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Abstract 
In this paper, the robustness properties of 

sliding mode control (SMC) which is designed to 

produce a dynamic output feedback controller to 

achieve robustness for trajectory tracking of the 

nonlinear human swing leg system is presented. 

The human swing leg represents the support of 

human leg or the humanoid robot leg which is 

usually modeled as a double pendulum. The thigh 

and shank of a human leg will respect the 

pendulum links, hip and knee will connect the 

upper body to thigh and then shank respectively. 

The total moments required to move the muscles 

of thigh and shank are denoted by two external 

(servomotors) torques applied at the hip and knee 

joints. The mathematical model of the system is 

developed. The results show that the proposed 

controller can robustly stabilize the system and 

achieve a desirable time response specification. 

  

Keywords: Human Swing Leg, Sliding Mode 

Control (SMC), full state feedback controller, 

uncertain system. 

 

1 Introduction 
Human movement represents the translation of 

human body from one place to another. It is 

considered from three perspectives of walking, 

jogging, and running gaits. One of the main gaits 

of movement is walking and happens more 

frequently than the other ones [1]. The 

complicated physics of the leg locomotion make it 

one of the most complex motions in the support of 

human leg or in the humanoid robot leg due to its 

complicated physics [2]. There are a large number 

of people who lost their walking ability due to 

neurological injuries, such as spinal cord injury 

and stroke, which result in motor-incomplete gait 

[3]. 

The joints of the body are the connections of 

system devices for each other. The relative 

motions of these devices are determined with 

respect to each other through the joint. This type 

of joints is referring to as self-impact joints. Joint 

self-impact phenomenon happens between shank 

and thigh at knee joint in specific times. Figure 1 

shows the joint self-impact, when shank and thigh 

are aligned [1]. 

 

 
 

Figure 1: Joint self-impact in a complete period 

of walking, when shank and thigh are aligned [1]. 

 

The concept of Sliding Mode Control (SMC) 

is known for robustness and stability. It can be 

achieved by changing the controller structure. In 

the SMC, the system state trajectory is forced to 

move along a chosen stable manifold, called the 

sliding manifold, in the state space. The sliding 

manifold is always chosen in such a manner that 

derived control law guarantees the system 

stability [4]. SMC has proven to be an effective 

robust control strategy. Many important results 

have been reported in the literature on sliding 

mode control of different classes of systems. 

Sliding mode controller has been applied for 

uncertain systems, time delay systems, stochastic 

systems, and switched hybrid systems [5]. 

The main goal of this paper is to design the 

sliding mode controller to stabilize the human 

swing leg system and achieve a desirable 

tracking. 

 

2 System Mathematical Model 
In support human leg and humanoid robot leg, 

swing leg system is largely achieved by the 

motion of the hip and knee while the ankle 

contribution can be neglected. The human swing 

leg usually modeled as a double pendulum with 

the thigh and shank represented as two links with 

their masses   ,   .The lengths of thigh and 

shank are   ,    and the unconstrained double 

pendulum is shown in Figure 2. In this figure,    

and   , denote the hip and knee rotation angles, 

respectively.    and    are the applied external 

torques that move the thigh and shank links [1, 2, 

6].  
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Figure 2: Schematics human swing leg [6]. 

 

The dynamic of the system based on Lagrange’s method can be represented by the following equations 

[1]: 
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The dynamical equations of a swing leg, which is modeled as unconstrained double pendulum, may be 

rewritten in the following form [1, 6]: 
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where  , ̇,  ̈  are 2×1 vectors of joint angles, joint angular velocities, and joint angular accelerations, 

respectively;  ( )   is 2×2 symmetric positive definite inertia matrix;  (   ̇)  ̇ is 2×1 vector of 

Coriolis;   ( ) is 2×1 vector of gravitational torques and   is 2×1 vector of actuator joint torques, where 
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Simplifying equations (1) and (2) yields: 
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Assume the state variables are: 

x1 =   :  upper link angular position. 

x2 =   : lower link angular position. 

x3 =  ̇ : upper link angular velocity. 

x4 =  ̇ : lower link angular velocity. 

 

so that 
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The outputs are: 

 

      :  upper link angular position. 

      :  lower link angular position. 

 

And the inputs are: 

 

     : upper-link actuator torque exerted. 

