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Abstract 
The main purpose of this paper is to design a robust second order sliding 

mode controller that can deal with uncertain nonlinear systems. This controller 

can keep the main advantages of the first order sliding mode controller, such as 

the ability to make the system asymptotically stable by forcing the error and its 

derivatives to have a zero value, the simplicity in the operation, and the 

robustness in the existence of perturbations. In spite of the features that 

characterize the first order sliding mode controller (1 SMC), it still suffers from 

the unwanted phenomenon “chattering”, which originates from a discontinuous 

control part (sign function). In this context, saturation function can be used 

instead of sign function to reduce this problematic chattering. Different from the 

saturation function method, the second order sliding mode controller can be 

used to overcome the chattering; suffered by the first order sliding mode 

controller and to retain the stability and performance of the system. In this 

paper, the twisting and the super twisting second-order algorithms of the sliding 

mode controller were used, and their results were compared with the first order 

sliding mode controller. So, this subject focused on the chattering problem who 

suffers from it the 1 SMC and try to reduce it by using the 2 SMC, the uncertain 

pendulum system was adopted in this work for the purpose of checking the 

three controllers. The simulations results showed that the second order sliding 

mode controller has the ability to reduce both the chattering magnitude and the 

steady state error and achieve an asymptotically stable system. The results were 

obtained by using MATLAB programming. 

Keywords: Sliding Mode Controller SMC, The Chattering, Pendulum System, 

Twisting and Super Twisting Algorithms, Error and Its Derivative, Control 

Variable, Sliding Variable, Sign Function, Saturation, Perturbation. 

 وايجاد الخواص لمس يطر ذو سطح انزلاقي من الدرجة الثانية لنظام البندول  تصميم
 احمد خلف حمودي،  شمس عبد السلام هاشم

 الخلاصة: 

من الدرجة الثانية قوي يمكنه التعامل   تصميم مس يطر ذو سطح انزلاقي  من هذا البحث هو  الغرض الرئيسي 

كن أأن يحافظ على المزايا الرئيس ية لمس يطر ذو الوضع الانزلاقي  مع الأنظمة غير الخطية غير المؤكدة. هذا المس يطر يم

على   ومش تقاته  الخطأأ  جبار  ا  طريق  عن  مقارب  بشكل  مس تقرًا  النظام  جعل  على  القدرة  مثل   ، الأولى  الدرجة  من 

التي الميزات  من  الرغم  على  وجودالاضطرابات.  في  والمتانة   ، العملية  في  والبساطة   ، صفرية  قيمة  على  تميز    الحصول 

والتي    ، فيها  المرغوب  غير  "التذبذب"  ظاهرة  من  يعاني  يزال  لا  الأولى،  الدرجة  من  الانزلاقي  الوضع  ذو  مس يطر 

( المس تمر  غير  الس يطرة  جزء  من  من    دال تنشأأ  بدلًا  دالالتش بع  اس تخدام  يمكن   ، الس ياق  هذا  في  الا شارة(. 

دالالا شارة لتقليل مشكلة التذبذب. تختلف عن طريقة دال التش بع ، يمكن اس تخدام مس يطر ذو وضع انزلاقي من 

و  الأولى  الدرجة  من  الانزلاقي  الوضع  ذو  المس يطر  منه  يعاني  الذي  ؛  التذبذب  على  للتغلب  الثانية  للحفاظ  الدرجة 

من الدرجة الثانية   والالتواء الفائق  الالتواء  خوارزميات  تم اس تخدام  هذا البحث ،  في  وأأداء النظام.  على اس تقرار 

نظام   تم اعتماد  من الدرجة الأولى.  الانزلاقي  مس يطر ذو الوضع  مع  نتائجها  مقارنة  وتمت  الانزلاقي ،  لمس يطر الوضع 

س يطرات الثلاثة. أأظهرت النتائج أأن المس يطر ذو الوضع الانزلاقي  فحص الم البندول غير المؤكد في هذا العمل لغرض 

على   تم الحصول  مس تقر.  نظام  وتحقيق  حال الخطا الثابتة  و  حجم التذبذب  تقليل  على  من الدرجة الثانية لديه القدرة 

