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Abstract 
In this paper, the H-infinity Sliding Mode Control (HSMC) is designed 

to produce a new dynamic output feedback controller for trajectory 
tracking of the nonlinear human swing leg system. The human swing leg 
system represents the support of human leg or the humanoid robot leg which is 
usually modeled as a double pendulum. The thigh and shank of a human 
leg is represented by two pendulum links and the hip joint will connect the 
upper body to the thigh and the knee joint will connect the thigh to the 
shank. The external torques (servo motors) are applied at the hip and knee 
joints to move the muscles of thigh and shank. The results show that the 
HSMC can robustly stabilize the system and achieve a desirable time 
response specification better than if only H-infinity or SMC is used. This 

controller achieves the following specifications: 𝑡𝑠 = 0.85 sec, 𝑒𝑠𝑠 = 0.01𝑜 

for hip joint and 𝑡𝑠 = 0.75 sec, 𝑒𝑠𝑠 = 0.02𝑜 for knee joint.  

Keywords: Human Swing Leg System, Full State Feedback Controller,  
H-infinity, Sliding Mode Control (SMC), Uncertain System. 

 المتأ رجحة   ة الساق البشري   لنظام اللانهائيه ذو نمط انزلاقي    Hتصميم مس يطرنوع  
 ازهار جبار عبدالرضا ،  حازم ابراهيم علي

 الخلاصة: 

مس يطرنوع   تصميم  يتم  البحث،  هذا  الراجعة    Hفي  بالس يطره  جديد  مخرج  نتاج  لاإ ال نزلاقي  النمط  ذو  اللانهائيه 

وذلك لتتبع المسار للنظام اللاخطي للساق البشرية المتأ رجحة. الساق البشرية المتأ رجحة تعبر عن الدعامة لساق الانسان 

ا روابط  تمثل  والساق  الفخذ  مزدوج.  كبندول  تمثل  ما  عادة  التي  و  البشرية  الروبوتات  الساق  او  نظام   من  لبندول 

على   ثم الساق  لى الفخذ  الجسم اإ من  تربط الجزء العلوي  والركبة التي  مفاصل الورك  طريق  عن  ببعض  البشرية المتصلة 

التوالي. العزوم الاإجمالية اللازمة لتحريك عضلات الفخذ والساق من قبل اثنين من العزم الخارجية )المحركات الخطوية(  

( يمكن أ ن  HSMCاللانهائيه ذو النمط الاإنزلاقي)  Hك والركبة. أ ظهرت النتائج أ ن مس يطرنوع  مطبقة على مفاصل الور

مس يطرنوع   اس تخد  لو  من  افضل  المرغوبة  الاس تجابة  زمن  مواصفات  وتحقق  بقوة  الاإس تقرارية  او    Hتحقق  اللانهائيه 

  0.85زمن الاس تقرار مساو    :حقق المحددات التاليه  (HSMCالمس يطر )  هذامس يطر ذو نمط انزلاقي كلا على حده.

مساو   الخطأ   اس تقرار   حاله  مع  و  00.01ثانية  الورك  مساو    لمفصل  الاس تقرار  اس تقرار    0.75زمن  حاله  مع  ثانية 

 لمفصل الركبه.   00.02الخطأ  مساو 

1. Introduction 
The ability of human to move from one place to 

another is called Human movement.  Walking, jogging, 
and running gaits are considered the parts of Human 
movement. Walking is one of the main gaits of 
movement and happens more frequently than the other 
ones [1]. Due to neurological injuries, such as spinal 
cord injury and stroke, which result in motor-
incomplete gait; there are a vast number of people who 
lose their walking ability [2]. The swing leg system is 
very important; therefore, many researches have been 
done to control this system using different control 
approaches. Ono et al. [3] and Huang et al. [4], 
designed P controller for human swing leg system and 
the lost energy in joint self-impact stopper was 

obtained. A torque has been applied to the hip joint to 
restore the lost energy. Dallali et al. [5], presented a 
comparison between PID and Linear Quadratic 
Regulator (LQR) controllers. A better robustness was 
obtained from the LQR controller. The test was done 

on the robot leg from −11.5𝑜 to 11.5𝑜 and obtained 

control action about 30 𝑁. 𝑚. Gregg et al. [6], 
implemented virtual constraints that unify the stance 
period, coordinate ankle and knee control on a 
powered prosthetic leg. To simulate the torque limit of 
the experimental prosthesis, the saturate prosthesis 

