Simulation of Attractive Interaction Reaction for Binary Alloys
Abstract
In this research the attractive interaction reactions of binary alloy solidification have been simulated. A mean - field kinetic equations have been used in this investigation in order to simulate the crystal lattice of two metals of complete solid and liquid solubility ( compete miscibility ) with solid solution types. The simulation was conducted in a dimensionless method. The results showed that the maximum free energy f(p) decreased to the minimum level that is (-0.052) at (0.96) and (0.04)weight percentage concentration for the A and B metals respectively. On the other hand, the free energy increased until it reached its maximum level (-0.005) at a (0.5) concentration for both metals. Results also showed that the maximum free energy values gave a symmetrical trend before and after the concentration balance of the two metals used. A pseudo eutectic alloy has been formed at (0.5) concentration for the two metals at thermal energy level (KT) equal to (1). Also a symmetrical trend has been formed for concentration values of both metals before and after the eutectic alloy formation.
Author(s) Rights
- Each author retains the right to use the work for non-commercial purposes as well as for further research and spoken presentations.
- Each author retains the right to use the illustrations and research data in his/her future work.
- Only one offprint is provided free for each author. The authors can order offprints at the proof stage at certain rates depending on the number of additional copies required and the year of publication.
Publisher Rights
The publisher of the journal has full rights for publication of the submitted manuscripts, electronic and facsimile formats and for electronic capture, reproduction and licensing in all formats now and in perpetuity in the original and all derivative works.