
Al-Nahrain Journal for Engineering Sciences NJES 23(2)127-136, 2020 
http://doi.org/10.29194/NJES.23020127  

 
NJES is an open access Journal with ISSN 2521-9154 and eISSN 2521-9162 
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License 
 

127 

Nonlinear Vibration Analysis of Functionally Graded Carbon Nanotubes 

Sandwich Cylindrical Panels 

Senaa S. Hafidh1, Hamad M. Hasan2, Farag M. Mohammed3 

 
 
Authors affiliations: 
1) Mechanical Department, 
University of Anbar. 
senaasamihafidh@gmail.com 
 
2) Mechanical Department, 
University of Anbar. 
hamadscience155@gmail.com  
 
3) Electromechanical 
Department, University of 
Technology, Baghdad- Iraq. 
drfaragmahel@yahoo.com 
 
Paper History: 

Received: 19th Nov. 2019 

Revised: 25th Dec. 2019 

Accepted: 16th March 2020  

Abstract 
In this research, we investigate the nonlinear vibration of functionally 

graded carbon nanotubes (FG-CNTs) for simply supported sandwich 
cylindrical panels. The sandwich consisting of three layers formed of (FG-
CNTs) and isotropic material as (CNT, ALMINUME, CNT).  Mechanical 
properties of the sandwich media are acquired according to a refined rule of 
blend approach. The governing equations were derived using a first-order 
deformation theory (FOSDT). Four kinds of carbon nanotubes of sandwich 
cylindrical panels were analyzed. The volume fraction of CNTs is varied. 
The properties of nonlinear responses and free vibration are studied. The 
numerical approach employs the fourth-order Runge-Kutta and Galerkine 
procedure. Which conducted for the dynamic analysis of the panels to 
present the natural frequencies and non-linear dynamic response expression. 
The results show that; the natural frequencies and the nonlinear vibration 
amplitude decrease with the volume fraction and thickness ratio increase. 
The nonlinear vibration amplitude response increases when increasing the 
excitation force. The initial imperfection and the elastic foundation have a 
minor impact on the nonlinear vibration response of the panel. The 
Pasternak Foundation has a larger impact than the Winkler foundation. The 
structure formed of FG-CNT present an excellent choice for high-
performance of engineering applications. 
 
Keywords: Sandwich Cylindrical Panels, Nonlinear Vibration, Functionally Graded 
Carbon Nanotube (FG-CNT), Imperfection Panel, First-Order Shear Deformation 
Theory. 
 

ز غير الخطي للصفائح الأسطوانية المعززة بأأنابيب الكاربون النانونية تحليل الأهتزا  
 سيناء سامي حافظ ، حمد محمد حسن ، فرج محل محمد 

 

 الخلاصة: 

لياف الكاربون النانونة على هيئة ساندويش   في هذه الدراسة تم تحقيق الأهتزاز الغير خطي للصفائح الأسطوانية المعززه بإ

. الساندويش يتكون من ثلاث طبقات الطبقة العلوية والسفلية من مادة الكربون  simply supported  بشروط عمل

متجانسة مادة  من  فهيي  الوسطى  الطبقة  أأما  الميكانيكية    نانوتيوب  الخواص  على  الحصول  تم  )الألمنيوم(.  الخواص 

(.  FOSDTلة الحركة وفق النظرية الأولى )للساندويش وفق مزج مادة واحدة أأو أأكثر للهيكل المصنوع. تم أأش تقاق معاد

الأس ت خصائص  دراسة  تم  مختلفة.  حجمية  وبنسب  المصنوع  للهيكل  نانوتيوب  الكربون  من  نماذج  أأربعة  دلراسة  جابت  تم 

طريقة   أأس تخدام  تم  الحر.  والأهتزاز  خطية  ثم    Galerkineالغير  ومن  خطية  معادلة  لى  اإ التفاضلية  المعادلات  لتحويل 

بواسطة )  حلها  عددية  الترددات  Runge Kutta methodطريقة  ودراسة  للهيكل  ديناميكي  لتحليل  أٌجريت  التي   .)

النتا خطية.  الغير  الديناميكية  والاإس تجابة  مع الطبيعية  خطي  الغير  الأهتزاز  وسعة  الطبيعية  الترددات  ذلك؛تقل  تظهر  ئج 

الأهتز  سعة  تزداد  الطبقات.  سمك  نس بة  وزيادة  الحجمية  النسب  للنقص  زيادة  يكون  الاإثارة.  قوة  بزيادة  خطي  الغير  از 

ي  للصفيحة.  خطية  الغير  الأهتزاز  اس تجابة  على  بس يط  تأأثير  الملرن  والأساس  المكالأولي  الهيكل  أأنابيب  ثل  من  ون 

 الكربون النانوية خياراُ ممتازاً للأداء العالي للتطبيقات الهندس ية. 

