Toward Seven-Band Coherent WDM System Covering T to U Bands: Predictions of Transmission and BER Performance


  • Arwa A. Moosa Department of Networks Engineering, College of Engineering, Al- Iraqia University Baghdad, Iraq.
  • Raad Sami Fyath Department of Computer Engineering College of Engineering, Al-Nahrain University, Baghdad, Iraq.



Seven-band WDM, UWB-WDM, Enhanced Gaussian noise model, Optical communication bands


This paper discusses the development of a seven-band coherent wavelength-division multiplexing (WDM) system covering the T to U systems, aiming to enhance the capacity and system efficiency. Seven multiband systems (C+L, S+C+L, S+C+L+U, E+S+C+L, E+S+C+L+U, O+E+S+C+L+U, and T+O+E+S+C+L+U) are designed with 40 GBaud symbol rate, 50 GHz channel spacing, and dual-polarization (DP)-16QAM signaling. The analysis adopted the enhanced Gaussian noise model, considering the amplified spontaneous emission of inline optical amplifiers and nonlinear interference (NLI) from fiber nonlinear optics, including Kerr effect and stimulated Raman scattering (SRS) which it implemented using Matlab (Ver. 2020b) program. The results show that the optimal powers are -4, -5, -5, -4.5, -3.5, -6, and -4.5 dBm for the seven WDM systems, respectively. Further, with a fiber span length of 100 km, the C+L system has the longest transmission reach of 20 span. However, using S+C+L+U system gives the highest bit rate-distance product of 1619 The O+E+S+C+L+U and T+O+E+S+C+L+U systems are designed with 50 km-span length to reduce the effect of NLI caused by the large numbers of channels (1060 and 1200, respectively).


Download data is not yet available.


W. Shi, Y. Tian, and A. Gervais, “Scaling Capacity of Fiber-Optic Transmission Systems Via Silicon Photonics”, Nanophotonics, vol. 9, no. 16, pp. 4629–4633, 2020, doi: 10.1515/nanoph-2020-0309.

V. Lopez, B. Zhu, D. Moniz, N. Costa, J. Pedro, X. Xu, A. Kumpera, L. Dardis, J. Rahn, and S. Sanders, “Optimized Design and Challenges for C&L Band Optical Line Systems”, Journal of Lightwave Technology, vol. 38, no. 5, pp. 1080–1091, 2020, doi: 10.1109/JLT.2020.2968225.

F. H. Tithi and S. P. Majumder, “Analytical Evaluation of Combined Influence of XPM, ASE and SRS in A Raman Amplifier Based WDM System”, Optik., vol. 208, Artical no. 164076, pp. 1–15, 2020, doi: 10.1016/j.ijleo.2019.164076.

T. Jin, Cenqin Shevchenko, Nikita A. Wang, Junqiu Chen, Yunfei Xu, “Wideband Multichannel Nyquist-Spaced Long-Haul Optical Transmission Influenced by Enhanced Equalization Phase Noise”, Sensors, vol. 23, no. 3, pp. 1–10, 2023, doi: 10.3390/s23031493.

M. Dahan, David Zarubinsky, Michael Liang, Yunhua Golani, Ori Shtaif, “Universal Virtual Lab: A Fast and Accurate Simulation Tool for Wideband Nonlinear DWDM Systems”, Journal of Lightwave Technology, vol. 40, no. 8, pp. 2441–2455, 2022, doi: 10.1109/JLT.2022.3141447.

H. Luis, Ruben S. Puttnam, Benjamin J. Rademacher, G. Awaji, Y. Furukawa, “Demonstration of A 90 Tb/S, 234.8 km, C+L Band Unrepeated SSMF Link with Bidirectional Raman Amplification”, Optics Express, vol. 30, no. 8, pp. 13114–13118, 2022, doi: 10.1364/oe.451948.

A. A. Moosa and R. S. Fyath, “Effect of Fiber Stimulated Raman Scattering on the Performance of of S+C+L Ultra-wideband WDM System,” 2022 Iraqi International Conference on Communication & Information Technologies ( IICCIT-2022) , Basrah University , Basrah , Iraq, 2022, doi: 10.1109/IICCIT55816.2022.10010481.

