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Abstract

The indemnification of uncertainty and disturbance which is added
to non-linear systems by an Integral Sliding Mode Controller (ISMC)
design. the key target of this paper is designing a sturdy controller to
observe the performance of a 2-link robot. The nonlinearity in
mechanical systems is a shared issue that the researchers are facing in
formulating control systems for it. The best solution to this problem is a
design Sliding Mode Controller (SMC) for controlling a nonlinear system.
In the current paper, 2-link robot is studied which suffering from
disturbances and parameter uncertainty and coulomb friction as
additional to friction inertia of the system for each link. firstly, Classical
Sliding Mode Controller (CSMC) is designed and then Integral Sliding
Mode Controller (ISMC). As known, CSMC includes two phases:
reaching phase and sliding phase. SMC is suffering from the known
phenomenon as "chattering”" which is supposed as a critical case and
unsuitable characteristic. chattering is described as a curvy movement
span the switching surface. In the current study, the chattering is
attenuated by employing a saturation function alternative of a sign
function. Although SMC can be considered as a good way of controlling
nonlinear systems. Where it continues to suffer from the long settling
time as undesired features. ISMC is a good method can be employed for
reducing the settling time and controlling a nonlinear system. ISMC is
easy, robust execution and supposes as an active and strong technique.
The most significant advantage in ISMC designing, the reaching phase is
canceled that considered a major part of designing classical SMC. The 2
link Robot system was used for proving the performance of CSMC and
ISMC algorithms. The outcomes received from the simulations utilizing
the ISMC and CSMC which fulfilled asymptotic stability for the system.
In comparative between CSMC and ISMC. ISMC is better than CSMC in
the good performance of tracking the desired position with less time.
Finally, MATLAB2019a software package has relied upon this work.

Keywords: Chattering, Classical Sliding Mode Controllet, Integral Sliding
Mode Controller, Signum Function, Saturation Function.
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1. Introduction

SMC had acquired raising attention from research
workers within the last several years. The basic theory
of SMC is founded in research works, for example,
ISMC as one of the major methods for designing
strong control actions for non-linear systems. SMC
has lots of features like robustness, fast response,
invariable to system uncertainty and indemnification-
capacity to the outer disturbance. Simultaneously,
these are few imperfections related to it. As an
example, ruling chattering and reaching phase [1].
The SMC method includes two phases. First, a sliding
surface, which have to be owned by the trajectories,
is designed with matching to some performance
standard. after that, a discontinuous control is
formulated to oblige the system state for reaching the
sliding surface where a sliding happens on this
"manifold". When a sliding mode is achieved, the
system shows forcefulness properties concerning
parameter uncertainty and external disturbances [2].
where, the system dynamics are ruled by sliding
surface dynamics granting perfectly robustness to the
system [3]. However, this controller utilized widely
but, pure sliding mode controllers have the following
drawbacks. First, the zigzag problem; which can be
caused by the high-frequency oscillation in the
controllet's  output. Secondly, sensitivity;  this
controller is very sensitive to the noise when the
input signals very approaching from the zero. Last,
nonlinear equivalent dynamic formation; that this
matter is very essential to have an efficient
performance and it is hard to computation because it
is based on the nonlinear dynamic equation. We were
first submitted ISMC, which is similar to the SMC
whereas it is insensitive to external disturbance and
parameter variations. In the ISMC, the control law
includes two main branches. The first branch is the
nominal control that is considered accountable about
the action of the nominal system. The second branch,
the discontinuous control which is utilized to refuse
the outer disturbances and variation parameters
[5],[4] and[7]. The 2 link Robot system with Coulomb
friction is utilized for checking CSMC and ISMC.
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The outcomes found from the simulation results
illustrate the features of utilizing ISMC in compared
with CSMC which are describes a good performance
for the two assumed methods. This study is
organized as follows. Section 2 introduces the system
model. Then Section 3 designs the controller, which
is included ISMC and CSMC. whereas the
simulations outcomes are offered in Section 4.
Section 5 gives the discussion of outcomes. in
Section 6, work conclusions are illustrated.

