Experimental and Investigation of ABS Filament Process Variables on Tensile Strength Using an Artificial Neural Network and Regression Model

Authors

  • Mostafa Adel Abdullah Hamed Production Engineering and Metallurgy Department, University of Technology, Baghdad, Iraq

DOI:

https://doi.org/10.29194/NJES.27020251

Keywords:

FDM, ABS, 3D Print Parameters, Tensile Strength, Artificial Neural Network

Abstract

 Fused deposition modeling (FDM) is a commonly used 3D printing technique that involves heating, extruding, and depositing thermoplastic polymer filaments. The quality of FDM components is greatly influenced by the chosen processing settings. In this study, the Taguchi technique and artificial neural network were employed to predict the ultimate tensile strength of FDM components and establish a mathematical model. The mechanical properties of ABS were analyzed by varying parameters such as layer thickness, printing speed, direction angle, number of parameters, and nozzle temperature at five different levels. FDM 3D printers were used to fabricate samples for testing, following the ASTM-D638 standards, using the Taguchi orthogonal array experimental design method to set the process parameters. The results indicated that the printing process factors had a significant impact on tensile strength, with test values ranging from 31 to 38 MPa. The neural network achieved a maximum error of 5.518% when predicting tensile strength values, while the analytical model exhibited an error of 19.376%.

Downloads

Download data is not yet available.

References

A. J. Sheoran and H. Kumar, '' Fused Deposition modeling process variables optimization and effect on mechanical properties and part quality, Review and reflection on present research'', Materials Today Proceedings, 21, pp. 1659-1672. (2020). https://doi.org/10.1016/j.matpr.2019.11.296

Prayitno et al, ''Recent Progress of Fused Deposition Modeling (FDM) 3D Printing: Constructions, Variables, and Processings,'' IOP Conf. Ser.: Mater. Sci. Eng.1096 012045(2022).https://doi.org/10.1088/1757.899X/1096/1/012045

M.R. Derise and A. Zulkharnain, '' Effect of Infill Pattern and Density on Tensile Properties of 3D Printed Polylactic acid Parts via Fused Deposition Modeling (FDM),'' International Journal of Mechanical & Mechatronics Engineering IJMME-IJENS, 20, pp. 50-63. (2020).

Lan et al, ''Effect of Process Variables on Mechanical Strength of Fabricated Parts using the Fused Deposition Modelling Method,'' Journal of the Korean Society for Precision Engineering, 36, pp. 705-712. (2019).

G. B. Murugan and M. B., Ghosh, ''Taguchi method and ANOVA: An approach for process variables optimization of hard machining while machining hardened steel.'' Journal of Scientific & Industrial Research, 68, pp. 686-695. (2009).

M. Dawoud, I. Taha, SyJ. Ebeid, ''Mechanical behavior of ABS: an experimental study using FDM and injection molding techniques.'' J Manuf Processes, 21, pp. 39– 45. (2016). https://doi.org/10.1016/j.jmapro.2015.11.002

Uddin et al, ''Evaluating mechanical properties and failure mechanisms of fused deposition modeling acrylonitrile butadiene styrene parts.'' J Manuf Sci Eng., 139, pp. 1–12. (2017). https://doi.org/10.1115/1.4036713.

Fernandez et al, ''Effect of infill variables on tensile mechanical behavior in desktop 3D printing.'' 3D Print Addit Manuf., 3, pp. 183–192. (2016).

Garg et al, ''Chemical vapor treatment of ABS parts built by FDM: analysis of surface finish and mechanical strength.'' Int J Adv Manuf Technol, 89, pp. 2175–2191. (2017). https://doi.org/10.1007/s00170-016-9257-1

Peko et al,'' Modeling and optimization of tensile strength of ABS parts manufactured by the fused deposition modeling process,'' International conference on mechanical technologies and structural materials, Croatia, pp.103-110. (2017).

S.D. Alvarez et al, ''Investigating the influence of infill percentage on the mechanical properties of fused deposition modeled ABS parts.'' Ing. Investig, [online], 36(3), pp.110-116.(2016)https://doi.org/10.15446/ing.investig.v36n3.566101

12. M. Lee et al, ''Optimization of rapid prototyping variables for production of flexible abs object,'' Journal of Materials Processing Technology, 169, pp. 54–61. (2005).

