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Abstract 
This paper provides a theoretical framework 

for analysis of consensus algorithm for multi-
agent networked systems considering the role of 
directed information flow. Improvement of the 
performance of the implemented consensus 
algorithm has been achieved by using Particle 
Swarm Optimization (PSO). Concepts of 
information consensus in networks and methods 
of convergence are applied as well. Our analysis 
framework is based on tools algebraic Graph 
Theory (GT). Simulation of multi-agent system 
and the performance of a consensus algorithm 
have been discussed. Acceleration the network 
while approaching the required goal has been 
accomplished and elimination of undesired swing 
that appears during the acceleration was proved. 
 
Keywords: Consensus algorithm, Graph 
theory, Multi-agent network system, Particle 
swarm optimization. 

 
1. Introduction 

Distributed coordinated control of multi-agent 
robotics had recently attracted research interests; 
both in control theory and robotics. Various 
applications of cooperative control as for the 
spacecraft’s, mobile robots, UAVs, sensor 
networks and other areas such as optimization can 
be found in literature [1]. 

Consensus algorithm is a key problem in 
formation control for multi-agent systems. The 
goal of that algorithm is to develop network 
topology and distributed protocol that allows the 
attainment of intricate goals. Consensus algorithm 
of multi-agent systems depends analytically on 
keeping a connected communication network 
among the agents [2].  

The distributed consensus algorithm can be 
used to reach agreement between the agents 
where it computes the average of an initial set of 
measurements [2]. The calculation of the average 
value is done through local information exchange 
between neighbors. The speed of the consensus 

algorithm to reach the average value depends on 
the states of each agent such as the position of the 
agent. 

Early research on consensus algorithm focuses 
on fixed topologies, where the communication 
links and the nodes on a network are assumed 
constant throughout an area. A study on the 
consensus algorithm with random network was 
presented by [3] where the authors proposed 
pairwise gossip defined as that every two 
neighbored nodes can update their states at each 
iteration, and so on till all nodes reach the 
consensus value. However, this approach acts 
slowly since it requires storing all the data after 
each iteration. Additionally, large memory is 
needed. Meanwhile, L. Xiao and S. Boyd [4, 5] 
proposed a method to change the weight of each 
edge between vehicles (i.e. agents) that is required 
to apply the consensus algorithm for it. The aim is 
to find the optimal weights required to decrease 
the convergence time. The algorithm was treated 
as linear iteration procedure. Unfortunately, for a 
large network control system, the application of 
this approach may be unfeasible, since a new 
topology has to be acquired after each change in 
the communication between sensors under given 
computational constraints. 

For large-scale graph, Olfati-Saber et al., [6] 
proposed a “random rewiring” to increase the 
convergence speed in consensus algorithm. 
However, in some applications, changing the 
topology may be physically difficult and even 
costly. Ruozi Sun et al., [7] suggested changing 
the weights of the graph through dependence on 
Euclidian area by using special algorithm called 
Weighted Dynamic Topology Control (WDTC) 
algorithm. Nevertheless, this algorithm is more 
complex and has no regard to the performance of 
network. In addition, Junghun Ryu at el., [8] used 
Borel Cayley graphs to minimize the distance 
between vehicles in the network, which may lead 
to an increase in the number of edges between 
vehicles. 

Optimization methods had been adopted to 
efficiently manage multi agent problems, like in 
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[9], where the implementation of cascade-
connectivity swarm optimization algorithm to 
solve multi-objective optimization problem in 
order to stabilize networking layer. In addition, a 
discrete-time stochastic extremum seeking 
algorithm is used to convergence to a Nash 
equilibrium in [10]. 

In this paper, the concept of graph theory was 
implemented to construct the communication 
topology among different agents within a multi-
agent system. Moreover, a robust optimization 
algorithm based on Particle Swarm Optimization 
(PSO) is utilized to improve the performance of 
the consensus algorithm in order to reach the 
optimum state for each agent in the system. 

 
2. Background 
2.1 Principals of Agent and Multi Agent 
System 

The basic definition of an agent is “a system 
component with specific properties”. An agent is 
any entity that senses its environment and acting 
over it. An agent includes sensory inputs, goal, 
action and domain knowledge[11].A general 
single-agent framework is illustrated in Fig. 1. 

 
Figure (1): A general single-agent framework [11]. 
 
