Laser Generated MoS2 Nanomaterials and Its Applications: A Review

Authors

  • Layal A. Jasim Department of Laser and Optoelectronics Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Fatema H. Rajab Department of Laser and Optoelectronics Engineering, College of Engineering, Al-Nahrain University, Baghdad, Iraq.
  • Ahmad W. Alshaer School of Engineering, University of Central Lancashire, Preston, UK.

DOI:

https://doi.org/10.29194/NJES.28030351

Keywords:

Nanomaterials, MoS2, Laser Ablation

Abstract

This review study emphasizes the significance of MoS2 nanomaterials, their manufacture, and their applications. This review examined nanomaterials and their generation processes, concentrating on laser ablation and nanomaterial production. This study advances nanomaterial synthesis and helps discover new applications by explaining the fundamental concepts and aspects affecting synthesis. Future studies should optimize laser settings, explore novel precursor materials, and understand laser-induced MoS2 synthesis pathways to enable customized nanomaterial design and engineering.

Downloads

Download data is not yet available.

References

M. Pattanayak and P. L. Nayak, “Ecofriendly green synthesis of iron nanoparticles from various plants and spices extract,” Int. J. Plant, Anim. Environ. Sci., vol. 3, no. 1, pp. 68–78, 2013.

B. Mekuye and B. Abera, “Nanomaterials: An overview of synthesis, classification, characterization, and applications,” Nano Select, vol. 4, no. 8, pp. 486–501, Aug. 2023. DOI: 10.1002/nano.202300038 DOI: https://doi.org/10.1002/nano.202300038

J. Guang et al., “Flexible and speedy preparation of large-scale polystyrene monolayer through hemispherical-depression-assisted self-assembling and vertical lifting,” ACS Appl. Polym. Mater., vol. 5, no. 4, pp. 2674–2683, 2023. DOI: 10.1021/acsapm.2c02154 DOI: https://doi.org/10.1021/acsapm.2c02245

Q. Wang et al., “Research on Fiber Optic Surface Plasmon Resonance Biosensors: A Review,” Photon. Sens., vol. 14, no. 2, p. 240201, 2024. DOI:10.1007/s13320-024-0753-3 DOI: https://doi.org/10.1007/s13320-024-0703-7

A. C. Chaity, “Highly sensitive photonic crystal fiber biosensor based on surface plasmon resonance for six distinct types of cancer detection,” Plasmonics, vol. 19, no. 4, pp. 1891–1902, 2024. DOI: https://doi.org/10.1007/s11468-023-02128-w

DOI: 10.1007/s11468-024-01888-6

T. Edvinsson, “Optical quantum confinement and photocatalytic properties in two-, one-and zero-dimensional nanostructures,” R. Soc. Open Sci., vol. 5, no. 9, p. 180387, 2018. DOI: 10.1098/rsos.180387 DOI: https://doi.org/10.1098/rsos.180387

N. Baig, I. Kammakakam, and W. Falath, “Nanomaterials: A review of synthesis methods, properties, recent progress, and challenges,” Mater. Adv., vol. 2, no. 6, pp. 1821–1871, 2021.

DOI: 10.1039/D0MA00807A DOI: https://doi.org/10.1039/D0MA00807A

P. G. Kuzmin et al., “Porous nanoparticles of Al and Ti generated by laser ablation in liquids,” Appl. Surf. Sci., vol. 258, no. 23, pp. 9283–9287, 2012.