 النتائج باس تخدام برمجة الماتلاب. 
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1. Introduction  
In the latest years, the ability to control nonlinear 

systems that suffers from perturbations has taken 

much attention from many researchers and as a result 

they developed many techniques [1]. One of the most 

useful techniques is the sliding mode control (SMC), 

which is a powerful nonlinear method that is recently 

used widely in many various applications. The SMC is 

characterized by a special property such as insensitive 

to parameters uncertainty and disturbances. Despite 

of the all properties that belong to the SMC, it is still 

suffered from a drawback known as “chattering”, 

which is considered as unwanted phenomenon, 

affecting on the performance of the system and may 

lead to make the system unstable. In order to reduce 

the chattering problem, the researchers invented 

many methods. One of these methods is by replacing 

the sign function in the discontinuous part of the 

controller by a saturation function which is 

considered as a simple solution, V. I. Utkin and 

Shibly Ahmed Al-Samarraie were published about 

this method in 2009 and 2011 [2, 3]. Other authors 

suggested using an adaptive sliding mode controller 

that effect on the control input, and hence the 

chattering is reduced, like S. Mondal in 2012.  On the 

other hands, some of them utilized the integral SMC 

(ISMC), like A. K. Hamoudi, N. O. Abdul Rahman in 

2016, they adopted this controller to reduce the 

chattering of the pendulum when using 1 SMC. In 

ISMC, the reaching phase is removed [4, 5]. Lately, 

some authors proposed to utilize the particle swarm 

optimization method (PSO) in order to improve the 

controller. Besides the previous methods, there are 

many other methods, such as using fuzzy, genetic 

algorithms and others intelligent methods to improve 

the controller, these methods were studied by Z. 

Chen, W. Meng, Z. Wang and J. Zhang, and A. K. 

Hamoudi in 2008 and 2014  [6, 7]. The most 

important feature in using the SMC is the order 

reduction, of the actual plant equation, by one [8]. 

Emel’ Yanov, Levant and Sara Rameriz are the first 

who proved that the higher order SMC in 2000s has 

the ability to reduce the chattering and can act with 

the higher order systems [9]. Hence, in this research, 

the second order SMC was used to control the 

pendulum position in the presence of perturbations 

(parameters uncertainty, disturbances and coulomb 

friction). In this paper, two algorithms of second 

order sliding mode controller (2 SMC) were 

proposed. These algorithms are called the twisting 

and the super twisting algorithms [10]. The 2 SMC is 

an efficient tool that can able to solve the above 

drawbacks, with retaining the main characteristics of 

the standard SMC [11, 12, 13]. The aim of the 2 SMC 

is for directing the sliding variable S and its first 

derivation �̇� toward zero in finite time in spite of all 

these undesired perturbations [14, 15, 16]. In this 

work, the 1 SMC and 2 SMC techniques were 

compared by using the simulation results and then 

proof that a 2 SMC is better than a 1 SMC, especially 

the super twisting algorithm.   

2. First Order Sliding Mode Controller  
(1 SMC) 

The controlling of nonlinear systems with 

parameters uncertainty has become important topics 

and problems for researchers [11]. The essential 

object of the SMC method is to construct a robust 

controller that can deal with these systems. This 

controller must have the ability to drive the sliding 

variable to the sliding surface (SS) in finite time and 

retain the system in the required sliding mode 

thereafter [17]. The SMC was developed by Russian 

scientists in 1950s and 1960s [18]. The SMC is a 

special case of variable structure system (VSS). Lately, 

many applications using sliding mode control method 

have been made. Actually, SMC can now be used 

widely in different types of industrial applications, 

such as inverted pendulum, DC motor, electronic 

throttle valve and others [4]. The design of 1 SMC 

consists of two stages; first is the design of a suitable 

SS and second is the design of a controller, which is 

important to lead the sliding variable to the SS and 

then steering it to the zero [17]. The 1 SMC is 

characterized by some properties, such as the 

simplicity in the operation and also reducing the 

order of the plants equation [18]. Despite of the 

robustness that belongs to the 1 SMC, this controller 

suffered from the effect of chattering [4]. The 

chattering considered as undesired phenomenon 

makes the SMC systems unacceptable and affects the 

stability of the systems [9]. The major problem of 

chattering can be resolved by utilizing many strategies 

as mentioned above in the section one. The system 

trajectory can be split in two parts; the first part is 

called the reaching mode. In this mode, the trajectory 

of the system is starting from an initial point and 

steering directly toward the manifold S=0. This mode 

is ended after the trajectory reaching the manifold, 

and during this mode, the system may be affected by 

different types of perturbations. The other mode is 

called the sliding mode, it’s started once the trajectory 

is reached to the manifold and then it enforces the 

trajectory to remain on the sliding surface and to slide 

along this surface until reaching the origin, as shown 

in Fig.1 below [9]. 