2. Two Link Robot

Robotic manipulators are collected from chains of
links and joints. Robotic manipulators can execute
several actions in many fields. robotic systems can be

employed in disadvantageous surroundings for
keeping safety and industrial environments to
manufacture machinery and automation.

Subsequently, in the latest years, increasing attention
is formed concerning the control of robotic systems
[6,20]. In this paper, the 2-link Robot system is used
for checking the two methods of the controller as
follows CSMC and ISMC. the system of a 2-link
robot can be described as nonlinear because the
perturbations term can be added to it that includes
the uncertainty of the parameters, disturbance. The
2-link robot can be clarified as shown in Fig.1 below.

Figure (1): 2- Link Robot Arm.

The nonlinear differential equation of the 2-Link
Robot that characterizes the conduct for dynamics of
the system is described followed [15 and 106]:
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M(0)8+C(6.6)0+G(®) + s(xw) =T )

Where 0.0.8 are 2x1 vectors of joint angular
position, velocity and acceleration respectively, T is a
2x1 vector of torque action, M(8) and C(e.é) are
2X2 matrices of inertia and Coriolis and centrifugal
forces, respectively, and G(8) is a  2Xx1 gravity
vector. 0;and®, are constrained. §(x,u)
perturbation term which contains parameter variation
and disturbance and coulomb friction. The detailed
eq. (1) can be written as follows:

Mll

M = [t ]

M22

Mll = (ml + mz) Lzl + mszz + Zmlechos(ez)
M12:M2]:m2L22 + zmlechos(ez)

M22:m2L22

c(0.6)6 =

[m,L, L, sin(6,) 62 — 2m,L,L, sin(ez)éléz]

m,L,L; sin(0,) 62

G(0) =
'm,L, cos(0; + 0,) + (0, + 0,)L; cos(0,)
m,L, cos(0; + 0,)

T
= [Tz]

Where Ty, Ty torque action for each link of the
robot. mzand my are represented the masses for
link2 and link 1 respectively. Lyand Ljare represented
the length for link 2 and link 1. The actual positions
are represented in @yand 0;.

0, =x,+0,d
0, =x, + 06,d @)

0.d. 0,d are the desired angles for joint 1 and joint 2.

The Robot model can be rewritten in state space
equations form to apply SMC as in the below:

Xl =X2

X, = ~M(©)1[C(6.8)8 + G(8) + 7 + 5w |

The eq. (3) can be repeated:
X1 =X

% = F Q)
2 = +wu+ 8

Where w represent constant value and other
abbreviations in the equation is written with details

below:
- (o= [ .

F:[gﬂ = —M(®)'[c(0.6)0 + G®)]  (©)
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u:[Z:] — _M(0)"'1 @

Whete the uncertainty parameters AF= 20% F and
Aw= 10% w

_[8:1(xuy)]
S(x.u) = 5, (x. u?)] = AF + Awu + Fc +
D(6.9). ....... ®)
Where D(O. 9) = EVV\\; I ﬁx%gl is the disturbances
2

function, Fc= [ FCl] is coulomb friction for the two
Fc2

joints.

The set of differential equations distinguishing the

action of the system are:

X1 = X3
Xy =Xy
X3 =F; + wu; + 8,(x.uy)
X, = F, + wu,+ §,(x.uy) )

3. Control Methods
3.1 Classical sliding mode control

SMC is one of the featured control techniques
because of firstly, its powerful outer disturbance
refusal. secondly, insensibility performance for
parameters variation when matching condition holds.
from the 1950s till now, SMC has been attracting
much attention both in theoretical study and
application area [11 and 26]. For controlling the
nonlinear systems, the ultimate challenging cases in
designing a control algorithm that is to design for
nonlinear systems a linear controller. This process,
however, still needs some strict set up in that the
controller must active near the system operating
point but This way is very complicated because of
presence high nonlinearity and large variations in
dynamic system parameters [8]. regardless of the
robustness, the SMC still suffering from a
fundamentals disadvantage known as “chattering”
which is described as high frequency leads to
undesirable swinging which impacts the control of
the actions for the system. This trouble can be
reducing the performance of the system or makes it
increase to instability. Two major causes of chattering
have been specified: Firstly, speedy dynamics in the
control loop, that were ignored in the system model,
are often activated by the fast switching of sliding
mode controllers. Second, digital applications in
microcontrollers with constant sampling rates may be
leading to chatter. The eliminating of zigzag motion
in the SMC system by employing a smooth function
in the control law as will be visible later when a
sliding mode control is designed for 2-link robot
systems [10].