     : lower-link actuator torque exerted. 

 

The equations can be rewritten in the following 

compact form [2]: 

 

         ̇( )    ( )    ( ) ( )           (12) 

 

where x ϵ R
n
 is the state, u ϵ R

m
 denotes the 

control input, where n =4 and m=2,  ( ) and 

 ( ) are sufficiently smooth vector fields, and the 

output equation is:   

                    y(t)=h(x)                           (13) 

 

By linearizing equations (8) to (11) using 

Jacobeans’ method and with the following initial 

condition: 

(x1, x3) = (   ,   ) = (    ,    ) , ( ̇1,  ̇2) = (  ̇, 

  ̇) = (0.3, 0.4) rad/s and (τ1, τ2) = (0.5, 0.5) N.m  
 

The resulting state space representation for the 

system is [2]: 
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where A and B are obtained as: 
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The parameters of human swing leg system 

(i.e. support human leg or humanoid robot leg)  

are given in Table 1. 

 

Table 1: The parameters of human swing leg(i.e. 

support human leg or humanoid robot leg)   [6]. 

parameter value unit 

m1, m2 0.1 kg 

l1, l2 0.55 m 

  9.81 m/seconds
2 

 

3 Controller Design 
Sliding Mode Control is considered as one of 

the effective nonlinear robust control approaches. 

It has the ability to compensate the system 

uncertainty. The SMC includes two modes. These 

modes are the reaching mode and the sliding 

mode. A reaching control law is applied, in the 

reaching mode, to drive the states of system to the 

sliding line rapidly. When states of the system are 

on the sliding line, an equivalent control law is 

applied to drive the states of system, along the 

sliding line, to the origin and the system is said to 

be in the sliding mode [7, 8]. Figure 3 illustrates 

the reaching phase and the sliding surface in the 

SMC design. 

 

 
 

Figure 3: Two steps of SMC design [8]. 

 
SMC design consists of two steps, the first 

step is to find the sliding mode surface, and the 

second step is to design the control input to force 

the system trajectory toward the sliding mode 

surface [9]. If a system has m inputs, there are m 

hyperplanes, for the human swing leg system 

which has 2 inputs so there are 2 hyperplanes; 

these hyperplanes are defined as [9- 11]: 

 

                  ( )       ( )                         (17) 

where   is m×n matrix which represent the gain 

to inform sliding surface. Differentiating equation 

(17) and substitute equation (14) in the resulting 

equation, yields: 

 

            ̇( )   (  ( )    ( ))               (18) 

The sliding mode control law is: 

       ( )     ( )    ( )                    (19) 

where    ( ) is an equivalent control input and 

  ( ) is discontinuous control input. The vector 

 ( )    represents the intersection of all m 

sliding hyperplanes passing through the origin of 

the state space. The equivalent control input 
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   ( ), corresponds to  ̇( )=0. Therefore, from 

equation (18),  

                    (  )
                         (20) 

and the matrix    has been assumed to be 

nonsingular. The reaching condition for each 

hyperplanes are   ̇<0 so that  

                    ̇      ( )    ( )               (21) 

the discontinuous control input     have the 

following form:   

       (  )
      ( )    ( )        (22) 

substitute equations (20) and (22) in (19) so the 

control law becomes: 

   (  )  *         ( )   ( )+   (23) 

where     ( )  is a diagonal matrix with the ith 

diagonal element equal to a positive number   . 
The G matrix will be computed by minimizing a 

quadratic objective function involving the state 

vector and the effective input, that is, by solving a 

liner quadratic (LQ) problem. This approach is 

called the Optimal Sliding Mode controller where 

the objective function to be minimized is [9], 
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For the LQ control, it is necessary to have the 

input term in the quadratic objective function. 

Here, the input term is not present in the objective 

function in equation (24), and the constraints are 

that the system is on the intersection on m sliding 

hyperplanes. 

The matrix   is not specified a priori and will 

come out as a solution to the problem. Using the 

similarity transformation 
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and the columns of the   (   ) matrix , are 

composed of basis vectors of the null space of 

   . From equations (14) and (25) yield, 
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because of the special structure of the matrix  , 

the first (    ) rows of   turn out to be zeroes. 