Reactivity, Deliberative, Sociality, and 

Autonomy are the most important properties of an 
agent [6]. Fig. 2 illustrates reactive and 
deliberative agents. 

 

 
Figure (2):  Reactive and deliberative agents [11]. 

 
Multi-agent system (MAS) can be defined as a 

group of agents who cooperate and communicate 
with each other to perform a specific task. MAS 
can treat complex problems that can’t be treated 

with a single agent. The simplest MAS is a multi-
vehicle [12]. 

When a single agent in MAS has its own goal 
independently of the others, this is called discrete 
MAS. However, in this system there is no need 
for the cooperation and communication between 
them. When all agents have the same goal or 
solving the same problem, all agents are needed to 
cooperate to do this job through communication 
and cooperation between them [13]. 

 
2.2 Spectral Graph Theory 

In this section, properties and some necessary 
definitions of spectral graph theory will be 
reviewed.  

Assume that we have a network with N nodes, 
which called vertices and communication lines 
between them called edges, the graph topology 
can be represented as G{V,E} in which the 
vertices V=(1,…,N) and the edges E ⊆ V×V. 

There are two types that define the flow state 
between nodes; directed graph if the direction 
given otherwise undirected graph when there is no 
direction between nodes.   

The model of communication topology in 
MAS is very important to exchange the 
information between agents. The graph theory can 
be used to model this topology meanwhile the 
digraph (i.e. directed graph) can be used to direct 
the information state of each agent to another 
agent. In order to apply consensus algorithm the 
digraph should be directed spanning tree model. 
Moreover, There are two important roles in 
directed spanning tree that should accomplished 
to model the communication between agents in 
MAS [14]: 

• First rule: the directed spanning tree 
should be strongly connected. 

• Second rule: the directed spanning 
tree should be balanced. 
 

Definition 1: 
The adjacency matrix A of G represents the 

communication between each node with its 
neighbors while the adjacency matrix of a G with 
n nodes is the n x n matrix where the i, j element 
is equal to 1 if node i and node j are neighbors, 
and zero otherwise [15]. 

 

𝑎𝑎𝑖𝑖𝑖𝑖 = �
1   𝑖𝑖𝑖𝑖  𝑒𝑒𝑖𝑖𝑖𝑖 ∈ 𝐸𝐸
0    𝑖𝑖𝑖𝑖 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒          … (1)  

𝑎𝑎𝑖𝑖𝑖𝑖  Represent the entries of the adjacency 
matrix. 

𝑒𝑒𝑖𝑖𝑖𝑖 Represent edge between node i and node j 
 
Definition 2:     
For weighted graph the laplacian matrix 

calculated as in following equation [15] 
𝑒𝑒𝑖𝑖𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖𝑖𝑖𝑛𝑛

𝑖𝑖=1,𝑖𝑖≠𝑖𝑖                     … (2)  
𝑒𝑒𝑖𝑖𝑖𝑖 = −𝑎𝑎𝑖𝑖𝑖𝑖                     … (3) 
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Definition 3: 
A vertex is balanced if its in-degree is equal to 

its out-degree. A directed graph is balanced if 
every vertex is balanced [15]. 
 
3. Consensus algorithms in a multi-
agent system 

Suppose there are i vehicles in a specific area 
and each vehicle has an information state. The 
information state defines the information that 
needed by each vehicle to be coordinated with 
another vehicle. This information may be vehicle 
position or velocity or oscillation phase and so on 
[16]. 

In consensus algorithm, the information states 
of each vehicle are updated and shared with 
another vehicle in the network. The updated 
information states are based on the information 
state of their neighbors. The consensus algorithm 
updates the information state of each vehicle and 
makes the information state of each vehicle in the 
network reach to the same value so that all 
vehicles have similar dynamics [17]. 
 The most common continuous-time consensus 
algorithm is [17]: 

�̇�𝑥𝑖𝑖(𝑡𝑡) = −� 𝑎𝑎𝑖𝑖𝑖𝑖
𝑛𝑛

𝑖𝑖=1
(𝑡𝑡) �𝑥𝑥𝑖𝑖(𝑡𝑡) − 𝑥𝑥𝑖𝑖(𝑡𝑡)� , 

  𝑖𝑖 = 1,2, … . ,𝑛𝑛 … (4) 
where 𝑎𝑎𝑖𝑖𝑖𝑖  (𝑡𝑡) is the entry of the adjacency 

matrix of the graph at time t, and 𝑥𝑥𝑖𝑖 (𝑡𝑡) is the 
information state of the 𝑖𝑖𝑡𝑡ℎ vehicle. When 𝑎𝑎𝑖𝑖𝑖𝑖  (𝑡𝑡) 
is equal to zero, that’s mean there is no 
communication between vehicle i and vehicle j. 