A. Moosa and R. S. Fyath, “Performance Investigation of DP-16QAM Ultra-wideband- Wavelength-Division Multiplexing Communication System: Optimum Power Consideration”, Al-Nahrain Journal for Engineering Sciences, vol. 26, no. 1. pp. 37–44, 2023, doi:

B. J. Puttnam, G. Ruben S. Luís, A. H. F. Rademacher, M. Mendez-Astudillio, and Y. Awaji, “S-, C- and L-Band Transmission Over A 157 nm Bandwidth Using Doped Fiber and Distributed Raman Amplification”, Optics Express, vol. 30, no. 6, pp. 10011–10017, 2022, doi:

A. A. Moosa and R. S. Fyath, “Detailed Performance Investigation and BER Characterization of S+C+L Band-WDM Transmission System”, Optik, vol. 276, Article no. 170641, pp. 1–17, 2022, doi:

S. Al-Azzawi, Alabbas A. Almukhtar, Aya A. Hmood, Jassim K. Das and S. W. Dhar, A. Paul, M. C. Harun, “Broadband ASE Source for S + C + L Bands Using Hafnia-Bismuth Based Erbium Co-Doped Fibers”, Optik, vol. 255, Article no. 168723, pp. 1–6, 2022, doi: 10.1016/j.ijleo.2022.168723.

M. S. Habib, M. M. Haque and S. M. A. S. Habib, M. Hasan, M. I. S. Rahman, and M. Razzak, “Polarization Maintaining Holey Fibers for Residual Dispersion Compensation Over S + C + L Wavelength Bands”, Optik, vol. 125, no. 3, pp. 911–915, 2014, doi: 10.1016/j.ijleo.2013.04.133.

B. Sadeghi, Rasoul Correia and V. Virgillito, Emanuele Napoli, Antonio Costa, Nelson Pedro, Joao Curri, “Optimal Spectral Usage and Energy Efficient S-to-U Multiband Optical Networking”, in 2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - Proceedings, 2022, pp. 1–3. doi: 10.1364/ofc.2022.w3f.7.

A. Sambo, N. Ferrari, N. Napoli, A. Costa, and V. Pedro, J. Sommerkorn-Krombholz, B. Castoldi, Piero Curri, “Provisioning in Multi-Band Optical Networks,” Journal of Lightwave Technology, vol. 38, no. 9, pp. 2598–2605, 2020, doi: 10.1109/JLT.2020.2983227.

Z. Wang, X. y. Li, S. G. Liu, and Q. Fan, “Ultra-Broadband Polarization Filter Covering O + E + S + C + L + U Telecom Wavebands Based on Au-Coated Photonic Crystal Fiber”, Optik, vol. 156, pp. 463–469, 2018, doi: 10.1016/j.ijleo.2017.11.007.

J. Palais, "Fiber Optic Communications Systems", USA: Springer, 2021. doi: 10.1201/9781420041163-49.

K. Minoguchi , M., Kyo, H. Fukutaro, S. Okamoto, T. Sasai, K.Horikoshi, A. Matsushita, M. Nakamura, Masanori, E. Yamazaki, Etsushi.Y. Kisaka, Yoshiaki, “Beyond 100-Tb/S Ultra-Wideband Transmission in S, C, And L Bands Over Single-Mode Fiber”, SPIED,p. 18, 2020, doi: 10.1117/12.2541990.

G. C. Salma Escobar Landero, I. F. de Jauregui Ruiz, A.Ferrari, D. Le Gac, Y. Frignac, “Link Power Optimization for S+C+L Multi-Band WDM Coherent Transmission Systems”, 2022 Optical Fiber Communication (OFC) Conference, Optica Publishing, 2022, pp. 1–3. doi: 10.1364/ofc.2022.w4i.5.

G. D’Amico, A. Correia, B. London, E.Virgillito, E. Borraccini and V. Napoli, A. Curri, “Scalable and Disaggregated GGN Approximation Applied to a C+L+S Optical Network”, Journal of Lightwave Technology, vol. 40, no. 11, pp. 3499–3511, 2022, doi: 10.1109/JLT.2022.3162134.

A. Ferrari, A. Napoli, J.K. Fischer, N. Costa, A. D’Amico, J. Pedro, W. Forysiak, E. Pincemin, A. Lord, A. Stavdas, J.F.P. Gimenez, G. Roelkens, N. Calabretta, S. Abrate, B. Sommerkorn-Krombholz, V. Curri, "Assessment on the achievable throughput of multi-band ITU-T G.652.D fiber transmission systems", Journal of Lightwave Technology, vol. 38, pp. 4279–4291, 2020

L. N. Binh, "Optical fiber communications systems: Theory and practice with matlab® and simulink® " models. CRC Press, 2015.

F. M. Mustafa, M. M. Abdelhalim, and M. H. Aly, “Dispersion Compensation: Impact of Integration of Soliton Transmission and Cascaded Apodized FBGs”, Optical and Quantum Electronics, 2022, doi: 10.1007/s11082-022-04188-4.