DOI: 10.1016/j.apsusc.2012.06.038

Y.-H. Chen and C.-S. Yeh, “Laser ablation method: use of surfactants to form the dispersed Ag nanoparticles,” Colloids Surf. A Physicochem. Eng. Asp., vol. 197, no. 1–3, pp. 133–139, 2002. DOI: https://doi.org/10.1016/S0927-7757(01)00854-8

DOI: 10.1016/S0927-7757(01)00997-6

E. U. Rafailov, The Physics and Engineering of Compact Quantum Dot-Based Lasers for Biophotonics. Chichester, UK: John Wiley & Sons, 2013. DOI: https://doi.org/10.1002/9783527665587

H.-X. Zhang, U. Siegert, R. Liu, and W.-B. Cai, “Facile fabrication of ultrafine copper nanoparticles in organic solvent,” Nanoscale Res. Lett., vol. 4, pp. 705–708, 2009. DOI: 10.1007/s11671-009-9303-6 DOI: https://doi.org/10.1007/s11671-009-9301-2

P. Khanna, A. Kaur, and D. Goyal, “Algae-based metallic nanoparticles: Synthesis, characterization and applications,” J. Microbiol. Methods, vol. 163, p. 105656, 2019. DOI: 0.1016/j.mimet.2019.105656 DOI: https://doi.org/10.1016/j.mimet.2019.105656

F. Mafuné, J. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, “Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation,” J. Phys. Chem. B, vol. 104, no. 35, pp. 8333–8337, 2000. DOI: 10.1021/jp001761r DOI: https://doi.org/10.1021/jp001803b

P. Singh and R. B. Raja, “Biological synthesis and characterization of silver nanoparticles using the fungus Trichoderma harzianum,” Asian J. Exp. Biol. Sci., vol. 2, no. 4, pp. 600–605, 2011.

T. Tsuji et al., “Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions,” Appl. Surf. Sci., vol. 254, no. 16, pp. 5224–5230, 2008. DOI: 10.1016/j.apsusc.2008.02.174 DOI: https://doi.org/10.1016/j.apsusc.2008.02.048

P. G. Kuzmin et al., “Porous nanoparticles of Al and Ti generated by laser ablation in liquids,” Appl. Surf. Sci., vol. 258, no. 23, pp. 9283–9287, 2012. DOI: https://doi.org/10.1016/j.apsusc.2011.08.108

DOI: 10.1016/j.apsusc.2012.06.038 DOI: https://doi.org/10.1016/j.apsusc.2012.06.038

Z. Liu et al., “Generation of metal-oxide nanoparticles using continuous-wave fibre laser ablation in liquid,” J. Micromech. Microeng., vol. 19, no. 5, p. 054008, 2009.

DOI: 10.1088/0960-1317/19/5/054008 DOI: https://doi.org/10.1088/0960-1317/19/5/054008

T. Tsuji, Y. Okazaki, and M. Tsuji, “Photo-induced morphological conversions of silver nanoparticles prepared using laser ablation in water—Enhanced morphological conversions using halogen etching,” J. Photochem. Photobiol. A Chem., vol. 194, no. 2–3, pp. 247–253, 2008. DOI: 10.1016/j.jphotochem.2007.10.006 DOI: https://doi.org/10.1016/j.jphotochem.2007.08.018

B. Fei et al., “Preparation and size characterization of silver nanoparticles produced by femtosecond laser ablation in water,” Chin. Phys. Lett., vol. 25, no. 12, p. 4463, 2008. DOI: 10.1088/0256-307X/25/12/063 DOI: https://doi.org/10.1088/0256-307X/25/12/078

T. Tsuji, T. Kakita, and M. Tsuji, “Preparation of nano-size particles of silver with femtosecond laser ablation in water,” Appl. Surf. Sci., vol. 206, no. 1–4, pp. 314–320, 2003. DOI: 10.1016/S0169-4332(02)00994-5 DOI: https://doi.org/10.1016/S0169-4332(02)01230-8

T. X. Phuoc, Y. Soong, and M. K. Chyu, “Synthesis of Ag-deionized water nanofluids using multi-beam laser ablation in liquids,” Opt. Lasers Eng., vol. 45, no. 12, pp. 1099–1106, 2007. DOI: 10.1016/j.optlaseng.2007.02.005 DOI: https://doi.org/10.1016/j.optlaseng.2007.06.005