torques at 80 𝑁. 𝑚. Bazargan-Lari et al. [7], proposed a 
nonlinear intelligent controller using Adaptive Neural 
Network control for human swing leg at hip and knee 
joints. The angular velocity for the joints was obtained 
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with maximum error of about 0.15% for the hip joint 

and 0.35% for the knee joint. 
The H-infinity and Sliding Mode Control (SMC) 
techniques are used in the control theory to achieve 
stabilization and robust performance. The advantages 
of the H-infinity method over classical control methods 
which are applicable to problems with cross-coupling 
between channels in multivariable systems. 
Disadvantages of this method need a high level of 
mathematical understanding to apply it successfully and 
a reasonably good model of the system to be controlled 
[8]. In the SMC, the sliding surface is chosen to force 
the system state trajectory to move along it. The sliding 
surface is always chosen in such a way that led a control 
law guarantees to be stable [9]. SMC has been applied 
for uncertain systems, stochastic systems, time delay 
systems, and switched hybrid systems [10].  
In this work, H-infinity, Sliding Mode Control and H-
infinity Sliding Mode Control are the proposed 
controllers for the system. The main goal is to design 
the H-infinity Sliding Mode controller to stabilize the 
human swing leg system and achieve a desirable 
tracking. 
 

2. System Mathematical Model 
In human and humanoids, the motion of the hip 

and knee is achieved in the swing leg system while the 
ankle contribution can be neglected. The system is 
modeled as double pendulum with the thigh and shank 
represented as two links. The unconstrained double 
pendulum is shown in Fig.1. In this figure, the masses 

of thigh and shank are  𝑚1, 𝑚2 respectively. The 

lengths of thigh and shank are 𝑙1, 𝑙2 respectively. The 
hip and knee rotation angles are θ1 and θ2 respectively. 
The applied external torques are τ1 and τ2 to move the 
thigh and shank links [7, 11, 12].  

 
Figure (1): Schematics human swing leg [7]. 

 
The dynamic equations of the system using Lagrange’s 
method can be represented by [7]: 
 
(𝑚1+3 𝑚2)

3
 𝑙1

2�̈�1 +
1

2
 𝑚2𝑙1𝑙2�̈�2 𝑐𝑜𝑠(𝜃1 − 𝜃2) +

1

2
 𝑚2𝑙1𝑙2�̇�1

2 𝑠𝑖𝑛(𝜃1 − 𝜃2) +
(𝑚1+2 𝑚2)

2
 𝑔  𝑙1 𝑠𝑖𝑛 𝜃1 = 𝜏1              

(1)             
1

3
 𝑚2 𝑙2

2�̈�2 +
1

2
 𝑚2𝑙1𝑙2�̈�1 𝑐𝑜𝑠(𝜃1 −

𝜃2) +
1

2
 𝑚2𝑙1𝑙2�̇�1

2 𝑠𝑖𝑛(𝜃1 − 𝜃2) +
1

2
 𝑚2 𝑔  𝑙2 𝑠𝑖𝑛 𝜃2 = 𝜏2          

(2) 
            

From eq. (1) and eq. (2), �̈�1 and �̈�1are [11, 12]: 
�̈�1 =
𝐾4(𝜏1  ̶ 𝐾2  �̇�2

2 𝑠𝑖𝑛(𝜃1−𝜃2)−𝐾3 𝑠𝑖𝑛 𝜃1) −𝐾2 𝑐𝑜𝑠(𝜃1−𝜃2)(𝜏2+𝐾2  �̇�1
2 𝑠𝑖𝑛(𝜃1−𝜃2)−𝐾5 𝑠𝑖𝑛 𝜃2)

(𝐾1𝐾4  ̶ 𝐾2
2 𝑐𝑜𝑠(𝜃1−𝜃2)2)

     

   (3) 

 

�̈�2=
𝐾1 (𝜏2+𝐾2  �̇�1

2 𝑠𝑖𝑛(𝜃1−𝜃2)−𝐾5 𝑠𝑖𝑛 𝜃2)−𝐾2 𝑐𝑜𝑠(𝜃1−𝜃2)(𝜏1  ̶ 𝐾2  �̇�2
2 𝑠𝑖𝑛(𝜃1−𝜃2)−𝐾3 𝑠𝑖𝑛 𝜃1)