 

1. Introduction 
The sandwich constructions are widely used in 

lots of areas of technology, for example, vehicles, 
marine, aerospace and so on. A sandwich  cylindrical 
panel of functionally graded carbon nanotube and 

isotropic material is studied under various 
parameters. The improvement of nonlinear vibration 
behavior on the fundamental natural frequency of 
cylindrical panels in the form of sandwich is 
discussed in this study. The top and bottom sandwich 
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layers are made from a carbon nanotube. The carbon 
nanotubes have remarkable mechanical properties 
high modulus of elasticity, high mechanical strength, 
and high heat conductivity. It gives durability to the 
structure. While the core layer made from aluminum. 
Several methods have acquired to study the nonlinear 
vibration trouble by using functionally graded carbon 
nanotubes reinforced sandwich cylindrical panels. 
Sandwich structures have the following many 
advantages that; high durability, high modulus, low 
density, excellent resistance to wear and impact loads 
or vibration. To overcome problems such as 
delamination problems, so new types of sandwich 
structures: containing CNTs, core (aluminum) and 
CNTs introduced. CNT is a tubular form of carbon 
with a diameter as small as 1nm Length: few nm to 
the micron. Allotropes of (graphite, diamond, 
amorphous carbon and Fullerene). In general, there 
are two kinds of carbon nanotubes a single-walled 
carbon nanotube (SWCNT) and a multi-walled 
carbon nanotube (MWCNT). The first type may be 
thought of as a single atomic layer thick sheet of 
graphene rolled into a seamless cylinder. While the 
second type may be consisting of multiple rolled 
layers (concentric tubes) of graphite Ping Zhu et al. 
[1] have a numerically studied with bending and free 
vibration analysis of thick composite plates built by 
single-walled carbon nanotubes using the finite 
element method founded on the first-order shear 
deformation plate theory. M.H. Yas et al. [2] studied 
the vibrational properties of functionally graded 
nanocomposite cylindrical panels reinforced by 
single-walled carbon nanotubes (SWCNTs), using the 
generalized differential quadrature (GDQ) method. 
Founded on the three-dimensional theory of 
elasticity. J. E. Jam et al. [3] inquired about the free 
vibration characteristics from nanocomposite 
cylindrical panels reinforced by single-walled carbon 
nanotubes applying the three-dimensional theory. A. 
Alibeigloo [4] investigated the behavior of free 
vibration behavior of functionally graded carbon 
nanotube-reinforced composite cylindrical panel 
embedded in piezoelectric layers by applying the 
three-dimensional theory of elasticity. Sofiyev [5]. 
Discussed the vibration and buckling of sandwich 
cylindrical shells covered by different kinds of 
coatings, for example functionally graded (FG) and 
metal and ceramic coatings applying first-order shear 
deformation theory. Z.X. Lei et al. [6] studied the 
nonlinear dynamic stability analysis of carbon 
nanotube-reinforced functionally graded cylindrical 
panels under static by applying the mesh-free KP-
Ritz method. A.H. Sofiyev [7] investigated the 
dynamic instability of exponentially graded sandwich 
cylindrical shells under time-dependent occasional 
axial loadings applying the shear deformation theory. 
Sofiyev et al. [8] demonstrated the governing 
equations of dynamic stability for a sandwich 
cylindrical shell containing an FG core subjected to 
axial compressive load founded on Donnell’s shell 
theory applying the shear deformation theory. Hui-
Shen Shen [9] adopted cylindrical panels resting on 
elastic foundations submitted to lateral pressure in 
thermal environments applying higher-order shear 

deformation theory of carbon nanotube-reinforced 
composite. Y. Kiani [10] deals with the dynamic 
response of a functionally graded carbon nanotube-
reinforced composite cylindrical panel formulated 
within the framework applying first-order shear 
deformation shell theory.   Wang et al. [11] conducted 
shells of revolution with arbitrary boundary 
conditions and applying the Ritz variation energy 
method with the semi-analytical method and its 
associated applications for linear vibration analysis of 
functionally graded carbon nanotube-reinforced 
composite (FG-CNTRC) doubly curved panels.  
Jianyu Fan et al. [12] investigate the free vibration of 
piezoelectric functionally graded carbon nanotube-
reinforced composite and elastically boundary 
conditions with applied the first-order shear 
deformation theory (FSDT) to conical panels. Gao et 
al. [13] studied the dynamic stability of (FGM) 
orthotropic cylindrical shell envelope founded on 
Hamilton's principle approach and von Karman-
Donnell means by the elastic foundation under a 
linearly rising load with damping effect consideration. 
Ali Kemal Baltacıoğlu et al. [14] gave a numerical 
solution for the free vibration problem of 
functionally graded and carbon nanotube reinforced 
(CNTR) circular cylindrical panel. founded on the 
Love’s shell theory and first-order shear deformation 
theory. Qingya Li et al. [15] conducted an analytical 
method to study the dynamic buckling and nonlinear 
vibration of the graphene reinforced sandwich 
functionally graded porous plate. The investigated a 
functionally graded porous core and the GPL-SFGP 
plate consists of two metal face layers. Pham Toan 
Thang [16], investigated the nonlinear buckling 
behavior of the functionally graded carbon nanotube 
cylindrical shells applied on Donnell shell theory 
proposed a closed-form solution to submit to the 
compressive load. 
 