T. Tsuji, T. Hamagami, T. Kawamura, J. Yamaki, and M. Tsuji, “Laser ablation of cobalt and cobalt oxides in liquids: influence of solvent on composition of prepared nanoparticles,” Appl. Surf. Sci., vol. 243, no. 1–4, pp. 214–219, 2005. DOI: 10.1016/j.apsusc.2004.09.093 DOI: https://doi.org/10.1016/j.apsusc.2004.09.065

C. H. Liang, Y. Shimizu, T. Sasaki, and N. Koshizaki, “Preparation of ultrafine TiO₂ nanocrystals via pulsed-laser ablation of titanium metal in surfactant solution,” Appl. Phys. A, vol. 80, pp. 819–822, 2005. DOI: 10.1007/s00339-004-3147-3 DOI: https://doi.org/10.1007/s00339-003-2489-6

T. Tsuji, T. Mizuki, S. Ozono, and M. Tsuji, “Laser-induced silver nanocrystal formation in polyvinylpyrrolidone solutions,” J. Photochem. Photobiol. A Chem., vol. 206, no. 2–3, pp. 134–139, 2009. DOI: 10.1016/j.jphotochem.2009.07.007 DOI: https://doi.org/10.1016/j.jphotochem.2009.06.001

A. Hahn, S. Barcikowski, and B. N. Chichkov, “Influences on nanoparticle production during pulsed laser ablation,” Pulse, vol. 40, no. 45, p. 50, 2008.

P. D. Cozzoli et al., “Photocatalytic synthesis of silver nanoparticles stabilized by TiO₂ nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution,” J. Am. Chem. Soc., vol. 126, no. 12, pp. 3868–3879, 2004. DOI: 10.1021/ja039812e DOI: https://doi.org/10.1021/ja0395846

A. Hahn and S. Barcikowski, “Production of bioactive nanomaterial using laser generated nanoparticles,” J. Laser Micro/Nanoeng., vol. 4, pp. 51–54, 2009. DOI: 10.2961/jlmn.2009.01.0013 DOI: https://doi.org/10.2961/jlmn.2009.01.0010

G. Yang, Laser Ablation in Liquids: Principles and Applications in the Preparation of Nanomaterials. Boca Raton, FL: CRC Press, 2012. DOI: https://doi.org/10.1201/b11623

W. M. Steen and J. Mazumder, Laser Material Processing. London: Springer Science & Business Media, 2010. DOI: https://doi.org/10.1007/978-1-84996-062-5

A. Lipovka et al., “Laser Processing of Emerging Nanomaterials for Optoelectronics and Photocatalysis,” Adv. Opt. Mater., vol. 12, no. 17, p. 2303194, 2024. DOI:10.1002/adom.202303194 DOI: https://doi.org/10.1002/adom.202303194

N. G. Semaltianos, “Nanoparticles by laser ablation,” Crit. Rev. Solid State Mater. Sci., vol. 35, no. 2, pp. 105–124, 2010. DOI: 10.1080/10408431003788267 DOI: https://doi.org/10.1080/10408431003788233

S. I. Al-Nassar and F. I. Hussein, “The effect of laser pulse energy on ZnO nanoparticles formation by liquid phase pulsed laser ablation,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 4026–4031, 2019. DOI: 10.1016/j.jmrt.2019.07.008 DOI: https://doi.org/10.1016/j.jmrt.2019.07.012

Y.-L. Wang, W. Xu, Y. Zhou, L.-Z. Chu, and G.-S. Fu, “Influence of pulse repetition rate on the average size of silicon nanoparticles deposited by laser ablation,” Laser Part. Beams, vol. 25, no. 1, pp. 9–13, 2007. DOI: 10.1017/S0263034607000014 DOI: https://doi.org/10.1017/S0263034607070024

M. Aliofkhazraei, Handbook of Nanoparticles. Cham, Switzerland: Springer, 2016. DOI: 10.1007/978-3-319-15338-4 DOI: https://doi.org/10.1007/978-3-319-15338-4