(𝐾1𝐾4  ̶ 𝐾2
2 𝑐𝑜𝑠(𝜃1−𝜃2)2)

 (4) 

 

where 𝐾1 =
 (𝑚1+4𝑚2)

4
 𝑙1

2, 𝐾2 =
𝑚2𝑙1𝑙2

2
 , 𝐾3 =

(𝑚1+2𝑚2)

2
𝑔 𝑙1 ,  𝐾4 =  

𝑚2

4
𝑙2

2  , 𝐾5 =  
𝑚2

2
𝑔 𝑙2         

Assume the state variables are [11]: 
 

𝑥1 = 𝜃1: angular position of the upper link. 

𝑥2 = 𝜃2: angular position of the lower link. 

𝑥3  =  �̇�1: angular velocity of the upper link. 

𝑥4  =  �̇�2: angular velocity of the lower link. 
so that  
 

�̇�1 = 𝑥3                                               (5) 

�̇�2 = 𝑥4                                                (6) 
�̇�3 =
 𝐾4(𝜏1  ̶ 𝐾2  𝑥4

2 𝑠𝑖𝑛(𝑥1−𝑥2)−𝐾3 𝑠𝑖𝑛(𝑥1)) −𝐾2 𝑐𝑜𝑠(𝑥1−𝑥2)(𝜏2+𝐾2  𝑥3
2 𝑠𝑖𝑛(𝑥1−𝑥2)−𝐾5 𝑠𝑖𝑛(𝑥2))

(𝐾1𝐾4  ̶ 𝐾2
2 𝑐𝑜𝑠(𝑥1−𝑥2)2)

     

   (7) 
�̇�4 =

 
𝐾1 (𝜏2+𝐾2  𝑥3

2 𝑠𝑖𝑛(𝑥1−𝑥2)−𝐾5 𝑠𝑖𝑛(𝑥2))−𝐾2 𝑐𝑜𝑠(𝑥1−𝑥2)(𝜏1  ̶ 𝐾2  𝑥4
2 𝑠𝑖𝑛(𝑥1−𝑥2)−𝐾3 𝑠𝑖𝑛( 𝑥1))

(𝐾1𝐾4  ̶ 𝐾2
2 𝑐𝑜𝑠(𝑥1−𝑥2)2)

     

   (8)  
By linearizing eq. (5) to eq. (8) using Jacobeans’ method 

with the following initial condition: ( 𝜃1, 𝜃2) = ( 

30𝑜, 10𝑜) , (𝜃1̇, 𝜃2̇) = (0.3, 0.25) rad/sec , with( 𝜏1, 𝜏2) = 

( 0.5, 0.3) N.m  , and  the resulting state space 
representation for the system is: 

                     �̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)               (9) 

                     𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)               (10) 

where 𝐴, 𝐵, 𝐶 and 𝐷 are obtained as: 
 

𝐴 =

[

0 0 1 0
0 0 0 1

−18.9615 2.8818  −0.2155 −0.1274
20.2204 −23.9035 0.6116 0.1796

] 

, 𝐵 = [

0 0
0 0

49.2616 −69.4362 
−69.4362 197.0466

], 

 𝐶 = [
1 0 0 0
0 1 0 0

] ,  D =[
0 0
0 0

]       (11) 

 
The parameters of human swing leg system are given in 
Table 1. 
                  
Table (1): The parameters of human swing leg model 
[7, 13]. 

parameter value unit 

m1, m2 0.1 kg 

l1, l2 0.55 m 

  
Consider the system with uncertainty and external 
disturbance with matching condition is described as: 
 

  �̇� = (𝐴 + 𝛥𝐴)𝑥 + (𝐵 + 𝛥𝐵)𝑢 + 𝑑           (12) 

where 𝑥 ∊ 𝑅𝑛, 𝐴 and 𝛥𝐴 ∊ 𝑅𝑛×𝑛, 𝐵 and 𝛥𝐵 ∊
𝑅𝑛×𝑚 and 𝑢 ∊ 𝑅𝑛.The matrices  𝛥𝐴 and 𝛥𝐵 represent 

the uncertainties in the matrices  𝐴 and 𝐵 respectively 

and 𝑑 refers to external disturbance. Assume the 

perturbations are about ±10%  of system parameters 

i.e.𝑚1, 𝑚2 = 0.1(1 ± 10%) and 𝑙1, 𝑙2 = 0.55(1 ±
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10%). Hence,  𝛥𝐴, 𝛥𝐵 and 𝑑 satisfy matching 
condition, where 
 