 

 
Figure (1): The dual phases of the sliding control [2]. 
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In order to make the surface attractive, it’s 

necessary to design a proper control law, which can 

able to steer the states trajectory to the SS, and then 

retain them within the surface in spite of the 

perturbations [9]. 

The control law can be determined as below: 

𝑢 = 𝑢𝑒𝑞 + 𝑢𝑑𝑖𝑠                       …(1) 

The control law consisted  of two parts: 𝑢𝑒𝑞  and 

𝑢𝑑𝑖𝑠. 𝑢𝑒𝑞  is the continuous part called equivalent 

control. The other part 𝑢𝑑𝑖𝑠 is called the 

discontinuous control [19].  

The 𝑢𝑑𝑖𝑠 law is defined as below: 

𝑢𝑑𝑖𝑠 =  −𝑘(𝑥) .  𝑠𝑖𝑔𝑛(𝑆)                …(2) 

Where, 𝑘(𝑥) must be determined so that it can 

compensate any perturbations in the system, and 

𝑠𝑖𝑔𝑛(𝑆) = {
+1 𝑆 > 0
−1 𝑆 < 0
0 𝑆 = 0

                     …(3) 

 

Figure (2): Signum function [19]. 

By subtitling eq. (2) into eq. (1), the law of the 

control becomes as: 

𝑢 = 𝑢𝑒𝑞 − 𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑆)                             …(4) 

The switching surface is defined as: 

𝑆 = 𝜆𝑒 + �̇� ;  𝜆 > 0                                …(5) 

Where, λ is a positive constant. 

The error and its derivative can be defined as: 

𝑥1 = 𝑒 = 𝜃 − 𝜃𝑓  and  𝑥2 = �̇� = �̇� 

Where, 𝜃𝑓 is considered as a constant value and it 

represents the final position. Then, eq. (5) can be 

written as: 

𝑆 = 𝜆𝑥1 + 𝑥2                                         …(6) 

When  λ=1, eq. (6) is rewritten as: 

𝑆 = 𝑥1 + 𝑥2                                        …(7) 

The signum function in eq. (4) produced a 

chattering phenomenon. This chattering is described 

as a bad property that takes place along the SS. It 

effects on the stability of the system [19]. Therefore, 

reducing the chattering is very necessary. 

Many methods were developed to reduce the 

chattering problem. The boundary layer is one of 

these methods that can be used to reduce the 

chattering. In this method, the sign (s) function in the 

law of the control is replaced by saturation (sat (s)) 

function. The saturation function can described as 

below [14]: 

sat(𝑆 φ⁄ ) = {

+1 (𝑆 φ⁄ > 0)

s/φ (−1 < 𝑆 φ⁄ < 1)

−1 (𝑆 φ⁄ < 0)

             

…(8) 

 

Figure (3): The saturation function [19]. 

So, the control law will be defined as below: 

𝒖 = 𝒖𝒆𝒒 − 𝒌(𝒙)𝒔𝒂𝒕(𝑺)                   …(9) 

 

3. Second Order Sliding Mode Controller 
(2 SMC) 

In the recent years, the researchers invented a 

new structure of SMC known as the higher order 

SMC to overcome the above drawbacks of the first 

order SMC, especially the chattering phenomenon. 

This new structure can able to deal with the 

complicated and uncertainty nonlinear systems. The 

first one who introduced the idea of the higher order 

derivatives of the sliding variable was Emel’ Yanov in 

1993s [9]. The second order SM algorithms are one 

type of the HOSMC. In particular, lately the second 

order sliding mode controller (2 SMC) has taken a 

major attention from the researchers because of its 

capability for resolving a wide range of practical 

problems such as the chattering phenomenon [11]. 

The 2 SMC can converge the switching variable and 

its first derivation in finite time to the origin with 

keeping the essential advantages of 1 SMC.  