The designing of CSMC consists from the
following points [12, 22 and 17]:
° Designing an appropriate switching surface
that grants the desired actions for the
systems.
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e  Building of a discontinuous control law
which proposes the trajectories to the
switching surface and keeps them there as
long as sliding mode is provided of for all
time later.

e  consequently, the control issue is abstracted
in specifying a sliding surface and a control
law.

AP

The state path of a system which utilizing a SMC
is including two phase as shown in Fig.2: reaching
phase and sliding phase [24].

X2 The Sliding slop
A (A)
Initial condition
10.0) v > X1
Roachlng phase
”
Sliding phase < :,"°

Sliding surface

Figure (2): Phases of the SMC [21]

The design of control action for CSMC with
uncertain values is describing as following equation:

u = ugs = —k(sign(s) (10)
Where,
1 ifs>0
sign(s) ={—1 ifs<0 (1
e[-1.1] ifs=0

This equation can be modified by utilizing a
saturation function for reducing the chattering in the
control action [18].

u = ugjs = —k(x)sat(s) (12)
Where the boundary layer (sat function) is
defined as [13]:
sign(s) if|s| > ¢
sat(s, @) = {5 ifls| < ¢ =

Where the sliding surface can be written as below:

s=Ae+é=0 (14)

Where A =10, X; = e is the error and X, = € is
the derivative of error. The sliding variable equation
are phrased as:

s = 10x4 + X3
S, = 10X2 + X4

15
(16)

$ < 0 The proper discontinuous gain k(x) is
calculated from utilizing, where

252

S1
§= [52]
wk(x) > [6(x.w)|

_ Af+D(0.8)
k(x) = ko + i)

a7

so that, K is a fixed value and its value is greater than

ZE1o.
kq(x)
k(x) = 18
After having found each link's gain values, which is
replaced in Eq. (12), and then finding torque for each
link of robot below by:

Ty = My Uy + My u,
Ty = My ug + My uy

(19)
(20)

3.2 Integral sliding mode controller

The robustness characteristic of SMC with
consideration of uncertainty patrameters and outer
disturbances is fulfilled only after the existence of
sliding mode. through the reaching phase, in
whatever way, robustness property is not guaranteed.
ISMC looks up to remove the reaching phase by
applying sliding mode during the full response system
[25]. Different from the classical design way, the
movement equation order in ISMC is maintain the
same arrangement of the original system instead of
minimizing the input dimension for the control
action. As a consequence, the system robustness is
guaranteed beginning from the initial time moment.
The notion of ISMC can as well be extensive to build
a modern kind of perturbation estimator which solves
the chattering issue without missing of validity of
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control [13]. The chattering phenomenon can be
effected in the control action as shown in Fig. 3.

u
\
Control action = Yj‘fmo
0.9 »t

Figure (3): The Chattering in Control Action [5]

to minimize this chattering might utilize some
functions like a dead zone, saturation and arc tan
rather than sign function that is usually utilized in
SMC [4 and 23]. ISM design that be composed of
continuous nominal control and the discontinuous
control [1]. with the liberty for designing a nominal
control for the sliding manifold, ISMC can be
combined easily with other power control techniques,
like linear matrix inequality (LMI), Hoo, and linear
quadratic regulator (LQR) to treat with the
unmatched uncertainties. on the other hand, ISMC
contributes one more degree of freedom in selecting
a suitable projection matrix to minimize the impact of
the unmatched uncertainties [14]. With the close-loop
system, ISMC is inserted to control the robot system
performance and give desired behavior of robot
motion and stability assurance, as Fig.4 below.

ISMC —>  Plant

B reference

Figure (4): ISMC within closed-loop control system.