   𝛥𝐴 = 𝐵 𝐴𝛿 , 𝛥𝐵 = 𝐵 𝐵𝛿  and 𝑑 = 𝐵 𝛿       (13) 
and 

𝛥𝐴 = [

0 0 0 0
0 0 0 0

0.9504 0.5114 0 0
−1.0465 1.3813 0 0

],  

𝐴𝛿 = [
0.0235 0.0403 0 0
0.003 0.0212 0 0

], 

𝛥𝐵 = [

0 0
0 0

−12.2506 17.2678
17.2678 −49.0026

], 

 𝐵𝛿 = [
−0.2487 0

0 −0.2487
]                     (14) 

 
Then substituting eq. (13) in eq. (12), yields: 
 

   �̇� = 𝐴 𝑥 + 𝐵 𝑢 + 𝐵(𝐴𝛿 𝑥 +  𝐵𝛿  𝑢 + 𝛿)    (15)  
 
The constraints on input torques and output joint 
angles for the system are specified as: 
 

     −20 ≤ 𝜏1 ≤ 20, −20 ≤ 𝜏2 ≤ 20,  

−90o ≤ 𝜃1 ≤ 90o, −5o ≤ 𝜃2 ≤ 150o           (16) 
 

3. Controller Design  
In this work, H-infinity, Sliding Mode Control and 

H-infinity Sliding Mode Control are proposed to 
control the system. The SMC is one of the effective 
nonlinear robust control methods which has two 
phases: the reaching phase and the sliding phase. In the 
reaching phase, a reaching control law is applied to lead 
the system states to be on the sliding line and the 
system is called to be in the sliding mode. When the 
system states are on the sliding line, a nominal control 
law is applied to lead the system states along the sliding 
line to the origin [11, 12, 14]. Fig.2 illustrates the 
reaching phase and the sliding surface in the SMC 
design. 

 
Figure (2): Two steps of SMC design. 
 

There are two steps to design SMC; the first step is 
selecting the sliding surface, and the second step is 
designing the control input to force the system 
trajectory toward the sliding surface [15]. If a system 
has m inputs, there are m hyperplanes [16]. For the 
human swing leg system which has two inputs so there 
are two hyperplanes [11]. These hyperplanes are 
defined as [16]: 

𝑆(𝑡)  =  𝐹 𝑥(𝑡)                  (17) 

where 𝐹 is m×n matrix which represent the gain to 
form sliding surface. Differentiating eq. (17) and 

substituting eq. (9) in the resulting equation, yields [11, 
17]: 

�̇� = 𝐹(𝐴𝑥 + 𝐵𝑢)              (18) 
The sliding mode control law is: 

𝑢 = 𝑢𝑜 + 𝑢𝑠                   (19) 

where  𝑢𝑜 is the nominal control and 𝑢𝑠  is 
discontinuous control input if the proposed controller 

is Sliding Mode Control only, but  𝑢𝑜  will be designed 
based on H-infinity controller if the proposed 
controller is H-infinity Sliding Mode Control.  

The vector 𝑆(𝑡) = 0 represents the intersection of all 
m sliding hyperplanes passing through the origin of the 

state space.  The 𝐹 matrix is computed by minimizing a 
quadratic objective function involving the state vector 
and the effective input, that is, by solving a linear 
quadratic (LQ) problem. This approach is called the 
Optimal Sliding Mode controller where the objective 
function to be minimized is [16]: 

𝐽 = ∫ (𝑥𝑇 𝑄 𝑥) 𝑑𝑡
∞

0
                (20) 

 For the LQ control, it is necessary to have the input 
term in the quadratic objective function and the input 
term is not presented in the objective function in eq. 
(20), and the constraints are that the system is on the 

intersection on m sliding hyperplanes. The 𝐹 matrix is 
not specified a priori and will come out as a solution to 
the problem. Using the similarity transformation [11, 
16]: 

𝑞 =  𝐻 𝑥                 (21) 

where 𝑞 ∈ 𝑅𝑛 represents the transformed state. 