2. Expression of The Problem 
The sandwich consisting of three layers formed of 

functionally graded carbon nanotubes and isotropic 
material like aluminum (CNT, ALMINUME, CNT). 
The geometrical parameters of the cylindrical panels 
are thickness h, the radius of curvature R, elastic 
foundations (K1and K2) and length of edges a, b. A 
coordinate arrangement (x, y, z) is selected, (x and y) 
is in the mid- surface of the panel while z is in the 
thickness orientation of the panel, straight edge, 
curved edge, and thickness of the FG-CNTRC 
cylindrical panel. Reinforced composite cylindrical 
panel single-walled carbon nanotubes is shown in Fig. 
1 [17]. 

 
Figure (1): Geometrical parameters of cylindrical 

panel. 
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2.1 Material properties of CNTR 
The distribution of CNTs in a matrix may be 

functionally graded. In this study, four kinds of 
functionally graded along with the uniformly 
distributed case are considered. FGX-CNT, UD-
CNT, FGV-CNT, and FGO–CNT. The volume 
fraction of CNTs varies linearly with respect to the 
thickness and the accepted functionally graded 
distribution of CNTs in the polymeric matrix, [18] as: 

( ) ( ) ( )
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( ) ( )
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In Eq. (1), These parameters are introduced to 
capture the size-dependent material properties of the 

FG-CNTRC cylindrical panel. The (𝜂1, 𝜂2, 𝜂3) are 

the efficiency parameters in which be chosen to 
match the data obtained from the molecular 

dynamics’ simulation. Besides, in Eq. (1).𝐸11
𝐶𝑁 ,𝐸22

𝐶𝑁  

and 𝐺12
𝐶𝑁are the Young modulus and shear modulus, 

respectively.𝐸𝑚And 𝐺𝑚 indicate the corresponding 
properties of the isotropic matrix. The volume 

fraction of CNTs and matrix are denoted by 𝑉𝐶𝑁𝑇and 

𝑉𝑚as: 

( ) ( )1m CNTV z V z= −
   ...(2) 

In this research, four kinds of CNT distributions 
around the panel thickness are listed in Table1. 

Table 1: Volume fraction of carbon nanotubes of 
thickness coordinate for different cases of CNTs 
distribution [18]. 
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Type FGX-CNT has a maximum near the top 
and bottom surfaces whereas the mid-plane is free of 
CNT. In FGV, the top surface is enriched with CNT 
and the bottom one is free of CNT. For FGO, 
however, top and bottom surfaces are free of CNTs 
and the mid-surface of the panel is enriched with 
CNTs. However, in UD-CNT type, each surface of 
the panel through the thickness has the same volume 
fraction of CNTs. 

Poisson ratio depends weakly on position [18] as:   

CN m
tcnt mV V  = +

             (3) 

The mass density of the composite cylindrical panel 
media is a conventional rule of mixtures approach as 
[18]: 

CN m

CN mV V  = +
            …(4) 

Where: 

 𝜌𝐶𝑁and𝜌𝑚 are the mass density of the carbon 
nanotube with the matrix. 

The variation of young’s modulus, poison’s 
proportion and density of FG-CNT sandwich panel 
are applied [7]: 
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2.2 Fundamental relations and basic equations 

The displacement area of the panel problem is 
established agreeing to the first-order shear theory as 
[18]: 

( ) ( ) ( )
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Where 𝜙𝑥 and 𝜙𝑦are the rotations of the normal to 

the middle surface about the y and x directions, 

𝑢, 𝑣and 𝑤denote the displacements of the 
corresponding point on the middle surface in the x, y 
and z directions, and t is the time. 

The strain-displacement relationships with the Von 
Karman [18]: 

𝜀𝑥 = 𝜀𝑥
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,                      …(8) 

U,v, and ware displacement elements respect to 

the coordinates (x,y,z),𝜀𝑥
∘  and𝜀𝑦

∘  as the normal strains, 

and 𝛾𝑥𝑦
∘ , 𝛾𝑥𝑧

∘ , 𝛾𝑦𝑧
∘  described the shear strain of the 

panel in the center surface. The compatibility 
equation of an imperfect FG-CNTRC cylindrical 
panels can be founded by employing eq. (7) and eq. 
(8) for follow: 
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Hooke’s law for a panel is defined as: 
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Where  𝑄𝑖𝑗(𝑖, 𝑗 = 1,2,4,5,6) are the abbreviated 

material tightened up coefficients compatible with 
conditions and are found as follow: 
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𝑮𝟐𝟑, 𝑸𝟓𝟓 = 𝑮𝟏𝟑, 𝑸𝟔𝟔 = 𝑮𝟏𝟐.                     (11)     