The condition of sliding variable is [17]: 

𝑆 = �̇� = 0                                    …(10) 

The essential characteristics of the 2 SMC are the 

chattering reduction, the ability to apply on the higher 

order relative degree systems, easy to implement and 

finally can improve the accuracy of the system. The 

composition of 2 SMC algorithms is consisted of a 

discontinuous control and a continuous control and 

as a result, the chattering is reduced [21]. The 2-

sliding mode is observed on the sliding surface if the 

trajectories twisting in the area of intersect S=0 and 
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�̇�=0 in the state space, as shown in the Fig.(4) below 

[14]. 

 

Figure (4): The second order sliding mode trajectory 

[14]. 

Consider the following nonlinear system that is 

defined as below: 

�̇�(𝑡) = 𝑓(𝑡, 𝑥(𝑡), 𝑢(𝑡))                         …(11) 

The control task is to enforce the state trajectory 

on a suitable sliding surface in the space to realize by 

the disappearing of the sliding variable 𝑆(𝑡): 

𝑆(𝑡) = 𝑆(𝑡, 𝑥(𝑡)) = 0                       …(12) 

Taking the first and second derivation of the 

sliding variable 𝑆(𝑡), as defined below [14]: 

�̇�(𝑡) = �̇�(𝑡, 𝑥(𝑡), 𝑢(𝑡)) =
𝜕

𝜕𝑡
𝑆(𝑡, 𝑥) +

𝜕

𝜕𝑥
𝑆(𝑡, 𝑥)𝑓(𝑡, 𝑥, 𝑢)                               …(13) 

�̈�(𝑡) = �̈�(𝑡, 𝑥(𝑡), 𝑢(𝑡), �̇�(𝑡)) =
𝜕

𝜕𝑡
�̇�(𝑡, 𝑥, 𝑢) +

𝜕

𝜕𝑥
�̇�(𝑡, 𝑥, 𝑢)𝑓(𝑡, 𝑥, 𝑢) +

𝜕

𝜕𝑢
�̇�(𝑡, 𝑥, 𝑢) �̇�(𝑡)         

…(14) 

Eq. (14) can be rewritten as below: 

�̈� = 𝜑(𝑡, 𝑥) + 𝛾(𝑡, 𝑥)�̇�                            …(15) 

Where, 𝜑(𝑡, 𝑥) =  
𝜕

𝜕𝑡
�̇�(𝑡, 𝑥, 𝑢) +

𝜕

𝜕𝑥
�̇�(𝑡, 𝑥, 𝑢)𝑓(𝑡, 𝑥, 𝑢),and 𝛾(𝑡, 𝑥) =  

𝜕

𝜕𝑢
�̇�(𝑡, 𝑥, 𝑢) 

The above functions are bounded as described 

below [9]: 

|𝑢| ≤ 𝑈𝑚 

0 < 𝛤𝑚 < 𝛾(𝑡, 𝑥) < 𝛤𝑀                      …(16) 

 |𝜑(𝑡, 𝑥)| < 𝛷 

Where, 𝑈𝑚, 𝛤𝑚 , 𝛤𝑀 and 𝛷 are constants larger than 

zero. 

There are many 2 SMC algorithms for stabilizing 

the systems.  In following, only two algorithms are 

mentioned which are described below: 

 

3.1 Twisting Algorithm (TA) 
The twisting algorithm is the first algorithm of 2-

SMC algorithms that are recognized. This algorithm 

is presented by L.V. Levantovsky [18]. This algorithm 

is called twisting because the shape of the motion of 

the state trajectory around the origin is in twisting 

way in the plane of S=0 and �̇�=0 and guarantees the 

trajectory convergence to the zero, as described in the 

figure below [10]. 

 

Figure (5): The trajectory of twisting algorithm in 

(𝑆, �̇�) plane [10]. 

The twisting algorithm is considered as the 

simplest algorithm of the 2 SMC algorithms. This 

algorithm is characterized by its ability to reduce the 

chattering of the systems of relative degree one and 

two [20, 21]. 

The discontinuous control law of the twisting 

algorithm is given as below:  

𝑢𝑑𝑖𝑠 = −𝑘1𝑠𝑖𝑔𝑛(𝑆) − 𝑘2𝑠𝑖𝑔𝑛(�̇�)           …(17) 

for the condition of ( 𝑘1 > 𝑘2).  