Continuous-time consensus algorithm in 
equation above can be written in matrix form as 
[18] 

  �̇�𝑥𝑖𝑖(𝑡𝑡) = −𝐿𝐿(𝑡𝑡)𝑥𝑥(𝑡𝑡)                                
…(5) 
where 𝐿𝐿(𝑡𝑡) is the digraph laplacian at time t and x 
=[𝑥𝑥1, … , 𝑥𝑥𝑛𝑛]𝑇𝑇. 

Eq. (5) used with unbalanced graph theory. 
For balance graph, the following equation below 
will be used: 

�̇�𝑥 = −𝑑𝑑𝑖𝑖ag{𝑤𝑤 } 𝐿𝐿𝑥𝑥                  … (6) 
where w = [w1, w2, w3]Tis the positive left 

eigenvector of L that satisfy wT1 = 1, where 1 is a 
vector of ones. The left columns of eigenvector w 
are entries of the diagonal matrix 𝑑𝑑𝑖𝑖𝑎𝑎𝑔𝑔 { w } [19]. 

The continues time consensus algorithm can 
be achieved only when the laplacian matrix of 
digraph has zero simple eigenvalue [20]. 

 
4  Particle Swarm Optimization  

Particle Swarm Optimization (PSO) is inspired 
by behavior of bird flocking. This algorithm 
consists of swarm of particles i.e. group of 
random particles where each single solution is a 
bird (particle) in the search space. Optimized 
solution for every particle is determined by fitness 

function. Group of birds search for food by 
observing fitness function [21]. By following 
leader particle which is nearest to the food they 
can find the food. Leader particle is nothing but 
current optimal solution. So, every problem is 
initialized with random particles. PSO is based on 
birds swarm searching for optimal food sources in 
which direction of birds movement is influenced 
by its current movement, the best food source 
experienced by it ever and best food source any 
bird in the swarm ever experienced (i.e. known as 
personal best and global best values) and they get 
updated new best values after each iteration in 
PSO algorithm [22]. The personal best value is 
represented as up and global best value is 
represented as ug. Particles movement is decided 
by following iteration in PSO as:  

𝑢𝑢𝑖𝑖(𝑛𝑛 + 1) =  𝑢𝑢𝑖𝑖(𝑛𝑛) + 𝑣𝑣𝑖𝑖 (𝑛𝑛 + 1) 
                    𝑛𝑛 = 0, 1, 2, … … ,𝑁𝑁 − 1         … 

(7) 
where: uiis the position of particle i, vi is the 
velocity of particle i, n is number of iterations 
(initially n = 0), while N is total number of 
iterations.  

The velocity of the particle is given as:  
𝑣𝑣𝑖𝑖(𝑛𝑛 + 1) =  𝑣𝑣𝑖𝑖(𝑛𝑛) +  2𝑟𝑟1𝑖𝑖(𝑛𝑛)�𝑢𝑢𝑝𝑝𝑖𝑖(𝑛𝑛) −

 𝑢𝑢𝑖𝑖(𝑛𝑛)� +  2𝑟𝑟2𝑖𝑖(𝑛𝑛)[𝑢𝑢𝑔𝑔(𝑛𝑛) −  𝑢𝑢𝑖𝑖(𝑛𝑛)]… (8) 
where: up is the personal best position, ug is the 
personal best position, upi (n)-ui(n) calculates 
vector in the direction of the personal best 
position and ug(n) - ui(n)  gives vector directed 
towards the global best position. r1i and r2i both 
represent random vectors which has values 
uniformly distributed between 0 and 1. 
 
5 Consensus Performance in a Multi-

Agent System 
 
The performance of continuous time 

consensus with the multi-agent in a network is 
described in this section, where, the vehicle has 
been taken as an example for an agent. The 
continuous consensus algorithm has been applied 
two cases. The first case, the graph topology is 
considered not to be balanced; therefore, the 
application of the consensus algorithm will be 
applied using eq. (5). As a result, the states of the 
vehicle aren't reaching to the average state. 