Z. Hussain et al., “Silver nanoparticles: A promising nanoplatform for targeted delivery of therapeutics and optimized therapeutic efficacy,” in Metal Nanoparticles for Drug Delivery and Diagnostic Applications, Elsevier, 2020, pp. 141–173. DOI: 10.1016/B978-0-12-816960-5.00006-4 DOI: https://doi.org/10.1016/B978-0-12-816960-5.00009-4

Z. Xiu, Q. Zhang, H. L. Puppala, V. L. Colvin, and P. J. J. Alvarez, “Negligible particle-specific antibacterial activity of silver nanoparticles,” Nano Lett., vol. 12, no. 8, pp. 4271–4275, 2012. DOI: 10.1021/nl301934w DOI: https://doi.org/10.1021/nl301934w

Á. Coogan and Y. K. Gun’ko, “Solution-based ‘bottom-up’ synthesis of group VI transition metal dichalcogenides and their applications,” Mater. Adv., vol. 2, no. 1, pp. 146–164, 2021. DOI: 10.1039/D0MA00663K DOI: https://doi.org/10.1039/D0MA00697A

H. Naser et al., “The role of laser ablation technique parameters in synthesis of nanoparticles from different target types,” J. Nanopart. Res., vol. 21, pp. 1–28, 2019. DOI: 10.1007/s11051-019-4602-3 DOI: https://doi.org/10.1007/s11051-019-4690-3

L. El Nadi, M. Ezzat, and Y. Ismail, “Structural and Optical Properties of Nano-Silicon Fabricated by Liquid Phase Laser Ablation Method.”

H. S. Desarkar, P. Kumbhakar, and A. K. Mitra, “Effect of ablation time and laser fluence on the optical properties of copper nano colloids prepared by laser ablation technique,” Appl. Nanosci., vol. 2, pp. 285–291, 2012.DOI: 10.1007/s13204-012-0077-5 DOI: https://doi.org/10.1007/s13204-012-0106-8

Z. He and W. Que, “Molybdenum disulfide nanomaterials: Structures, properties, synthesis and recent progress on hydrogen evolution reaction,” Appl. Mater. Today, vol. 3, pp. 23–56, 2016.DOI: 10.1016/j.apmt.2016.02.001 DOI: https://doi.org/10.1016/j.apmt.2016.02.001

C. Moore et al., “Industrial grade 2D molybdenum disulphide (MoS₂): an in vitro exploration of the impact on cellular uptake, cytotoxicity, and inflammation,” 2D Mater., vol. 4, no. 2, p. 025065, 2017. DOI: 10.1088/2053-1583/aa5e2z DOI: https://doi.org/10.1088/2053-1583/aa673f

P. Shah, T. N. Narayanan, C.-Z. Li, and S. Alwarappan, “Probing the biocompatibility of MoS₂ nanosheets by cytotoxicity assay and electrical impedance spectroscopy,” Nanotechnology, vol. 26, no. 31, p. 315102, 2015. DOI: 10.1088/0957-4484/26/31/315102 DOI: https://doi.org/10.1088/0957-4484/26/31/315102

W. Feng et al., “Flower-like PEGylated MoS₂ nanoflakes for near-infrared photothermal cancer therapy,” Sci. Rep., vol. 5, p. 17422, 2015. DOI: 10.1038/srep17422 DOI: https://doi.org/10.1038/srep17422

R. Toy, P. M. Peiris, K. B. Ghaghada, and E. Karathanasis, “Shaping cancer nanomedicine: the effect of particle shape on the in vivo journey of nanoparticles,” Nanomedicine, vol. 9, no. 1, pp. 121–134, 2014. DOI: 10.2217/nnm.13.191 DOI: https://doi.org/10.2217/nnm.13.191

S. Fukuzumi, Y.-M. Lee, H. S. Ahn, and W. Nam, “Mechanisms of catalytic reduction of CO₂ with heme and nonheme metal complexes,” Chem. Sci., vol. 9, no. 28, pp. 6017–6034, 2018. DOI: 10.1039/C8SC01442A DOI: https://doi.org/10.1039/C8SC02220H