Where, 𝑘1 and 𝑘2 are constrained by the 

following relationship; 

( 𝑘1 + 𝑘2) ∗ 𝛤𝑚 − 𝜑(𝑡, 𝑥) > ( 𝑘1 − 𝑘2) ∗ 𝛤𝑀 +

 𝜑(𝑡, 𝑥),( 𝑘1 − 𝑘2 ) ∗ 𝛤𝑚 > 𝜑(𝑡, 𝑥)       …(18) 

 

3.2 Super Twisting Algorithm (STA):  
Different from the twisting algorithm, the super 

twisting algorithm is able to reduce the chattering 

more than twisting algorithm. This super twisting 

algorithm can stabilize the systems only with relative 

degree one. It was developed by Levant in 1993s [10]. 

Also, in this algorithm, the state trajectory comes 

nearer to the zero in finite time on the phase plane of 

the sliding variable, as shown in the Fig.(6) below [9]. 

 

Figure (6): The super twisting algorithm trajectory 

in (S, �̇�) plane [10]. 

The super twisting algorithm only needed a 

magnitude of the sliding variable S [10]. The law of 
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this algorithm consists of two portions, the 

continuous function and the integral of the 

discontinuous of the sliding variable [9]. 

The discontinuous control law of the super 

twisting algorithm is given below: 

𝑢𝑑𝑖𝑠 = −𝜆|𝑠|𝜌𝑠𝑖𝑔𝑛(𝑆) + ∫ −𝑊 𝑠𝑖𝑔𝑛(𝑆)𝑑𝑡 …(19) 

Where,      0 < 𝜌 ≤ 0.5 

The adequate conditions to ensure the oncoming 

of the states trajectory closer to the manifold in the 

finite time are: 

𝑊 >
𝛷

𝛤𝑚

 

𝜆2 ≥
4𝛷

𝛤𝑚
2

 𝛤𝑀(𝑊+𝛷) 

𝛤𝑚(𝑊−𝛷)
                          …(20) 

 

4. The Pendulum Description 
In this study, the pendulum plant was used  for 

testing the two algorithms of 2-SMC. The pendulum 

is a nonlinear system, and in this work, a 

perturbations term was add to it which consists of the 

parameters uncertainty, disturbance and coulomb 

friction. The coulomb friction is considered as a force 

affecting in the opposed direction to the motion of 

the pendulum and its nonlinear term. The 

perturbations term made the system more 

complicated.  

The pendulum system is shown in Fig.(7) below. 

It consists of a rigid line with length L, a mass m is 

pending from this line, and the line is pivoted from 

above by point O [21, 22]. 

 

 
 

Figure (7): The pendulum system [19]. 

Consider the mathematical model of the 

pendulum system which is described as below: 

�̈� = −𝑎 𝑠𝑖𝑛𝜃 − 𝑏 �̇� + 𝑐 𝑇 + 𝛿(𝑥, 𝑢)     …(21) 

Where: 

𝜃 is the angular position of the string with the 

vertical axis, it’s measured by (radian) unit, and it is 

considered as the output of the system. 

�̇� is the angular velocity and is measured by 

(radian/second) unit. 

𝑇 is the torque that is applied at the mass of the 

pendulum to make it swing, it is measured by 

(Newton. Meter) unit, and it is considered as the 

control action.  

𝛿(𝑥, 𝑢) is the perturbation term, which consists 

of the parameters uncertainty, external disturbance 

and the coulomb friction term.  

The major problem that the pendulum suffered 

from is the presence of perturbation term.  

The nominal parameters and their uncertainty are 

chosen as: 

 𝑎 = 𝑎𝑛  ∓ 𝛿𝑎 

 𝑏 = 𝑏𝑛 ∓ 𝛿𝑏 

𝑐 = 𝑐𝑛  ∓ 𝛿𝑐 

Where, 𝑎𝑛, 𝑏𝑛 and 𝑐𝑛 are the nominal parameters 

respectively, and 𝛿𝑎, 𝛿𝑏 and 𝛿𝑐 are the parameters 

uncertainty respectively. 

Let 𝑎𝑛=10, 𝑏𝑛=1 and 𝑐𝑛= 10. 