The designing steps of ISMC for any nonlinear
system can be designated as below [18]:

As the first stage in ISMC design steps the sliding s(x)
is known as:

s(x) =so(x) +z 1)
z(0) = —s0(0) (22)
So1 = 10x; + X3 (23)
So2 = 10x, + x4 (24)

Eq. (21) includes two sections: the first section Sq(X)
is designed as a linear collection of the system states,
like to the CSMC. second section suggests the
integral term which is specified below. for applying
the sliding condition s * § < 0, §is differentiated as

below:

. _9so ., .
s=. Xtz (25)

the derivation of the integral term can formulate as.

z2=22 (fn(x) + gn(x)uy) (26)

_9 OUEEUl
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Secondly, the control law of the ISMC is written as:

U= Uy + Ugss 27)

Where u,: nominal control which utilizes to achieve
stability the nominal system dynamics with the
required properties. The equation for nominal system
dynamics is written without parameters uncertainty.

x = fn(x) + gn(x)u, (28)
The discontinuous control Ugis designed to reject the
perturbation term.

§(x.u) = AMf(x) + Ag(x)u + d(x.t) 29)

The perturbation term associate with parameter
disturbances,
nonlinearities, and unmodeled dynamics. where the

uncertainty, external nonsmooth

discontinuous controller as mentioned in eq. (10):

ugis = —k(x)sign(s)

u = u, — k(x)sign(s) (30)
950 5(x.

KGO = ko + [ 2252 ey > 0 61)
% 8n(x)

Whete Kk (discontinuous gain) is positive constant.
In the design of the ISMC for 2 —link Robot, the
sliding surface, and control will be described as in eq.
(21), eq. (22) and eq. (25):

s(x) =so(x) +z. z(0) = —s,(0)

% X+ Z .and the integral term in Eq. (25) can

be written for the 2 —link Robot system as below:

§ =

Z.l = Clxl + C2X3 - F1

Zz = C1X2 + C2X4 - F2 (32)
For critical damped characteristic c1, ¢2>0.

Finally, the eq. (30) can be reformulate by utilizing
saturation function for minimizing chattering as
below:

u = u, — k(x)sat(s) (33)
For 2 —link Robot system, the nominal control, and
discontinuous gain can be written as below:

1.

un=;[e—F] (34)
let él = _C1X1 - C2X3

éz = _C1X2 - C2X4 (35)
clandc2 >0, chosen upon the system
performance.
k(x) = ko + Af+D(6.6) 36

X) =Ko (w-Aw) (36)
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so that, Kg is a fixed value and its value is greater than

zeto.
k(%)
k(x) = [ !
® =100
after finding the values of Eq. (36) can be substitute
in Eq. (19) and Eq. (20) to find the torques for each
link.

4. The Simulation Results

For proving the proposing controllers' algorithms,
parameters can be utilized in the simulation program

as below.

Table (1): Simulation Parameters of 2-link Robot.

parameter | Description Value (unit)
The length of
L Lok 1. 0.12 (m)
The length of
L, link 2. 0.08 (m)
m ;Fhe mass of link 0.01996 (ke)
m ;Fhe mass of link 0.0076 (ke)
) Theta desired of |n/2[1-e(-5t)(5t+1)]
0, desired link 1 (rad)
. Theta desired of |n/2[1-e(-5t)(5t+1)]
0, desired link 2 (tad)
Disturbance of .
di link 1 0.01sin(t) (N.m.)
Disturbance of .
dz link 2 0.01sin(t) (N.m.)
Coulomb
frictions of link 5%10°-4 (N.m.)
Fa 1
Fe Coulomb R
frictions of link 3x107-4 (N.m,)
2
Width of
D, D, o 0.01, 0.05
boundary layer

The control action u1,u2 (N.m)

The derivative of error x3,x4 (rad/sec)

0.8

0.7

0.6 0.1

0.5 [

0.4 1

03| Al 0.2 0.3 0.4

02

The error x1,x2 (rad)

. . . . .
0 0.5 1 1.5 2 2.5
Time (sec)

Figure (6): The Plot of Error x1& x2 With
Time.
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x4