Force and moment resultants of sandwich panels: 
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Where𝐴𝑖𝑗 , 𝐵𝑖𝑗and 𝐷𝑖𝑗are constants. The relationships 

of the strain-force resultant reversely are accepted eq. 
(12) 

{
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                                                              …(13) 

The constants were extracted in a numerical way 
(Simpson method), using the FORTRAN program 
because it is not integrated in analytical method as 
[19]: 

(𝐴𝑖𝑗 , 𝐵𝑖𝑗 , 𝐷𝑖𝑗) = ∫ 𝑄𝑖𝑗
ℎ/2

−ℎ/2
(1, 𝑧, 𝑧2)𝑑𝑧    …(14) 

The stress function 𝑓(𝑥, 𝑦, 𝑡) is presented as: 

𝑵𝒙 =
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      …(15) 

Replacement of eq. (13) into eq. (9) the compatibility 
provides of imperfect FG-CNTRC cylindrical panels 
equation and eq. (12) and eq. (8) and Airy function 
yields: 
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        Eq. (16) represents the equations of nonlinear 

through the variable(𝑓and𝑤) which are utilized to 
study the nonlinear vibration doings of sandwich FG-
CNTs cylindrical panels built on elastic foundations 
by applying first-order shear deformation theory 
(FSDT).  

3. Boundary condition and result 

In this part, the boundary conditions of FG-CNTRC 
cylindrical panels are simply supported, under the 
unvarying diffused pressure of strength (q). The 
boundary conditions are employed to explain the 
(FG-CNT) thick cylindrical panels which may be 
obtained as given below [20]: 

𝑤 = 𝑀𝑥 = 𝑁𝑥𝑦 = 0,𝑁𝑥 = 0, 𝑎𝑡𝑥 = 0, 𝑎, 

𝑤 = 𝑀𝑦 = 𝑁𝑥𝑦 = 0,𝑁𝑦 = 0, 𝑎𝑡𝑦 = 0, 𝑏,       …(17) 

To satisfy the conditions given in eq. (17), the mode 
shape is expressed as follows:  

𝑤(𝑥, 𝑦, 𝑡) = 𝑊(𝑡) 𝑠𝑖𝑛 𝜆𝑚 𝑥 𝑠𝑖𝑛 𝛿𝑛 𝑦, 
𝜙(𝑥, 𝑦, 𝑡) = 𝜙𝑥(𝑡) 𝑐𝑜𝑠 𝜆𝑚 𝑥 𝑠𝑖𝑛 𝛿𝑛 𝑦, 
𝜙(𝑥, 𝑦, 𝑡) = 𝜙𝑦(𝑡) 𝑠𝑖𝑛 𝜆𝑚 𝑥 𝑐𝑜𝑠 𝛿𝑛 𝑦,   …(18)  

Where 𝜆𝑚
𝑚𝜋

𝑎
, 𝛿𝑛 =

𝑛𝜋

𝑏
, 𝑚, 𝑛 = 1 The natural 

counts of half-waves in the agreeing direction x, y, W 

(t) the time-dependent and 𝜙𝑥 , 𝜙𝑦the amplitudes are 

functions of the time. 

The initial imperfection 𝑤∗geometric of a cylindrical 
panel is accepted as: 

𝑤∗(𝑥, 𝑦) = 𝑊∘(𝑡) 𝑠𝑖𝑛 𝜆𝑚 𝑥 𝑠𝑖𝑛 𝛿𝑛 𝑦,   …(19) 

Where the coefficient 𝑊∘ magnitude of initial 
imperfection at a center of the panels.         

Aside from standing in eq. (18) and eq. (19) into eq. 

(17), Airy stress function𝑓can be defined as follows: 

𝑓(𝑥, 𝑦, 𝑡) = 𝐴1(𝑡) 𝑐𝑜𝑠 2 𝜆𝑚𝑥 + 𝐴2 𝑐𝑜𝑠 2 𝛿𝑛𝑦 +
𝐴3(𝑡) 𝑠𝑖𝑛 𝜆𝑚 𝑥 𝑠𝑖𝑛 𝛿𝑛 𝑦                 …(20) 

Where 

𝐴1 =
𝛿𝑛
2

32𝐴11𝜆𝑚
2
𝑊(𝑊 + 2𝑊∘), 𝐴2

=
𝜆𝑚
2

32𝐴22𝛿𝑛
2
𝑊(𝑊 + 2𝑊∘), 

𝐴3 =
1

[𝜆𝑚
4 𝐴11+𝛿𝑛

4𝐴22+(𝐴66−2𝐴12)𝜆𝑚
2 𝛿𝑛

2]

𝜆𝑚
2

𝑅𝑦
+

𝐵21𝜆𝑚
3 𝜙𝑥+𝐵12𝛿𝑛

3𝜙𝑦+(𝐵11−𝐵66)𝜙𝑥𝜆𝑚𝛿𝑛
2+(𝐵22−𝐵66)𝜙𝑦𝜆𝑚

2 𝛿𝑛

[𝜆𝑚
2 𝐴11+𝛿𝑛

2𝐴22+(𝐴66−2𝐴12)𝜆𝑚
2 𝛿𝑛

2 ]
,                                                                       

                                                              …(21) 
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last, the nonlinear equations can be found and the 
load–deflection curve could be sought by substituting 
eq. (18) and eq. (20) from eq. (16) and then using the 
Galerkin method. 