And, let 𝛿𝑎 = ∓10% ∗ 𝑎𝑛 , 𝛿𝑏 = ∓ 10% ∗ 𝑏𝑛 and 

𝛿𝑐 = ∓10% ∗ 𝑐𝑛 

Let the error of the pendulum in state space equation 

is described as shown below:  

𝑥1 = 𝑒 = 𝜃 − 𝜃𝑓   

Where, 𝜃𝑓 is considered as the final and the desired 

position of 𝜃, and its value is chosen as:  𝜃𝑓 = 𝑝𝑖/4 

 𝑥2 = �̇� = �̇�, because the derivative of 𝜃𝑓 = 0 

Rewriting the above equation as shown below gives: 

  �̇�1 = �̇� = 𝑥2 

𝑥2̇ = �̈� = − 𝑎𝑠𝑖𝑛(𝑥1 + 𝜃𝑓) − 𝑏𝑥2 + 𝑐𝑢 + 𝛿(𝑥, 𝑢)   

                                                             …(22) 

In this work, the initial value of  𝜃 was chosen equal 

to 0. 

4.1 Design the 1 SMC of the Pendulum 

System 
Let the sliding surface is defined as below: 

𝑆 = 𝑥1 + 𝑥2                                   …(23) 

The derivative of the sliding variable is written as 

below: 

�̇� = �̇�1 + �̇�2                                        …(24) 

The value of the sliding variable S at the sliding 

surface is equal to zero.  

�̇� = 0                               …(25) 

The equivalent control of the pendulum can be 

obtained by substituting eq. (22) and eq. (25) into eq. 

(24) without involving any parameters uncertainty in 

eq. (22), therefore 

𝑢 = 𝑢𝑒𝑞 =
1

𝑐
(asin(𝑥1 + 𝜃𝑓) + (𝑏 − 1)𝑥2)  …(26) 

The suitable discontinuous gain 𝑘(𝑥) is calculated 

from using �̇� < 0 and taking the maximum values of 

each variable and each perturbation term.  
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𝑘(𝑥) > (
𝛿𝑎 + 𝛿𝑏|𝑥2| + 𝐷 + 𝑚

(𝑐 − 𝛿𝑐)
) 

𝑘(𝑥) = 𝑘0 ∗ (
𝛿𝑎+𝛿𝑏|𝑥2|+𝐷+𝑚

(𝑐−𝛿𝑐)
)                      …(27) 

Where, 𝑘0 is a constant and its value is greater 

than one (𝑘0 > 1), D is external disturbance and m is 

coulomb friction.  

The control law of the pendulum is: 

𝑢 =
1

𝑐
(asin(𝑥1 + 𝜃𝑓) + (𝑏 − 1)𝑥2) −

𝑘(𝑥)𝑠𝑖𝑔𝑛(𝑆)             …(28) 

To reduce the chattering, the sign(s) function in 

eq. (28) is replaced by sat(s) function as written 

below: 

𝑢 =
1

𝑐
(asin(𝑥1 + 𝜃𝑓) + (𝑏 − 1)𝑥2) − 𝑘(𝑥)𝑠𝑎𝑡(𝑆)                                                                                                                       

                                          …(29) 

4.2 Design the (2 SMC) by Using Twisting 

and Super Twisting Algorithms for 

Pendulum System 

The second time derivation of the sliding variable 

can be determined as in the following:   

�̈� = �̇�(𝑥) + 𝑐 �̇�𝑑𝑖𝑠                               …(30) 

By comparing the above equation with eq. (15), 

one can conclude that  𝜑(𝑡, 𝑥) = �̇�(𝑥) and 𝛾(𝑡, 𝑥) =

 𝑐 

With the conditions 0 < 𝛤𝑚 < 𝛾(𝑡, 𝑥) < 𝛤𝑀 and 

|𝜑(𝑡, 𝑥)| < 𝛷  

The above conditions are achieved since both 

functions are limited. 