In the second case, graph theory is balanced; 
the application of the consensus algorithm will be 
according to eq. (6). In this case, the Laplacian 
matrix multiplied by left column of its 
eigenvector. That will change the unbalanced 
graph topology to balanced graph topology. The 
states of vehicles in this case will reach to the 
average state [23]. 

For illustration, three vehicles have been 
modeled in three different topologies, as shown in 
Fig. 3. The models of presented digraphs in (a) 
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and (b) are not strongly connected because not all 
agents have reached to the other agent, while in 
(c) it is strongly connected because each agent 
can reach to another agent. 

 
Figure (3):  Three different communication 

topologies; (a) and (b) are not strongly connected, and 
(c) is strongly connected. 

 
The adjacency matrices of each model in Fig. 

3 are: 

𝐴𝐴(𝑎𝑎) = �
0 1 0
0 0 1.5
0 0 0

�  ... (9)𝐴𝐴(𝑏𝑏) =

�
0 1 0
0 0 1.5
2 0 0

�  …(10) 

𝐴𝐴(𝑐𝑐) = �
0 1 0
0 0 1.5
0 2 0

�  … (11) 

From this adjacency, the Laplacian matrices 
can be found according to eq.(2) and eq. (3). 

𝐿𝐿(𝑎𝑎) = �
1 −1 0
0 1.5 −1.5
0 0 0

� … (12) 

𝐿𝐿(𝑏𝑏) = �
1 −1 0
0 1.5 −1.5
0 −2 2

� … (13) 

𝐿𝐿(𝑐𝑐) = �
1 −1 0
0 1.5 −1.5
−2 0 2

� … (14) 

Laplacian matrix plays a key role in the 
performance and convergence time of the 
consensus algorithm according to the Laplacian 
eigenvalues. 

 
5.1 Simulation Example  

Let’s consider the communication models, as 
given in Fig. 3, where each of the Laplacian 
matrices 𝐿𝐿(𝑎𝑎), 𝐿𝐿(𝑏𝑏)and 𝐿𝐿(𝑐𝑐)has simple zero 
eigenvalues, Hence, it can be shown that only the 
digraph with a directed spanning tree, has zero 
simple eigenvalue of Laplacian matrices. That 
means consensus can be achieved if and only if 
the digraph has a directed spanning tree. 

If �𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖� → 0 as 𝑡𝑡 → ∞ then the consensus 
can be achieved between vehicles [12]. 

As an example, the communication topologies 
described in Fig. 3 will be used with initial 
information states refer to the three vehicle 

positions𝑥𝑥1, 𝑥𝑥2 and 𝑥𝑥3 as 0.2, 0.4 and 0.6 
respectively. Each of the topologies in Fig. 3has 
the common feature of containing a spanning tree 
graph theory. Although these topologies have zero 
simple eigenvalue, Fig. 3-a and Fig. 3-b are not 
strongly connected while the Fig. 3-c is strongly 
connected. Fig. 3-c will be used as 
communication topology in the following two 
cases. 

In the first case, the common consensus 
algorithm of eq. (5) will be applied to the model 
in Fig. 3-c where the Laplacian matrix L(c) is 
given in eq. (15). In this case, the consensus state 
is not achieved at the average consensus even 
though the digraph is strongly connected, because 
the graph is not balanced. Fig. 4 shows the 
simulation results of this case. 

 
Figure (4): Simulation results corresponds to �̇�𝑥 = 

−𝑳𝑳(c) 𝒙𝒙 
 
In the second case, eq. (6) has been used to 

change the unbalanced graph topology to 
balanced graph topology. In this case, the 
consensus is achieved at the average since the 
graph Γ [diag (w) 𝐿𝐿3] is balanced, as shown in 
Fig. 5. 

 
Figure (5): Simulation results corresponds to �̇�𝑥= 

−diag{𝒘𝒘 }𝑳𝑳(c) 𝒙𝒙 
 

The left column eigenvalue w of L(c) is {-
0. 𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕,−𝟎𝟎.𝟓𝟓𝟓𝟓𝟕𝟕𝟓𝟓,−𝟎𝟎.𝟑𝟑𝟕𝟕𝟑𝟑𝟓𝟓}, it can be verified  

�̇�𝒙= −diag{𝒘𝒘 } 𝑳𝑳(c) 𝒙𝒙.                        …(15) 
The solution to this equation according to that w 
is 
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�
𝒙𝒙�̇�𝟓
𝒙𝒙̇𝟕𝟕
𝒙𝒙̇𝟑𝟑
�=−�

−𝟎𝟎.𝟕𝟕𝟕𝟕𝟕𝟕𝟕𝟕
−𝟎𝟎.𝟓𝟓𝟓𝟓𝟕𝟕𝟓𝟓
−𝟎𝟎.𝟑𝟑𝟕𝟕𝟑𝟑𝟓𝟓

� . �
𝟓𝟓 −𝟓𝟓 𝟎𝟎
𝟎𝟎 𝟓𝟓.𝟓𝟓 −𝟓𝟓.𝟓𝟓
−𝟕𝟕 𝟎𝟎 𝟕𝟕

� . �
𝒙𝒙𝟓𝟓
𝒙𝒙𝟕𝟕
𝒙𝒙𝟑𝟑
�

…(16) 
 
6 Improving the performance of the 
continuous consensus algorithm 

From the simulation of case two in previous 
example (5-1), it can be seen that the required 
number of iterations to reach to the average 
consensus state is more than 5 iterations. In every 
iteration, each vehicle takes time from receiving 
information from its neighbor and processing that 
information to update the local state.  Actually 
this long time is considerably impractical, 
especially in online or emergency applications. 
The acceleration of the consensus algorithm is 
more vital to many applications. 

To improve the performance of a consensus 
algorithm in multi-agent system, we have added a 
new factor 𝜶𝜶 to the consensus algorithm named as 
an acceleration factor. Therefore, eq. (16) can be 
rewritten as: 

�̇�𝑥= −𝛼𝛼 [𝑑𝑑𝑖𝑖ag{𝑤𝑤 } 𝐿𝐿𝑥𝑥],    𝛼𝛼 ∈ ℝ… (17) 
The acceleration factor can be tuned to reduce 

the required number of iterations when applying 
consensus algorithm for different number of 
vehicles in the network. Eventually, the 
performance of consensus algorithm would be 
improved. Nevertheless, unsuitable value of 𝛼𝛼 
causes “swinging” of the consensus state. The 
swing (which is a light changing of the consensus 
state) occurs after the information states of 
vehicles reach consensus. Fig. 6 illustrates the 
resulting swing for the model, given in Example 
5-1, that happens after reaching consensus for an 
acceleration factor 𝛼𝛼 equal to 10. 

 

 
Figure (6): The swing of information states 

after reaching consensus, 𝛼𝛼=10. 
 

Thus, the acceleration factor has limited the 
undesired changes while reaching the consensus 
state. 
 

7 Integration of the PSO method with 
consensus algorithm  

In order to select minimum number of 
iterations as well as avoid swinging at target 
stage, PSO algorithm is utilized to select an 
optimal value for the proposed acceleration factor 
𝛼𝛼. Moreover, the integrated method procedure is 
shown in Fig. 7. 

The automatic tuning process will help to 
choose an optimal value of the acceleration factor 
𝛼𝛼 for different number of vehicles in the network, 
given the PSO parameters, as shown in Table 1. 
In addition, Fig. 8illustrates the performance of 
the applied consensus algorithm for the model 
given in subsection 5-1, with and without using 
PSO. The results illustrate the reduction in 
standard deviation when using PSO compared to 
that of stand-alone consensus algorithm, as shown 
in Fig. 9, where theStandard Deviation of error is 
computed for each case. The error between the 
target value for the state and its current value has 
been computed as follows: 

𝑒𝑒𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 = |𝑥𝑥𝑡𝑡(𝑖𝑖, 𝑘𝑘) − 𝑥𝑥(𝑖𝑖, 𝑘𝑘)|,i=1,..,n, k=1,..,Nt .

   …..(18)  
where: xt is the target value for a state, n is the 
number of states, Nt is the number of iterations. 

Meanwhile, Fig. 10 shows the elimination of 
swinging after using PSO. 
7.1 Simulation Example: 

The effect of the acceleration factor with the 
consensus algorithm can be seen with another 
model topology of four vehicles. Fig. 11 shows 
the communication topology model of multi-
vehicles and the information states are chosen as 
{0.2, 0.4, 0.6, 0.8}. The digraph in Fig. 11 has 
spanning tree and the Laplician matrix has zero 
simple eigenvalues. 