L. Zhang et al., “In situ laser-assisted synthesis of MoS₂ anchored on 3D porous graphene foam for enhanced alkaline hydrogen generation,” Catal. Sci. Technol., vol. 14, no. 9, pp. 2646–2653, 2024. DOI: 10.1039/D3CY01962A DOI: https://doi.org/10.1039/D4CY00213J

J. K. Nayak, P. K. Maharana, and R. Jha, “Dielectric over-layer assisted graphene, its oxide and MoS₂-based fibre optic sensor with high field enhancement,” J. Phys. D Appl. Phys., vol. 50, no. 40, p. 405112, 2017. DOI: 10.1088/1361-6463/aa84a2 DOI: https://doi.org/10.1088/1361-6463/aa829a

I. Levchenko et al., “Lightning under water: Diverse reactive environments and evidence of synergistic effects for material treatment and activation,” Appl. Phys. Rev., vol. 5, no. 2, 2018. DOI: 10.1063/1.5026644 DOI: https://doi.org/10.1063/1.5024865

O. Baranov et al., “Towards universal plasma-enabled platform for the advanced nanofabrication: Plasma physics level approach,” Rev. Mod. Plasma Phys., vol. 2, pp. 1–49, 2018. DOI: 10.1007/s41614-018-0016-5 DOI: https://doi.org/10.1007/s41614-018-0016-7

J. Sun et al., “Synthesis methods of two-dimensional MoS₂: A brief review,” Crystals (Basel), vol. 7, no. 7, p. 198, 2017. DOI: 10.3390/cryst7070198 DOI: https://doi.org/10.3390/cryst7070198

X. Feng et al., “Liquid-exfoliated MoS₂ by chitosan and enhanced mechanical and thermal properties of chitosan/MoS₂ composites,” Compos. Sci. Technol., vol. 93, pp. 76–82, 2014. DOI: 10.1016/j.compscitech.2014.09.003 DOI: https://doi.org/10.1016/j.compscitech.2013.11.016

L. Muscuso et al., “Optical, vibrational, and structural properties of MoS₂ nanoparticles obtained by exfoliation and fragmentation via ultrasound cavitation in isopropyl alcohol,” J. Phys. Chem. C, vol. 119, no. 7, pp. 3791–3801, 2015. DOI: 10.1021/jp511982t DOI: https://doi.org/10.1021/jp511973k

M. J. Crane et al., “Rapid synthesis of transition metal dichalcogenide–carbon aerogel composites for supercapacitor electrodes,” Microsyst. Nanoeng., vol. 3, p. 17013, 2017. DOI: 10.1038/micronano.2017.13 DOI: https://doi.org/10.1038/micronano.2017.32

S. Vishwanath et al., “Comprehensive structural and optical characterization of MBE grown MoSe₂ on graphite, CaF₂ and graphene,” 2D Mater., vol. 2, no. 2, p. 024007, 2015. DOI: 10.1088/2053-1583/2/2/024007 DOI: https://doi.org/10.1088/2053-1583/2/2/024007

M. Aliofkhazraei and N. Ali, “PVD technology in fabrication of micro-and nanostructured coatings,” 2014. DOI: https://doi.org/10.1016/B978-0-08-096532-1.00705-6

F. Wang et al., “Hydrothermal synthesis of flower-like molybdenum disulfide microspheres and their application in electrochemical supercapacitors,” RSC Adv., vol. 8, no. 68, pp. 38945–38954, 2018. DOI: 10.1039/C8RA07494A DOI: https://doi.org/10.1039/C8RA04350G

S. J. Kim et al., “Large-scale growth and simultaneous doping of molybdenum disulfide nanosheets,” Sci. Rep., vol. 6, p. 24054, 2016. DOI: 10.1038/srep24054 DOI: https://doi.org/10.1038/srep24054

D. K. Polyushkin et al., “Analogue two-dimensional semiconductor electronics,” Nat. Electron., vol. 3, no. 8, pp. 486–491, 2020. DOI: 10.1038/s41928-020-0450-3 DOI: https://doi.org/10.1038/s41928-020-0460-6