ASTM, Standard test methods for tensile properties of plastics ASTM International in ASTM Standard D638 (West Conshohocken),(2010).

A. Verma et al, ''Optimization of fused deposition modeling process using utility-based taguchi approach,'' J Adv Manuf Syst., 17, pp.551– 568. (2018).

K .Chen., L., Y . Cui, M. Jia,'' Optimization of printing parameters of 3D-printed continuous glass fiber reinforced polylactic acid composites.'' Thin-Walled Structures. 2021; 1(164): 107717. (2005).

M.Hikmat, S. Rostam, Y.M. Ahmed. ''Investigation of tensile property-based Taguchi method of PLA parts fabricated by FDM 3D printing technology.'' Results in Engineering; 1(11): 100264. (2021). https://doi.org/10.1016/j.rineng.2021.100264.

P. Morampudi, V. Ramana.,V. Prabha. ''3D-printing analysis of surface finish. Materials Today: Proceedings.'' 1(43): 587–592. (2021). https://doi.org/10.1016/j.matpr.2020.12.085.

R. Srinivasan., K.N. Kumar, A.J .Ibrahim., K.V .Anandu., R. Gurudhevan.'' Impact of fused deposition process parameter (infill pattern) on the strength of PETG part.'' Materials Today: Proceedings. 1(27): 1801–1805. (2020). https://doi.org/10.1016/j.matpr.2020.03.777.

N.A Sukindar., M.A Azhar., S.I Shaharuddin., S. Ka- mruddin, A.Z Azhar., C.C Yang., E.Y Adesta.'' A review study on the effect of printing parameters of fused deposition modeling (FDM) metal-polymer composite parts on mechanical properties and surface roughness.'' Malaysian Journal of Microscopy. 19: 18(1), (2022).

T . Yao, Z. Deng, K. Zhang Li S. ''A method to predict the ultimate tensile strength of 3D printing poly-lactic acid (PLA) materials with different printing orientations.'' Composites Part B: Engineering. 163: 393–402, (2019). https://doi.org/10.1016/j.compositesb.2019.01.025

A. Enzi. J.A. Mynderse ''Optimization of process parameters applied to a prototype selective laser sintering system.'' ASME International Mechanical Engineering Congress and Exposition (Vol. 58356, p. V002T02A022). American Society of Mechanical Engineers. (2017).

M.L.Dezaki, M.K Ariffin., A Serjouei., A.Zolfagharian, S Hatami., M.Bodaghi ''Influence of infill patterns generated by CAD and FDM 3D printer on surface roughness and tensile strength properties. ''Applied Sciences.; 11(16): 7272. (2021). https://doi.org/10.3390/app11167272.

D’Addona D.M., S.J Raykar D, Singh., D.Kramar .''Multi-Objective Optimization of Fused Deposition Modeling Process Parameters with Desirability Function''. Procedia CIRP; 99: 707–710. (2021). https://doi.org/10.1016/j.procir.2021.03.117

R.Pang, M.K., Lai, K.I .Ismail., Yap T.C. ''The Effect of Printing Temperature on Bonding Quality and Tensile Properties of Fused Deposition Modelling 3D-Printed Parts.'' InIOP Conference Series: Materials Science and Engineering. IOP Publishing. 1257(1): 012031. (2022). https://doi.org/10.1088/1757-899X/1257/1/012031.

Ma X. Classification of additive manufacturing ma- materials for radiologic phantoms (Doctoral disserta- tion, Wien).

M. A. Hamed and T. F. Abbas, "The Impact of FDM Process Parameters on the Compression Strength of 3D Printed PLA Filaments for Dental Applications," Advances in Science and Technology. Research Journal, vol. 17, no. 4, pp. 121–129, Aug. (2023). https://doi.org/10.12913/22998624/169468.

N.N .Ahmad, Y.H.Wong, N.N.Ghazali.'' A systematic review of fused deposition modeling process parameters. ''Soft Science.2(3): 11. (2022). https://doi.org/ 10.20517/ss.2022.08.

Downloads

Published

20-07-2024

How to Cite

[1]
M. A. A. Hamed, “Experimental and Investigation of ABS Filament Process Variables on Tensile Strength Using an Artificial Neural Network and Regression Model”, NJES, vol. 27, no. 2, pp. 251–258, Jul. 2024, doi: 10.29194/NJES.27020251.

Similar Articles

201-210 of 279

You may also start an advanced similarity search for this article.