𝐼∘
𝑑2𝑊

𝑑𝑡2
− 𝑙11𝑊 − 𝑙12𝛷𝑥 − 𝑙13𝛷𝑦 − 𝑙14(𝑊 +

𝑊∘)𝛷𝑥 − 𝑙15(𝑊 +𝑊∘)𝛷𝑦 − 𝑛1(𝑊 +𝑊∘) −

𝑛2𝑊(𝑊 +𝑊∘) + 𝑛3𝑊(𝑊 + 2𝑊∘) + 𝑛4𝑊𝑊∘(𝑊 +
2𝑊∘) = 𝑛5𝑄 𝑠𝑖𝑛 𝛺 𝑡                 …(22)  

For an ideal shell, the fundamental frequencies can be 
obtained as: 

𝜔𝑚𝑛 = √−
(𝑎1+𝑎2)

𝐼∘
,     …(23) 

Consider the nonlinear vibration of a complete panel, 
eq. (22) has of the form 

𝐼∘
𝑑2𝑊

𝑑𝑡2
− (𝑎1 + 𝑎2)𝑊 − (𝑎3 + 𝑎4 + 𝑎6)𝑊

2 −

𝑎5𝑊
3 = 𝑛5𝑄 𝑠𝑖𝑛 𝛺 𝑡.                                   …(24) 

Where: 

𝑎1 = 𝑙11 + 𝑙12
𝑙23𝑙31−𝑙21𝑙33

𝑙22𝑙33−𝑙23𝑙32
+ 𝑙13

𝑙32𝑙21−𝑙31𝑙22

𝑙22𝑙33−𝑙23𝑙32
,  𝑎2 =

𝑛1 + 𝑙12
𝑙23𝑛9−𝑙33𝑛7

𝑙33𝑙22−𝑙23𝑙32
+ 𝑙13

𝑙32𝑛7−𝑙22𝑛9

𝑙33𝑙22−𝑙23𝑙32
, 

𝑎3 = 𝑛2 + 𝑙14
𝑙23𝑙31−𝑙21𝑙33

𝑙33𝑙22−𝑙23𝑙32
+ 𝑙15

𝑙32𝑙21−𝑙31𝑙22

𝑙33𝑙22−𝑙23𝑙32
,  𝑎4 =

𝑛3 + 𝑙12
𝑙23𝑛10−𝑙33𝑛8

𝑙33𝑙22−𝑙23𝑙32
+ 𝑙13

𝑙32𝑛8−𝑙22𝑛10

𝑙33𝑙22−𝑙23𝑙32
,  

𝑎5 = 𝑛4 + 𝑙14
𝑙23𝑛10−𝑙33𝑛8

𝑙33𝑙22−𝑙23𝑙32
+ 𝑙15

𝑙32𝑛8−𝑙22𝑛10

𝑙33𝑙22−𝑙23𝑙32
,  𝑎6 = 𝑙14

𝑙23𝑛9−𝑙33𝑛7

𝑙33𝑙22−𝑙23𝑙32
+ 𝑙15

𝑙32𝑛7−𝑙22𝑛9

𝑙33𝑙22−𝑙23𝑙32
,              

                                                              …(25) 

Eq. (24) can be rewritten as 

𝑑2𝑊

𝑑𝑡2
+ 𝜔𝑚𝑛

2 (𝑊 +𝑀𝑊2 + 𝑁𝑊3) − 𝐹 𝑠𝑖𝑛 𝛺 𝑡 = 0,                                                                 

                                                              …(26) 

4. Numerical Results 
These properties are taken from the previous 

research [17, 18], as the properties are accepted to be 

as: 𝐸𝑚 = 2.5 GPA, 𝜐𝑚 = 0.34and𝜌𝑚 =
1150𝐾𝑔/𝑚3 . In this analysis, the properties of 

SWCNTs are chosen as follows: 𝐸11
𝐶𝑁𝑇 = 2.546TPA, 

𝐸22
𝐶𝑁𝑇 = 7.08TPA, 𝐺12

𝐶𝑁𝑇 = 1.944TPA, 𝜐𝐶𝑁𝑇 =
0.175and𝜌𝐶𝑁𝑇 = 1400𝐾𝑔/𝑚3. The detailed 

material attributes of CNT efficiency parameters, for 
three dissimilar CNTs volume fraction values of these 

CNT efficiency parameters are: 𝜂1 = 0.137, 𝜂2 =
1.022 and 𝜂3 = 0.715  for  𝑉𝑡𝑐𝑛𝑡 = 0.12 ; 

1
0.142, = 𝜂2 = 1.626  and 𝜂3 = 1.138 for 

𝑉𝑡𝑐𝑛𝑡 = 0.17 ;
1

0.141, = 𝜂2 = 1.585and 𝜂3 =

1.1095for 𝑉𝑡𝑐𝑛𝑡 = 0.28, and properties of unity 

isotropic material (Al):  𝐸𝑚 = 7 × 𝑒10Pa,  𝜐𝑚 = 0.3 

and 𝜌𝑚 = 2702𝐾𝑔/𝑚3 . 