™

0.01

WA

-4 -0.01

1.021 1.0211  1.0212

0 0.5 1 1.5 2 2.5
Time (sec)

Figure (7): The Plot of x3 & x4 With Time.
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Figure (8): The Control Action ul & u2 With
Time.
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Figure (9): The (SV) s1 & s2 with Time.
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Figure (14): The Plot of x3 & x4 with Time.
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5. Discussion

In this paper, SMC and ISMC have been
employing to control the position, velocity and
tracking the desired position for the 2 link Robot
system. The outcome of SMC and ISMC has
consisted of this wotk to offer the characteristics of
each controller with the existence of the outer
disturbances  and uncertainty.  both
controllers own the ability to create the system
asymptotically stable which is subjected to the
parameters uncertainty and external disturbance when
the error (x1 and x2) as illustrated in Fig. 6, Fig.13,
Fig.20, Fig.28 and the derivative of error (x3 and x4)
as illustrated in Fig. 7, Fig.14, Fig.21, and Fig.29
approaching approximately to zero.

CSMC and ISMC are facing the problem of the
chattering in the control action (u; and up) in Fig.8
and Fig.22, torque action (11 and 12) Fig.10 and Fig.25
and sliding variable (s; and sz) Fig.9 and Fig.23
because of the impact of signum function in the
control law. The chattering problem is solved by
utilizing the saturation function in the control law to
attenuate the zigzag motion in u, t and s as shown in
Fig.15 and Fig.30, Fig.17 and Fig.33 , Fig.16 and
Fig.31 respectively.

When employing the sign function, the state
trajectories in the CSMC and ISMC reache the
switching surface perpendiculatly as shown in Fig.5,
Fig. 19 this way of movement leads to a chattering
phenomenon.

while in utilizing the boundary layer (sat
function) the state trajectories are hitting the sliding
surface in the arc model as in Fig. 12 and Fig. 27
which lead to minimize the chattering.

The outcomes present that the actions of the
external disturbance and the parameters uncertainty
of the dynamic system is eliminated by employing
saturation function.

Each theta of two links is tracking the desired
position as shown in Fig.11, Fig.18, Fig.26 and
Fig.34.

For achieving the eq. (20) in designing ISMC,
Fig.24 in case of sign (some chatter motion) and
Fig.32 in case of saturation (smooth motion) have
clarified this equation. The integral term (z1 and 22)
was updated to keep the sliding variable (s1 and s2)
on the zero.

variables

6. Conclusion

The most substantial enhancement of using
ISMC is the decreasing of the settling time and
steady-state error response of reaction compared with
the CSMC as shown in Table 2.

The ISMC includes two sections, the first section
is nominal control which is utilized for controlling
the certain system. the second section is the
discontinuous control that is employed to refuse the
perturbation term (the term of perturbation contains
the external disturbance and parameter uncertainty).
The nominal part is not impacted by the perturbation
term.

The outcomes present that CSMC and ISMC can
be described as a powerful algorithm, for the reason
that they can give a perfect response (good tracking
for the desired position with minimum possible time
and assurance the stability through reaching
approximately zero in the slipping mode) although
the existence of external disturbance and variables
uncertainty.

From Table 2, settling time for ISMC is lesser
about 75% than CSMC for each link with each case.
The steady state error with (signum and saturation)
function is lesser about (77% and 73% and 88%,
94%) than CSMC for link1 and link2 respectively. So
that we can be concluded that ISMC outperform
CSMC according to the simulation results of the
system.

Table (2): Performance of CSMC and ISMC with
Disturbances and Uncertainty.

Chattering Settling  time | Steady state
magnitude (N.m) | (sec) error
Link 1| Link2 | Linkl | Link2 | Link 1 | Link 2

O ;)0 1550 | 988 0.4 0.4 ]0.00185 |0.0025
=
Bl S| ~0 =0 0.4 0.4 ]0.00330 |0.0017
& ;)0 7156 | 5134 | 0.1 0.1 |0.00042 |0.0003
=
4 S| =0 =0 0.1 0.1 ]0.00087 | 0.0001
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