M. F. S. Ferreira, "Optical Signal Processing in Highly Nonlinear Fibers", London New York: CRC Press, 2020.

N. N. A. Shevchenko, S. Nallaperuma, and S. J. Savory, “Maximizing the Information Throughput of Ultra-Wideband Fiber-Optic Communication Systems”, Optics Express, vol. 30, no. 11, p. 19320, 2022, doi: 10.1364/oe.447591.

G.G.P. AGRAWAL. "Nonlinear Fiber Optics", 6th Edition, Elsevier Accadimic Press, 2019.

R. Emmerich, M. Sena, R. Elschner, C. Schmidt-Langhorst, I. Sackey, C. Schubert, and R. Freund, “Enabling S-C-L-Band Systems with Standard C-Band Modulator and Coherent Receiver Using Coherent System Identification and Nonlinear Predistortion”, Journal of Lightwave Technology, vol. 40, no. 5, pp. 1360–1368, 2022, doi: 10.1109/JLT.2021.3123430.

J. L. Gao Ye, J. Xiang, G. Zhou, M. Xiang and A. S. F. Yuwen Qin, “Impact of the Input OSNR on Data-Driven Optical Fiber Channel Modeling”, Optical Communications and Networking, vol. 15, no. 2, pp. 78–86, 2023, doi: 10.1364/JOCN.476195.

X. Lin, S. Luo, S.K.O. Soman, L. Lampe, D. Chang, Ch Li, "Perturbation Theory-Aided Learned Digital Back-Propagation Scheme for Optical Fiber Nonlinearity Compensation", Journal of Lightwave Technology, vol. 40 , pp. 1981–1988, 2022

C. Lasagni, P. Serena, and A. Bononi, “Modeling Nonlinear Interference with Sparse Raman-Tilt Equalization,” Journal of Lightwave Technology, vol. 39, no. 15, pp. 4980–4989, 2021, doi: 10.1109/JLT.2021.3082287.

D. Semrau, E. Sillekens, R. I. Killey, and P. Bayvel, “Modelling the Delayed Nonlinear Fiber Response in Coherent Optical Communications,” Journal of Lightwave Technology, vol. 39, no. 7, pp. 1937–1952, 2021, doi: 10.1109/JLT.2020.3046998.

H. Buglia, M. Jarmoloviˇcius, A. Vasylchenkova, E. Sillekens, L. Galdino, R. I. Killey, and P. Bayvel, “A Closed-Form Expression for the Gaussian Noise Model in the Presence of Inter-Channel Stimulated Raman Scattering Extended for Arbitrary Loss and Fibre Length,” Journal of Lightwave Technology, vol. PP, pp. 1–10, 2023, doi: 10.1109/jlt.2023.3256185.

J. C. Lasagni, C. Serena, P., A. Antona, “A Generalized Raman Scattering Model for Real-Time SNR Estimation of Multi-Band Systems,” Journal of Lightwave Technology, pp. 1–11, 2023, doi: 10.1109/JLT.2023.3250751.

P. Poggiolini and M. Ranjbar-Zefreh, “Closed Form Expressions of the Nonlinear Interference for UWB Systems,” 2022 European Conference on Optical Communication, ECOC 2022, pp. 1–4, 2022.

D. Semrau, E. Sillekens, P. Bayvel, and R. I. Killey, “Modeling and mitigation of fiber nonlinearity in wideband optical signal transmission,” Journal of Optical Communications and Networking, vol. 12, no. 6, pp. C68–C76, 2020, doi: 10.1364/JOCN.382267.

A. Souza, N. Costa, J. Pedro, and J. Pires, “Benefits of Counterpropagating Raman Amplification for Multiband Optical Networks,” Journal of Optical Communications and Networking, vol. 14, no. 7, p. 562, 2022, doi: 10.1364/jocn.456582.

F. Wu, Tianze Tian, Y. Wu, X. Yue, Y. Gu, Y. Cui, and Q. Zhang, “Performance Analysis and Power Tilt Mitigation of Ultra-Wideband WDM Transmission Systems,” Photonics, vol. 10, no. 5, pp. 1–19, 2023, doi:

P. System, S. Qam, Y. V. Kryukov, and D. A. Pokamestov, “Symbol Error-Rate Analytical Expressions for a Two-User PD-NOMA System with Square QAM”, Symmetry, vol. 13, Article no. 2153, pp. 1–13, 2021, doi:

H. K. Chan, D.W.U., Wu, Xiong, Z. Zunyue, Lu, C. Lau, A. Pak, T. Tsang, “Ultra-Wide Free-Spectral-Range Silicon Microring Modulator for High Capacity WDM”, Journal of Lightwave Technology, vol. 40, no. 24, pp. 7848–7855, 2022, doi: 10.1109/JLT.2022.3208745.