4.1 Validation of The Present Formulation 
Consider a functionally graded carbon nanotube 

sandwich cylindrical panels submitted to a uniformly 
cross distributed load where (Q) represented the 
amplitude of excited load. Table 2 compares the 

values of the natural frequencies of FG-CNTRC 
panels (m,n)=(1,1), a/R=1, a/b=1, and a/h=20) with 
several graded profiles of CNTs, the various volume 
fraction of CNTs were compared with results of  Y.  
Kiani et al. [21] for cylindrical panels with simply 
supported edges plate. Figs. (2, 3, 4 and 5) show the 
effects of different volume fractions on natural 
frequency around the panel thickness founded on the 
FOSDT. The results show that with the volume 
fraction increase the amplitude of the dynamic 
response of cylindrical panel decrease. The FGX-
CNT presents higher frequencies amplitude rather 
than the other panels, while FGO-CNT panels have 
the minimum one.  

 
Table 2: Fundamental natural frequency by Ref. [21] 

𝑽𝑪𝑵𝑻
∗  

Types of 
CNT 

Ref.[21] Present(FST) 

 
 

0.12 

FGX 
UD 

FGV 
FGO 

23.2763 
21.4707 
21.2857 
19.1857 

22.1009 
18.2024 
17.9555 
10.7592 

 
 

0.17 

FGX 
UD 

FGV 
FGO 

29.5672 
27.0582 
26.9125 
24.1626 

26.4959 
21.1351 
21.1337 
12.1269 

 
0.28 

FGX 
UD 

FGV 
FGO 

33.8769 
30.1508 
30.2290 
26.3956 

32.3070 
26.7468 
26.7427 
17.0318 

 
Figs. (2,3,4,5) represented the influence of volume 

fraction on dynamic response of sandwich cylindrical 

panel at 𝑄 = 4000𝑁/𝑚2, 𝛺 = 400𝑟𝑎𝑑/𝑠𝑒𝑐, W0=0 
and (a=b=R=1m), (h=0.05m). 

In the Figs. (2,3,4,5) noted that the value of 
volume fraction decrease, it is offset by an increase in 
the amplitude of dynamic response of cylindrical 
panel due to the material mechanical properties 
increased. The high amplitude is introduced with 
using FGX-CNT while the lowest amplitude value is 
with using FGO-CNT as shown in Fig. (6) that 
represents the dynamic response of sandwich 

cylindrical panels at 𝑉𝐶𝑁𝑇
∗ = 0.28. 

Figure (2): Dynamic response of FGX-CNT 
cylindrical panels. 
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Figure (3): Dynamic response of UD-CNT 
cylindrical panels.  
 

 
Figure (4): Dynamic response of FGV-CNT 
cylindrical panels. 
  

     Figure (5): Dynamic response of FGO-CNT 
cylindrical panels.  
 

 
Figure (6): Dynamic response of FG-CNT 

cylindrical panels at 𝑉𝐶𝑁𝑇
∗ = 0.28. 

 
 
 
 
 
 

Table 3: natural frequency parameter �̃� =

𝝎𝑹√𝝆/𝑬  for cylindrical panels for middle layer 

isotropic material. 

B.Cs. Geometry Source 
m=1 
n=1 

m=2 
n=2 

m=3 
n=3 

m=4 
n=4 

 
 
 
 
 

SSSS 

a=3m, 
b=3.1415m, 

R=2m, 
h=0.02m  

p=7800kg/m3 
E=210 GPa 

present 0.4286 0.4599 0.5762 0.8094 

Ref.[21] 0.24474 0.25796 0.34446 0.38700 

 

4.2 Influence of Thickness of FG-CNT 
The influence of the core-to-CNT thickness ratio 

[7] ℎ𝑐𝑜𝑟𝑒/ℎ𝐶𝑁𝑇 = (2,4,6) on the natural frequency 
of cylindrical panels reinforced composite with FG-
CNT layers and isotropic material layer is shown in 
Fig. (7, 8, 9 and 10), basis of first-order shear 
deformation theory with (m,n)=(1,1) is presented in 