4.2.1 The Twisting Algorithm (TA) 
The discontinuous control of this algorithm is 

described as: 

𝑢𝑑𝑖𝑠 = −𝑘1𝑠𝑖𝑔𝑛(𝑆) − 𝑘2𝑠𝑖𝑔𝑛(�̇�) 

𝑘1 and  𝑘2 must satisfy the following three 

conditions: 

𝑘1 >  𝑘2 ,  

( 𝑘1 + 𝑘2) ∗ 𝛤𝑚 − 𝜑(𝑡, 𝑥) > ( 𝑘1 − 𝑘2) ∗ 𝛤𝑀 +

 𝜑(𝑡, 𝑥), and ( 𝑘1 − 𝑘2) ∗ 𝛤𝑚 >  𝜑(𝑡, 𝑥) 

4.2.2 The Super Twisting Algorithm 

(STA) 

From eq. (30), 𝜑(𝑡, 𝑥) = �̇�(𝑥) and 𝛾(𝑡, 𝑥)= 𝑐, 

are both limited by conditions as explained above. 

But it is very complicated to find the accurate values 

of  Γm, ΓM and Φ, therefore by trial and error, the 

next values can be chosen which can satisfy the 

above conditions. 

Let  𝛤𝑚  and 𝛤𝑀 :   𝛤𝑚= 9,  𝛤𝑀  = 11.  

The value of 𝛷 will be also assumed, because it is 

complicated to calculate its value, therefore let 𝛷 = 5. 

The parameters λ and W are calculated from eq. 

(16) and eq. (20) and then substituted into eq. (19) of 

𝑢𝑑𝑖𝑠 equation for the super twisting algorithm. 

Therefore,  𝜆 = 1 , 𝑊 = 10 and  𝜌 = 0.1. 

𝑢𝑑𝑖𝑠 = −𝜆|𝑠|𝜌𝑠𝑖𝑔𝑛(𝑆) + ∫ −𝑊 𝑠𝑖𝑔𝑛(𝑆)𝑑𝑡 

 

5. The Results of Simulation and 

Discussion 

5.1 The 1 SMC with Sign Function 
The first order sliding mode controller worked at 

the first step with a required performance to control 

the position of the pendulum system, but this type of 

controller suffered from a severe disadvantage 

problem known as chattering, which is affected on 

the stability of the system, and this chattering 

appeared in the control signal u and the sliding 

variable S, as shown in Figs.10 and 11, respectively. 

 
Figure (8): The error 𝑥1 vs. time. 

 
Figure (9): The derivative of error 𝑥2 vs. time. 

  
Figure (10): The control variable 𝑢 vs. time. 
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Figure (11): The sliding variable 𝑆 vs. time. 

 
Figure (12): The derivative of error 𝑥2 vs. the error 

𝑥1. 

 
Figure (13): The output y (𝜃) vs. time. 

 

5.2 The 2 SMC with a Sign Function for 

Both Algorithms: 
In this paper, the second order sliding mode 

controller is adopted to overcome the chattering 

problem as shown in the (Fig.16) and (Fig.22), and 

the chattering in the control signal is reduced. Super 

twisting algorithm is the best controller in reducing 

the chattering among the other controllers as shown 

in (Fig.22), and Table 1 shown the differences 

between the three controllers. 

 

 

 

 

 

 

 

 

5.2.1 The Twisting Algorithm 

 
Figure (14): The error 𝑥1 vs. time. 

 

 
Figure (15): The derivative of error 𝑥2 vs. time. 

Figure (16): The control variable 𝑢 vs. time. 

 
Figure (17): The sliding variable 𝑆 vs. time. 



NJES24(1)40-51, 2021 
Hashim & Hamoudi 

 
47 

 
Figure (18): The derivative of error 𝑥2 vs. the error 

𝑥1. 

 
Figure (19): The output y (𝜃)  vs. time. 

 

5.2.2 The Super Twisting Algorithm 

 
Figure (20): The error 𝑥1 vs. time.  

 
Figure (21): The derivative of error 𝑥2 vs. time. 

 

Figure (22): The control variable 𝑢 vs. time. 

 

Figure (23): The sliding variable 𝑆 vs. time. 

 
Figure (24): The derivative of error 𝑥2 vs. the error 

𝑥1. 

 
Figure (25): The output y (𝜃) vs. time. 

 

5.3 The Results of Super Twisting 

Algorithm and First Order SMC with the 

Saturation Function 
To get better performance and good results, first 

it is convenient to use the saturation function instead 

of sign function only in the control law of the (STA 2 
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SMC), and then make a comparison with the 

modified (1 SMC) that also uses the sat(s) function in 

its control law to prove that the STA is still better 

than 1 SMC even if they used the saturation function 

instead of the sign(s) function. 

