,” Food Bioproc Tech, vol. 9, no. 11, pp. 1854–1864, 2016, doi: 10.1007/s11947-016-1769-z.
H. Lu et al., “Combination of electric field and medium coalescence for enhanced demulsification of water-in-oil emulsion,” Chem Eng Sci, vol. 241, Sep. 2021, doi: 10.1016/j.ces.2021.116680.
P. G. Luo Yongan, “Characterization of a heavy oil–propane system in the presence or absence of asphaltene precipitation,” Fluid Phase Equilib, vol. 277, no. 1, pp. 1–8, 2009, doi: 10.1016/j.fluid.2008.10.019.
A. M. ; H. Al-Sabagh M.E.; Desouky S.E.M.; Nasser N. M.; Elsharaky E.A.; Abdelhamid M.M., “Demulsification of W/O emulsion at petroleum field and reservoir conditions using some demulsifiers based on polyethylene and propylene oxides,” Egyptian Journal of Petroleum, vol. 25, no. 4, pp. 585–595, 2016, doi: 10.1016/j.ejpe.2016.05.008.
X. Yang, T. Xi, Y. Qin, H. Zhang, and Y. Wang, “Computational Fluid Dynamics–Discrete Phase Method Simulations in Process Engineering: A Review of Recent Progress,” Applied Sciences, vol. 14, no. 9, p. 3856, Apr. 2024, doi: 10.3390/app14093856.
S. P. K. M. Pathirannahalage Nastaran; Elbourne Aaron; Weiss Alessia C G; McConville Christopher F; Padua Agilio A. H.; Winkler David A.; Gomes Margarida F. Costa; Greaves Tamar L.; Le Tu C.; Besford Quinn A.; Christofferson Andrew J., “Systematic Comparison of the Structural and Dynamic Properties of Commonly Used Water Models for Molecular Dynamics Simulations.,” J Chem Inf Model, vol. 61, no. 9, pp. 4521–4536, 2021, doi: 10.1021/acs.jcim.1c00794.
A. J. T. ; T. Teo Say Hwa; Nguyen Nam-Trung, “On-Demand Droplet Merging with an AC Electric Field for Multiple-Volume Droplet Generation,” Anal Chem, vol. 92, no. 1, pp. 1147–1153, 2019, doi: 10.1021/acs.analchem.9b04219.
M. S. Duan Xianyu; Zhao Shuangliang; Fang Shenwen; Wang Fen; Zhong Cheng; Luo Zhaoyang, “Layer-by-Layer Assembled Film of Asphaltenes/Polyacrylamide and Its Stability of Water-in-Oil Emulsions: A Combined Experimental and Simulation Study,” The Journal of Physical Chemistry C, vol. 121, no. 8, pp. 4332–4342, 2017, doi: 10.1021/acs.jpcc.6b12168.
J. Y. Ma Mengqin; Yang Yongli; Zhang Xueying, “Comprehensive review on stability and demulsification of unconventional heavy oil-water emulsions,” J Mol Liq, vol. 350, no. NA, p. 118510, 2022, doi: 10.1016/j.molliq.2022.118510.
N. Ali et al., “Engineered Hybrid Materials with Smart Surfaces for Effective Mitigation of Petroleum-Originated Pollutants,” Oct. 01, 2021, Elsevier Ltd. doi: 10.1016/j.eng.2020.07.024.
N. B. Ali Muhammad; Khan Adnan; Ali Farman; Iqbal Hafiz M.N., “Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation,” TrAC Trends in Analytical Chemistry, vol. 127, no. NA, pp. 115902-NA, 2020, doi: 10.1016/j.trac.2020.115902.
S. T. Mhatre Rochish, “Pin–Plate Electrode System for Emulsification of a Higher Conductivity Leaky Dielectric Liquid into a Low Conductivity Medium,” Ind Eng Chem Res, vol. 53, no. 34, pp. 13488–13496, 2014, doi: 10.1021/ie5017893.
Q. W. Sun Dehui; Li Yanan; Zhang Jiahui; Ye Shuji; Cui Jiaxi; Chen Longquan; Wang Zuankai; Butt Hans-Jürgen; Vollmer Doris; Deng Xu, “Surface charge printing for programmed droplet transport,” Nat Mater, vol. 18, no. 9, pp. 936–941, 2019, doi: 10.1038/s41563-019-0440-2.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ahmed Shallal, Khalid M. Mousa Al-zobai, Salam K. Al-Dawery

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
The authors retain the copyright of their manuscript by submitting the work to this journal, and all open access articles are distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International (CC-BY-NC 4.0), which permits use for any non-commercial purpose, distribution, and reproduction in any medium, provided that the original work is properly cited.