Table 3. Asℎ𝑐𝑜𝑟𝑒/ℎ𝐶𝑁𝑇 = 2, in this case, the 

thickness of the layers isℎ𝐶𝑁𝑇 = ℎ/4, ℎ𝑐𝑜𝑟𝑒 = ℎ/2 
[7] and cylindrical panel characteristics are taken to 

be𝑅/ℎ = 25. Asℎ𝑐𝑜𝑟𝑒/ℎ𝐶𝑁𝑇 = 4, the carbon 

nanotube layers are the sandwich panel, i.e. ℎ𝐶𝑁𝑇 =
ℎ/6, ℎ𝑐𝑜𝑟𝑒 = 2ℎ/3 [7] and cylindrical panel 

characteristics are taken to be𝑅/ℎ = 50. Asℎ𝑐𝑜𝑟𝑒/
ℎ𝐶𝑁𝑇 = 6, in this case, the carbon nanotube layers 

are the sandwich panel. So, ℎ𝐶𝑁𝑇 = ℎ/8, ℎ𝑐𝑜𝑟𝑒 =
3ℎ/4 [7] and cylindrical panel characteristics are 

taken to be𝑅/ℎ = 75, for all cases assume𝑅 = 1, as 
the core to CNT thickness ratio increases from 2 to 
6. Sandwich cylindrical panels are designed 
CNT/Al/CNT. 
 
Table 4: Results of a thickness of three layers (CNT, 
Al, CNT) on the nonlinear vibration reaction of 
sandwich cylindrical panels a=b=R=1m, K1=K2=0, 
q0=4000sin400t. 

𝑽𝑪𝑵
∗  Thickness 

(h) 
Type 
of 
CNT 

Natural 
frequency(rad/sec) 

 
 
 
 
 
 

0.12 

 
0.04 

FGX 
UD 

FGV 
FGO 

49.0362 
44.7193 
43.6867 
62.7467 

 
0.02 

FGX 
UD 

FGV 
FGO 

90.8730 
91.0019 
91.0019 
115.7371 

 
0.0133 

FGX 
UD 

FGV 
FGO 

137.0796 
140.0934 
137.5181 
180.5375 

 
Fig. (7) represented the influence of thickness of 

FG-CNT and isotropic material cylindrical panels on 
dynamic response of sandwich cylindrical panel at 

𝑄 = 4000𝑁/𝑚2, 𝛺 = 400𝑟𝑎𝑑/𝑠𝑒𝑐and W0=0. In 
the figs. of (a,b,c,d) noted that the value of thickness 
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decrease, it is offset by an increase in the amplitude 
of dynamic response of cylindrical panel due to the 
structure that is more stiff. The structure is more 
stable in distributed FGO-CNT due to the increase in 
the thickness of the inner layer with the stability of 
thickness upper and lower layers from CNTs as 
shown in Fig. (8) that represent the nonlinear 
vibration response of sandwich panel at h=0.04m and 

𝑉𝐶𝑁𝑇
∗ = 0.12 . 

 
(a) 

                                                                                              
 (b)        

       
(c) 

 
(d) 

Figure (7): Influence of thickness of FG-CNT and 
isotropic material on dynamic response of sandwich 

cylindrical panels at𝑉𝐶𝑁𝑇
∗ = 0.12  (a- FGX-CNT, b- 

UD-CNT, c- FGV-CNT, d- FGO-CNT). 

 
Figure (8): Nonlinear vibration response of 

sandwich cylindrical panels at h=0.04m and 𝑉𝐶𝑁𝑇
∗ =

0.12. 
 

4.3 Effect of Elastic Foundations 
One of the main objectives of the current 

research is to obtain high natural frequency and 
reduce the vibration amplitude for the nonlinear 
dynamic reaction of the functionally graded carbon 
nanotube cylindrical panel. But not all high vibration 
is undesirable. Some applications require high 
vibrations. In the field of this research, the structure 
used in engineering applications requires a small 
vibration amplitude to avoid failure. It is noted that 
(UD, FG-V) panels have the lowest frequency 
parameters and (FG-O, FG-X) panels have the 
highest frequency parameters. The Impact of the 
linear Winkler and Pasternak foundations on the 
natural frequency for the functionally graded 
cylindrical panel built by different types of CNT are 

described in Table 4. It is complete that the elastic 
foundation has a major influence on the natural 
frequency. Increasing the value of the elastic 
foundation leads to constant the natural frequency 
for all cases and this will be seen when the effect of 
the elastic foundation is found on the time-deflection 
curve. 

Table 4: Influence of the Winkler and Pasternak 
foundations on the natural frequency for the CNT 
and isotropic material for geometry. a=b=1m, R=1m, 
h=0.04m. 

(K1, K2) 
Gap/m 

Type of 
CNT 

Natural frequency 
(rad/sec) 

(0,0) 
 

(0.5,0) 
 

(0,0.04) 

FGX 
49.0362 
23.2108 
73.1525 

UD 
44.7193 
12.1775 
70.1683 

FGV 
43.6867 
7.5499 
69.5138 

FGO 
62.7467 
45.8248 
82.6953 
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(a) 

(b) 

 
(c) 

                                          
(d) 

Figure (9): Influence of the Pasternak and Winkler 
foundations parameter on the amplitude of dynamic 
response of sandwich cylindrical panel at h=0.04m 

and  𝑽𝑪𝑵𝑻
∗ = 𝟎. 𝟏𝟐  (a- FGX-CNT, b- UD-CNT, c- 

FGV-CNT, d- FGO-CNT). 
 