The adjacency matrix is 

𝐴𝐴 = �
0 1 0 0
0 0 1.5 0
0 0 0 2.5
2 0 0 0

�                    … (19) 

The Laplician matrix is  

𝐿𝐿 = �
1 −1 0   0
0 1.5 −1.5 0
0 0 2.5 −2.5
−2 0 0    2

�      … (20) 

 
Table 1: Parameters for PSO. 

Parameters Value 
Fitness function 
Swarmsize 
Correction factor 
Maximum iterations 

Initial particle position  
Best position so far 
Initial velocity 

Inertia 

𝑉𝑉𝑎𝑎𝑒𝑒𝑢𝑢𝑒𝑒=(𝛼𝛼- n)2 

10 
2 
10 ~ 50 
Input data 
1000 
0 
1.0 

Where: n is the number of agents - 1 
𝛼𝛼 is the acceleration factor 
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Figure (7): Flowchart for the integrated 
consensus algorithm in multi-agent system with 
PSO. 

 
Figure (8):Simulation results using consensus 

algorithm with and without PSO. 

 
Figure (9): Comparison between consensus 

algorithm for three vehicles with and without PSO 
algorithm. 

 
 

Figure (10):  Swing with optimal 𝛼𝛼 chosen by 
PSO, 𝛼𝛼 = 2.0198. 

 

 
Figure (11):  The communication topology 

between four vehicles. 
 

Fig. 12 shows the simulation results of 
applying consensus algorithm both with and 
without optimized value of α that is obtained by 
PSO. Meanwhile, the reduction in standard 
deviation using PSO algorithm is shown in Fig. 
13. The resulting swing when the best value of α 
is selected randomly is shown in Fig. 14, while 
Fig. 15 shows the elimination of the swing when 
using optimal α by PSO. 

 

 
Figure (12): Performance ofconsensus 

algorithm applied for the model of four vehicles 
given in Fig. (11). 

 
Figure (13): Comparison between consensus 

algorithm for four vehicles with and without PSO 
algorithm. 
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Figure (14): Swinging of four vehicles model 

as given in Fig. 11. 

 
Figure (15): Swinging of four vehicles model 

as given in Fig. 11 with optimal value of α chosen 
by PSO, 𝛼𝛼 = 3.1412. 

 
8 Discussion and Conclusions: 

In this paper, different communication models 
between MAS have been built using direct graph 
theory. The first communication model consists of 
three vehicles (i.e. nodes) and the other model 
contains four vehicles. In order to accelerate 
consensus of MAS, the addition of an acceleration 
factor to the consensus algorithm has been 
proposed. Optimal value acceleration factor has 
been reached by PSO algorithm while eliminating 
swinging that may occur during acceleration. 
Finally, considerable reduction in Standard 
Deviation of the information states when using 
PSO was reached to 10% compared to that 
without using PSO for the three vehicles and 19% 
for the four vehicles. 
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خوارزمیھ سرب  الأداء الأمثل لخوارزمیة الإجماع في نظام متعدد الوكلاء باستخدام
 الامثلیھالجسیمات 

 
 كرار غالب علي

 قسم ھندسھ السیطرة والنظم
 التكنولوجیھالجامعھ 

 طیبھ ولاء الدین خیري            
 قسم علوم الحاسوب
 الجامعھ التكنولوجیھ

 أحمد مظھر حسن
 قسم ھندسھ السیطرة والنظم

 الجامعھ التكنولوجیھ

 سفانھ مظھر رأفت
 قسم ھندسھ السیطرة والنظم

 الجامعھ التكنولوجیھ

 
 الخلاصة

خوارزمیة التوافق في الأنظمة الشبكیة متعددة الوكلاء مع مراعاة دور تدفق المعلومات الموجھ. ھذا البحث یقدم الاطار النظري  لتحلیل 
. وتم تطبق مفاھیم توافق الآراء في  (PSO) وقد تم تحسین أداء خوارزمیة التوافق التي تم تنفیذھا باستخدام تحسین سرب الجسیمات

. وقد نوقشت محاكاة  (GT) التحلیل لدینا على أدوات نظریة الرسم البیاني جبري المعلومات في الشبكات وأسالیب التقارب. ویستند إطار
نظام متعدد الوكلاء ومناقشة أداء خوارزمیة التوافق. تسریع الشبكة في حین یقترب من الھدف المطلوب قد أنجزت والقضاء على البدیل غیر 

 المرغوب فیھ الذي یظھر خلال تسارع.
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