S. Catalán-Gómez et al., “Breast cancer biomarker detection through the photoluminescence of epitaxial monolayer MoS₂ flakes,” Sci. Rep., vol. 10, p. 16039, 2020. DOI: 10.1038/s41598-020-73136-4 DOI: https://doi.org/10.1038/s41598-020-73029-9

T. Shi et al., “Nanohole-boosted electron transport between nanomaterials and bacteria as a concept for nano–bio interactions,” Nat. Commun., vol. 12, p. 493, 2021. DOI: 10.1038/s41467-020-20782-6 DOI: https://doi.org/10.1038/s41467-020-20547-9

M. Liang et al., “Improving stability of organometallic-halide perovskite solar cells using exfoliation two-dimensional molybdenum chalcogenides,” NPJ 2D Mater. Appl., vol. 4, p. 40, 2020. DOI: 10.1038/s41699-020-00173-9 DOI: https://doi.org/10.1038/s41699-020-00173-1

E. Dejband et al., “Switchable Abnormal THz Wave Reflector Based on Molybdenum Disulfide (MoS₂),” in Proc. 5th Int. Conf. Millimeter-Wave and Terahertz Technologies (MMWaTT), IEEE, 2018, pp. 58–61. DOI: 10.1109/MMWaTT.2018.8558842 DOI: https://doi.org/10.1109/MMWaTT.2018.8661233

N. Goel et al., “MoS₂-PVP Nanocomposites Decorated ZnO Microsheets for Efficient Hydrogen Detection,” IEEE Sens. J., vol. 21, no. 7, pp. 8878–8885, 2021. DOI: 10.1109/JSEN.2020.3045824 DOI: https://doi.org/10.1109/JSEN.2021.3054038

T. Oztas et al., “Synthesis of colloidal 2D/3D MoS₂ nanostructures by pulsed laser ablation in an organic liquid environment,” J. Phys. Chem. C, vol. 118, no. 51, pp. 30120–30126, Dec. 2014. DOI: 10.1021/jp505858h DOI: https://doi.org/10.1021/jp505858h

S. T. Song et al., “Millisecond laser ablation of molybdenum target in reactive gas toward MoS₂ fullerene-like nanoparticles with thermally stable photoresponse,” ACS Appl. Mater. Interfaces, vol. 7, no. 3, pp. 1949–1954, Jan. 2015. DOI: 10.1021/am508750y

H. Deng et al., “Laser induced MoS₂/carbon hybrids for hydrogen evolution reaction catalysts,” J. Mater. Chem. A, vol. 4, no. 18, pp. 6824–6830, 2016. DOI: 10.1039/C5TA09322H DOI: https://doi.org/10.1039/C5TA09322H

L. Zhou et al., “Onion-Structured Spherical MoS₂ Nanoparticles Induced by Laser Ablation in Water and Liquid Droplets’ Radial Solidification/Oriented Growth Mechanism,” J. Phys. Chem. C, vol. 121, no. 41, pp. 23233–23239, Oct. 2017. DOI: 10.1021/acs.jpcc.7b07784 DOI: https://doi.org/10.1021/acs.jpcc.7b07784

B. Li et al., “Preparation of Monolayer MoS₂ Quantum Dots using Temporally Shaped Femtosecond Laser Ablation of Bulk MoS₂ Targets in Water,” Sci. Rep., vol. 7, p. 10632, Dec. 2017. DOI: 10.1038/s41598-017-10632-3 DOI: https://doi.org/10.1038/s41598-017-10632-3

M. Kanazawa et al., “Effects of the solvent during the preparation of MoS₂ nanoparticles by laser ablation,” J. Phys. Conf. Ser., vol. 1230, p. 012100, Sep. 2019. DOI: 10.1088/1742-6596/1230/1/012100 DOI: https://doi.org/10.1088/1742-6596/1230/1/012100