Fig. (9) represented the influence of the Pasternak 
and Winkler foundations parameter on the amplitude 
of dynamic response of sandwich cylindrical panel at  

𝑄 = 4000𝑁/𝑚2, 𝛺 = 400𝑟𝑎𝑑/𝑠𝑒𝑐  and W0=0. In 
Figs. of (a,b,c,d) noted that the value of elastic 
foundation at (K1=0, K2=0.04 Gpa/m) it gives the 
best behavior to the material and it is offset small 
increases in the amplitude of natural frequency due to 
the shear component increases (K2), the amplitude of 

the vibration increases because the theory (FSDT) 
takes the effect of shear. As the bending (K1) 
increases, it will reduce the vibration amplitude. The 
structure is more stable in FGO-CNT as shown in 
Fig. (10) represented nonlinear vibration response of 

sandwich cylindrical panels at h=0.04m and𝑽𝑪𝑵𝑻
∗ =

𝟎. 𝟏𝟐. 

 
Figure (10): Nonlinear vibration response of 

sandwich cylindrical panels at h=0.04m and 𝑽𝑪𝑵𝑻
∗ =

𝟎. 𝟏𝟐. 

 
4.4 Effect of Excitation Force   

The influence of harmonic uniform load (Q) on 
the non-linear dynamic reaction for the FGCNTRC 
cylindrical panels using four types of CNTs with 
three different volume fraction are accounted in the 
Fig.11 It is observed that the three states of the 
reinforcement have the same behavior under the 
influence of increased excitation force. Three values 
are analyzed which are examined in the first-order 

shear deformation theory (𝑄 = 5000𝑁/𝑚2, 𝑄 =
4000𝑁/𝑚2, 𝑄 = 3000𝑁/𝑚2 ). It can be seen that 
the excitation force has a hard effect on the 
amplitude of vibration when increasing the excitation 
force the vibration amplitude will increase 
significantly. In another meaning, the cylindrical 
panel fluctuates stiff at the high value of the 
excitation force. As shown from the Fig. 11, 
whenever the value of excitation force decrease, it is 
offset by an increase in the amplitude on the natural 

frequency, it is more stable at volume fraction𝑽𝑪𝑵𝑻
∗ =

𝟎. 𝟏𝟐at 𝑄 = 5000𝑁/𝑚2 as: 

(a) 



NJES 23(2)127-136, 2020 
Hafidh et al. 

135 

                                                                            
(b) 

(c) 

  

(d) 

Figure (11): Influence of excitation force (Q) on the 
amplitude of vibration for FG-CNTRC cylindrical 
panel at a=b=1m, K1=K2=0, R=1m, W0=0 and 

𝑉𝐶𝑁𝑇
∗ = 0.12 (a- FGX-CNT, b- UD-CNT, c- FGV-

CNT, d- FGO-CNT). 
 

4.5 Effect of Imperfection  
The cylindrical panel contains a certain defect, 

due to the manufacturing, so it must be taken into 
consideration through this parameter (W0). Fig.12 
represents the effect of initial imperfection on the 
amplitude of nonlinear dynamic response for 
functionally graded carbon nanotube sandwich 
cylindrical panel (CNT, Al, and CNT). The initial 
imperfection (W0) has a strong effect on the 
nonlinear response of the panel. It can see that with 
the value of the initial imperfection (0, 1e-05 and 3e-
05), the amplitude in the curve of time-deflection 
increases significantly. As shown from the fig.12, 
whenever the value of initial imperfection decrease, it 
is offset by an increase in the amplitude on the 
natural frequency, it is more stable at volume 

fraction𝑉𝐶𝑁𝑇
∗ = 0.12at (W0 =0) as: 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure (12): Influence of imperfection on the 
amplitude of vibration for FG-CNTRC cylindrical 

panel at 𝑽𝑪𝑵𝑻
∗ = 𝟎. 𝟏𝟐  , a=b=1m, R=1m, 

K1=K2=0, q0=4000sin400t (a- FGX-CNT, b- UD-
CNT, c- FGV-CNT, d- FGO-CNT). 
 

5. Conclusions 
Through the analysis of FG-CNT sandwich 

cylindrical panels nonlinear vibration under various 
parameters the following conclusions are drawn: 
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1. The natural frequencies and the nonlinear 
vibration amplitude decrease with the volume 
fraction increase.  
2. The natural frequencies and the nonlinear 
vibration amplitude decrease with the thickness ratio 
increase.  
3. The nonlinear vibration amplitude response 
increases when increasing the excitation force. 
4. The initial imperfection has a minor impact on 
the nonlinear vibration response of the panel. 
5. The elastic foundation has a useful impact on 
the natural frequency and vibration amplitude.  
6. The Pasternak Foundation has a larger impact 
than the Winkler foundation. 
7. The structure formed of FG-CNT present an 
excellent choice for high-performance of engineering 
applications.  
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