E. Semrau, Daniel, Sillekens and P. Killey, Robert I., Bayvel, “A Modulation Format Correction Formula for the Gaussian Noise Model in the Presence of Inter-Channel Stimulated Raman Scattering,” Journal of Lightwave Technology, vol. 37, no. 19, pp. 5122–5131, 2019, doi: 10.1109/JLT.2019.2929461.

A. Soleimanzade and M. Ardakani, “EGN-Based Optimization of the APSK Constellations for the Non-Linear Fiber Channel Based on the Symbol-Wise Mutual Information,” Journal of Lightwave Technology, vol. 40, no. 7, pp. 1937–1952, 2022, doi: 10.1109/JLT.2021.3132863.

M. Rabbani, H. Hosseinianfar, H. Rabbani, H. Brandt-Pearce, “Analysis of Nonlinear Fiber Kerr Effects for Arbitrary Modulation Formats,” Journal of Lightwave Technology, vol. 41, no. 1, pp. 96–104, 2023, doi: 10.1109/JLT.2022.3213182.

T. Liu, Z. Xu and T. Jin, C. Xu, T. Tan, M. Zhao, J. Liu, “Analytical Optimization of Wideband Nonlinear Optical Fiber Communication Systems,” Optics Express, vol. 30, no. 7, pp. 11345–11359, 2022, doi: 10.1364/oe.453307.

B. Sambo, N. Correia, J. Napoli, A. Pedro, and V. Sambo, N. Correia, B. Napoli, A. Pedro, J. Kiani, L. Castoldi, P. Curri, “Network Upgrade Exploiting Multi Band: S- Or E-Band?” Journal of Optical Communications and Networking, vol. 14, no. 9, pp. 749–656, 2022, doi: 10.1364/jocn.464386.

C. Song, Y. Fan, Q. Lu and A. P. T. Wang, D. Lau, “Efficient Three-Step Amplifier Configuration Algorithm for Dynamic C+L-Band Links in Presence of Stimulated Raman Scattering,” Journal of Lightwave Technology, vol. 41, no. 5, pp. 1445–1453, 2023, doi: 10.1109/JLT.2022.3223919.

B. Sambo, N. Correia, J. Napoli, A. Pedro, and V. Castoldi, P. Curri, “Transport Network Upgrade exploiting Multi-Band Systems: S- versus E-band,” in 2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - Proceedings, 2022, pp. 1–3. doi: 10.1364/ofc.2022.w3f.8.

K. Okamoto, S. Minoguchi and Y. Hamaoka, F. Horikoshi, K. Matsushita, A. Nakamura, M. Yamazaki, E. Kisaka, “A Study on the Effect of Ultra-Wide Band WDM on Optical Transmission Systems,” Journal of Lightwave Technology, vol. 38, no. 5, pp. 1061–1070, 2020, doi: 10.1109/JLT.2019.2962178.

S. Ivanov, V. V. Sterlingov, P. M. Mishra, S. K. Downie, J. D. Makovejs, “Effective Area Tilt Impact In S+C+L Band Long-Haul Fiber Optic Transmission Systems,” in 2022 Optical Fiber Communications Conference and Exhibition, OFC 2022 - Proceedings, 2022, pp. 3–5. doi: 10.1364/ofc.2022.w3e.4.

A. Ghazisaeidi, A. Arnould, M. Ionescu, V. Aref , H. Mardoyan, S. Etienne, M. Duval, C. Bastide, H. Bissessur, and J. Renaudier, “99.35 Tb/s Ultra-wideband Unrepeated Transmission Over 257 km Using Semiconductor Optical Amplifiers and Distributed Raman Amplification,” Journal of Lightwave Technology, vol. 40, no. 21, pp. 7014–7019, 2022, doi: 10.1109/JLT.2022.3198518.

W. Hazarika, P. Tan, M. Donodin, A. Noor, S. Phillips, I. Harper, P. Stone, J. S. Li, M. J. Forysiak, “E-, S-, C- And L-Band Coherent Transmission with A Multistage Discrete Raman Amplifier,” Optics Express, vol. 30, no. 24, pp. 43118–43125, 2022, doi: 10.1364/oe.474327.

H. Zafar, K Enneth, L K Ereira, M Auro F P,Asras, M Ahmoud R, Hamim, Njum, D Alaver H A., “Compact Broadband ( O, E, S, C, L & U Ban Ds) Silicon TE-Pass Polarizer Based on Ridge Waveguide Adiabatic S-Bends,” Optics Express, vol. 30, no. 6, pp. 10087–10095, 2022, doi: 10.1364/oe.452823.




Similar Articles

1-10 of 234

You may also start an advanced similarity search for this article.