Hence, the vector q is decomposed as follows: 
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substituting equation (27) in equation (24) yields, 
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If       ,      
    then because 

the signs of eigenvalues are preserved under 

congruence transformation. Partition    to 

conform to the partition of q in equation (26) as 

follows: 
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The matrix   is selected by trial and error to be, 
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according to equations (33) and (34) the 
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 For    , the (   ) dimensional dynamics is 
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then sliding hyperplanes can be described as 

 

                                               (39) 

from equations (17) and (38), 

                  ,         -                   (40) 

Equation (40) indicates that the matrix   can 

be determined via the matrix  . The first 

objective behind the choice of the matrix   or the 

matrix K is to ensure the system stability on the 

intersection of all hyperplanes. Equations (34) and 

(35) constitute a standard LQ problem 

provided    . If   is chosen to be positive 

definite,   is guaranteed to be positive definite. In 

general,   is not guaranteed to be positive definite 

if   is positive semi-definite. If R does not turn 

out to be positive definite, it has to be arbitrarily 

chosen to be a positive definite matrix. In this 

case, a new   will be defined according to 

equation (34). The gain matrix K for the minimum 

value of J is [9, 10]:  

                 (   
       )           (41) 

where   matrix is obtained from the solution of 

the Riccati equation: 

P(        
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For tracking, xd is defined as a desired set point 

and e is an error signal and the difference between 

x and xd is: 

                                                       (44) 

 

 by repeating the same procedure that used for 

stabilization, substituting equation (44) in 

equation (17) yields, 

                                                               (45) 

so that, 
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 if the reaching condition is   ̇<0 , then the 

hyperplanes are satisfied by the following control 

law: 
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the resulting state feedback gain matrix and 

diagonal matrix are : 
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],  
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4 Related Work 
Many researches have been carried out for 

controlling the swing leg system by various 

control methods [1]. In 2004,  Ono et al [12] and 

in 2007,   Huang et al [13] The lost energy in joint 

self-impact stopper was obtained. To restore the 

lost energy, a torque was applied to the hip joint; 

that torque was obtained by a proportional 

controller. That approach was used for 

stabilization and not for tracking of the swing leg 

system. In 2010,  Dallali et al [14] presented a 

comparison between PID and Linear Quadratic 

Regulator (LQR) controllers. The PID controller 

has been used as a basis for quantification of 

robustness and performance of humanoid robots. 

A better robustness was obtained from the LQR 

controller. The test was done on the robot leg 

from -11.50
o
 to 11.50

o
 and obtained high control 

action about 30 N.m. In 2014, Gregg et al [15] 

implemented virtual constraints that unify the 

stance period, coordinate ankle and knee control, 

and accommodate clinically meaningful 

conditions on a powered prosthetic leg. The 

saturate prosthesis torques at 80 N.m to simulate 

the torque limit of the experimental prosthesis.  In 

2015, Bazargan-Lari et al [6] proposed a 

nonlinear intelligent controller using Adaptive 

Neural Network control for human swing leg hip 

and knee joints. The results were obtained for the 

joints angular velocity with an acceptable 

maximum error of about 0.15% for the hip joint 

and 0.35% for the knee joint. 

 

  

5 Result and Discussion 
Figure 4 illustrates the behavior of the human 

swing leg system without controller. In this 

Figure, the hip and knee angular positions are 

explained. This system inherently unstable, for 

open loop because it has roots in the right hand 

side of s-plane, and marginally stable for closed 

loop with high oscillation. The system has the 

following eigenvalues {                , -

                } for the open loop and has the 
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following eigenvalues {          
        ,                   } for the closed 

loop.  

 

 
(a) 

 
(b) 

Figure 4: Step response for hip and knee 

positions for the human swing leg system without 

controller for hip (solid line) and knee (dotted 

line) joints (a) open loop (b) closed loop. 

 

Figure 5 shows the block diagram for the 

nonlinear human swing leg system with Sliding 

Mode controller to achieve desired angular 

positions (   ,     ). 

 
 

Figure 5: The block diagram for the nonlinear 

human swing leg system with controller. 

 

Figure 6 shows the Simulink Matlab for the 

nonlinear human swing leg system with SMC.  

Figure 7 shows the time response of the 

system after applying the designed SMC in case 

of stabilization. This Figure shows that the 

achieved settling time is (3.5) seconds. Further, 

the proposed controller has achieved acceptable 

control actions. 