 

5.3.1 The Results of the ST Case with the 

Saturation Function: 
As observed from the above figures that control 

action is smooth and it get rid from the chattering 

problem as shown in the (Fig.28), and the steady state 

error arrived to zero as shown in (Fig.26). 

 

 
Figure (26): The error 𝑥1 vs. time. 

 
Figure (27): The derivative of error 𝑥2 vs. time. 

 
Figure (28): The control variable 𝑢 vs. time. 

 
Figure (29): The sliding variable 𝑆 vs. time. 

 
Figure (30): The derivative of error 𝑥2 vs. 

 the error 𝑥1.  

 
Figure (31): The output y (𝜃)  vs. time. 

 

5.3.2 The Simulation Results of the 

Modified (1 SMC) with the Saturation 

Function. 
As observed from Figs (32-37) that control action 

is not smooth and it still suffered from the chattering 

problem as shown in the (Fig.34), and the steady state 

error did not arrive to zero as shown in (Fig.32). 

Table 1. below shows the characteristics of the 

three controllers when using the sign(s) function. On 

other hand, Table 2. depicts the characteristics of the 

super twisting of 2 SMC and 1 SMC when using the 

sat(s) function. 

 



NJES24(1)40-51, 2021 
Hashim & Hamoudi 

 
49 

 
Figure (32): The error 𝑥1 vs. time. 

 
Figure (33): The derivative of error 𝑥2 vs. time. 

Figure (34): The control variable 𝑢 vs. time. 

Figure (35): The sliding variable 𝑆 vs. time. 

Figure (36): The derivative of error 𝑥2 vs. error 𝑥1 

 
Figure (37): The output y (𝜃) vs. time. 

 

Table (1):   The performance and the characteristics 

of the three controllers when using the sign(s) 

function in control law. 

 
 

Table (2): The performance and the characteristics 

of the two controllers when using the sat(s) function 

in control law. 

 
6. Conclusion 

This work presents the design of the 1 SMC and 2 

SMC; they are developed to control the nonlinear 

systems with present of perturbations. In this paper, 

the two algorithms of 2 SMC are considered; the 

twisting and the super twisting algorithms, as well as 

the 1 SMC is also studied. The three algorithms of 

the sliding mode controller were applied to control 

the position of the pendulum with the presence of 

uncertainties; disturbance and coulomb friction in 

order to prove that the 2 SMC has better 

performance than 1 SMC. In this work, it is 

concluded from the simulation results that the 2 SMC 

is an efficient tool to reduce the chattering of the 1 
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SMC but it does not remove it completely, as shown 

in the (Fig.16), (Fig.17), (Fig.22) and (Fig.23). The 2 

SMC can also able to retain the main advantages of 

the 1 SMC as mentioned above. From the simulation 

results, it can be observed that when using the 2 

SMC, the reduction of the chattering is achieved.  

From the comparison of the results of the 1 SMC 

and 2 SMC, it can be observed that the 2 SMC is 

better than the 1 SMC in the magnitude of chattering 

and this is listed in Table 1. Also from the simulation 

results, it can be concluded that the super twisting of 

2 SMC is the best case and it can give a perfect results 

because of its integral  term in control law, which 

converted the discontinuous term to continuous, and 

as a result the chattering is reduced, as shown in the 

(Fig.22). Also, the 2 SMC has the ability to reduce the 

steady state error of the 1 SMC, as shown in the 

(Fig.26) and (Fig.32)   

From Table 1, it can be seen that the 2 SMC is 

better than the 1 SMC and it has the ability to resolve 

the drawbacks of the 1-SMC, as well as it can able to 

increase the accuracy of the system.  It can be seen 

clearly from the simulation results that the super 

twisting of 2 SMC is the best one among the other 

controllers. 

For more improvement of the super twisting of 2 

SMC and to get better performance, the sign(s) 

function of the discontinuous term in control law is 

replaced with a sat(s) function, and then comparing 

the results with the modified 1 SMC that also used a 

saturation function in its control law. The simulation 

results ensure that the super twisting of 2 SMC is still 

better than 1 SMC, as shown in Table 2.  
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