B. Ko et al., “Multi-pulse laser-induced bubble formation and nanoparticle aggregation using MoS₂ nanoparticles,” Sci. Rep., vol. 10, p. 72689, Dec. 2020. DOI: 10.1038/s41598-020-72689-x DOI: https://doi.org/10.1038/s41598-020-72689-x

C. Pan et al., “Ultrafast optical response and ablation mechanisms of molybdenum disulfide under intense femtosecond laser irradiation,” Light Sci. Appl., vol. 9, p. 318, Dec. 2020. DOI: 10.1038/s41377-020-0318-8 DOI: https://doi.org/10.1038/s41377-020-0318-8

M. Mahdavi, S. Kimiagar, and F. Abrinaei, “Preparation of few-layered wide bandgap MoS₂ with nanometer lateral dimensions by applying laser irradiation,” Crystals (Basel), vol. 10, no. 3, p. 164, Mar. 2020. DOI: 10.3390/cryst10030164 DOI: https://doi.org/10.3390/cryst10030164

F. Ye et al., “Synthesis of Two-Dimensional Plasmonic Molybdenum Oxide Nanomaterials by Femtosecond Laser Irradiation,” Chem. Mater., vol. 33, no. 12, pp. 4510–4521, Jun. 2021. DOI: 10.1021/acs.chemmater.1c00732 DOI: https://doi.org/10.1021/acs.chemmater.1c00732

A. S. Chernikov et al., “Tunable optical properties of transition metal dichalcogenide nanoparticles synthesized by femtosecond laser ablation and fragmentation,” J. Mater. Chem. C, vol. 11, no. 10, pp. 3493–3503, Feb. 2023. DOI: 10.1039/D2TC05235K DOI: https://doi.org/10.1039/D2TC05235K

S. Moniri, A. H. Mohammad Zadeh, A. H. Ramezani, and M. R. Hantehzadeh, “Influence of laser wavelength on the optical and structural properties of MoS₂ nanoparticles prepared via laser irradiation in ethylene glycol,” J. Laser Appl., vol. 33, no. 3, p. 032013, Jul. 2021. DOI: 10.2351/7.0000361 DOI: https://doi.org/10.2351/7.0000361

P. Zuo et al., “MoS₂ core-shell nanoparticles prepared through liquid-phase ablation and light exfoliation of femtosecond laser for chemical sensing,” Sci. China Technol. Sci., vol. 66, no. 3, pp. 853–862, Mar. 2023. DOI: 10.1007/s11431-022-2270-9 DOI: https://doi.org/10.1007/s11431-022-2270-9

T. Xu et al., “Rapid and large-scale synthesis of MoS₂ via ultraviolet laser-assisted technology for photodetector applications,” Nanotechnology, vol. 35, no. 32, Aug. 2024. DOI: 10.1088/1361-6528/ad2571 DOI: https://doi.org/10.1088/1361-6528/ad2571

S. T. Song, L. Cui, J. Yang, and X. W. Du, “Millisecond laser ablation of molybdenum target in reactive gas toward MoS₂ fullerene-like nanoparticles with thermally stable photoresponse,” ACS Appl. Mater. Interfaces, vol. 7, no. 3, pp. 1949–1954, Jan. 2015. DOI: 10.1021/am508750y DOI: https://doi.org/10.1021/am508750y

M. Zhang et al., “Visible light-induced antibacterial effect of MoS₂: Effect of the synthesis methods,” Chem. Eng. J., vol. 411, May 2021. DOI: 10.1016/j.cej.2021.128517 DOI: https://doi.org/10.1016/j.cej.2021.128517

Downloads

Published

29-09-2025

How to Cite

[1]
L. A. Jasim, F. H. Rajab, and A. W. Alshaer, “Laser Generated MoS2 Nanomaterials and Its Applications: A Review”, NJES, vol. 28, no. 3, pp. 351–361, Sep. 2025, doi: 10.29194/NJES.28030351.

Similar Articles

21-30 of 34

You may also start an advanced similarity search for this article.