 

Figure 6: The block diagram and Simulink 

Matlab for the nonlinear human swing leg system 

with controller. 

      
(a) 

(b) 

(c) 

Figure 7: State trajectories and control actions for 

the nonlinear system with initial condition    
              

  for hip (solid line) and knee 

(dotted line) joints (a) position (b) velocity (c) 

control action. 
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The ability of the controlled system to track 

specific trajectories has been shown in Figure 8. 

The achieved time response specifications are 

       seconds,        seconds for hip joint 

and         seconds,      seconds for knee 

joint. 

(a) 

(b) 

(c) 

Figure 8: Time response for the nonlinear human 

swing leg system with       
            

  

for hip (solid line) and knee (dotted line) joints     

(a) position (b) velocity (c) control action. 

 

 

To test the robustness of the controlled 

system, the test is done for the controlled system 

with      variation in system parameters. It is 

obvious from Figure 9 that the proposed 

controller has a high ability to compensate the 

system parameters variation and achieve a more 

desirable time response. 

 

 

 
(a) 

 
    (b) 

Figure 9: Time response of the nonlinear human 

swing leg system with ±20% variation in system 

parameters with desired angle (sold line), 

minimum angle (dotted line) and maximum angle 

(center line) (a) hip position (b) knee position. 

 

Figure 10 shows the time response of the 

controlled system with a disturbance. The applied 

disturbance is 10% from the reference input and it 

was applied at t=2 seconds. It is shown that the 

proposed controller can effectively reject the 

disturbance. 

 

 
 (a) 

 
(b) 

Figure 10: Disturbance properties of the 

nonlinear human swing leg system with initial 

condition      
           

  for hip (solid 

line) and knee (dotted line) joints (a) position (b) 

velocity. 
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The response of the system to sinusoidal signal 

which represents the ability of the system to track 

desired trajectories is shown in Figure 11. 

 

(a) 

(b) 

(c) 

Figure 11: Time response of the nonlinear human 

swing leg system to sinusoidal input for hip (solid 

line) and knee (dotted line) joints (a) position (b) 

velocity (c) control action. 

 

 

6 Conclusions 
In this paper, a sliding mode control (SMC) 

approach is proposed for the stabilization of 

uncertain nonlinear a human swing leg system. A 

sliding mode control is proposed to achieve 

trajectory tracking of the system. The linearized 

mathematical model of nonlinear system is 

derived to facilitate the controller design. And the 

results show the advantage and applicability of 

the proposed design methods. Sliding mode 

control system which is insensitive to 

uncertainties in system parameters and external 

disturbances in the whole control process was 

designed. 
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 ه لمسيطر التحكم الانزلاقي لمنظومه الساق البشريه المتأرجحهجعاالتغذيه الرتأثير 

 

 أزهار جبار عبدالرضا
 لسم هندسة السٌطرة و النظم

 الجامعة التكنولوجٌة

 أ.م.د. حازم ابراهين علي
 لسم هندسة السٌطرة و النظم

 الجامعة التكنولوجٌة

 
 الخلاصه

لتحمٌك متانة لتتبع  السٌطره الراجعه باستخدامتم تصمٌمه  لذي وا انزلالًذو شكل  المسٌطرفً هذا البحث، ٌتم عرض خصائص متانة 

التً تعبر عن الدعامه لساق الانسان او الروبوتوتات البشرٌه و لاخطً لساق البشرٌة المتأرجحة. الساق البشرٌة المتأرجحة لالمسار النظام ا

المتصلة ببعض عن طرٌك مفاصل الورن والركبة  البشرٌهساق ال نظام  من عادة ما تمثل كبندول مزدوج. الفخذ والساق تمثل روابط البندول

ٌن التً تربط الجزء العلوي من الجسم إلى الفخذ ثم الساق على التوالً. العزوم الإجمالٌة اللازمة لتحرٌن عضلات الفخذ والساق من لبل اثن

وأظهرت النتائج أن وحدة  كبة. تم تطوٌر نموذج رٌاضً للنظاممطبمة على مفاصل الورن والر (الخطوٌه من العزم الخارجٌة )المحركات

 الممترحة ٌمكن أن تستمر بموة النظام وتحمٌك مواصفات زمن الاستجابة المرغوبة. السٌطره