The 𝐻 ∈ 𝑅𝑛 represents the transformation matrix is: 

𝐻 =  [𝑛      𝐵 ]𝑇     (22) 

 where the matrix 𝑛 ∈ 𝑅𝑛×(𝑛−𝑚), the columns of this 
matrix are composed of basis vectors of the null space 

of BT . Differentiating eq. (21) and substituting eq. (15) 
and eq. (21) in the resulting equation, yields: 

�̇� = 𝒜 𝑞 + ℬ𝑢 + ∆𝒜 𝑞 + ∆ℬ𝑢 + £         (23) 
where 

    𝒜 = 𝐻𝐴𝐻−1, ∆𝒜 = 𝐻𝐵𝐴𝛿𝐻−1 = [
0 0

∆𝒜21 ∆𝒜22
] 

,  ℬ = 𝐻𝐵 = [
0

ℬ2
 ],  ∆ℬ = 𝐻𝐵𝐵𝛿  = [

0
∆ℬ2

] and  £ =

𝐻𝐵𝛿 = ℬ𝛿                             (24) 

The matrix H has a special structure, the first (𝑛 − 𝑚) 

rows of ℬ turn out to be zeroes and the vector q is 
decomposed as follows: 

𝑞 = [
𝑞1

𝑞2
]         (25) 

where q1 and q2 are (𝑛 − 𝑚) and m-dimensional 
vectors, respectively. Partitioning eq. (23), yields: 

[
�̇�1

�̇�2
] = [

𝒜11 𝒜12

𝒜21 𝒜22
] [

𝑞1

𝑞2
] + [

0
ℬ2

] 𝑢 +

[
0 0

∆𝒜21 ∆𝒜22
] [

𝑞1

𝑞2
] + [

0
∆ℬ2

] 𝑢 + [
0

ℬ2
] 𝛿              (26) 

Substituting eq. (21) in eq. (20), yields: 

𝐽 = ∫ (𝑞𝑇 𝑄𝑞  𝑞) 𝑑𝑡
∞

0
               (27) 

where, 

𝑄𝑞 = (𝐻−1 )𝑇 𝑄𝐻−1              (28) 

If Q = QT ≥ 0, then Qq = Qq
T ≥ 0; because the signs 

of eigenvalues are preserved under congruence 

transformation. Partitioning Qq to form the partition of 

q in eq. (28) as: 
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𝑄𝑞 = [
𝑄𝑟 𝑁

𝑁𝑇 𝑅
]                        (29) 

Substituting eq. (25) and eq. (29) in eq. (27), yields: 

   𝐽 = ∫ (𝑞1
𝑇 𝑄𝑟  𝑞1 + 2𝑞1

𝑇 𝑁 𝑞2 + 𝑞2
𝑇 𝑅 𝑞2) 𝑑𝑡

∞

0
  (30) 

The matrix Q is selected by trial and error to be: 

𝑄 = 105 [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]                         (31) 

 

 From the selected Q matrix and according to eq. (28) 

and eq. (29) the matrices Qq, Qr, R and N are obtained 

as follows: 

𝑄𝑞 = 105 [

1 0 0 0
0 1 0 0
0 0 0.0018 0.0007
0 0 0.0007 0.0003

], 

 𝑄𝑟 = 105 [
1 0
0 1

], 

  𝑅 = [
182.9 71.7
71.7 30.4

], 𝑁 = [
0 0
0 0

]   (32) 

 

for 𝑆 = 0, the (𝑛 − 𝑚) dimensional dynamics is 
represented by [16]: 

�̇�1 = 𝒜11 𝑞1 +  𝒜12𝑞1               (33) 
 
Then sliding hyperplanes can be described as 

𝑆 = 𝐾 𝑞1 +  𝑞2                         (34) 
 

where the gain matrix 𝐾 is obtained for the minimum 

value of 𝐽 is:  

𝐾 = 𝑅−1 (𝒜12
𝑇 𝑃𝑠 + 𝑁𝑇 )        (35) 

where 𝑃s matrix is found by the solution of the Riccati 
equation: 

𝑃𝑠(𝒜11 − 𝒜12𝑅−1 𝑁𝑇 )+(𝒜11 −

𝒜12𝑅−1 𝑁𝑇 )T𝑃𝑠−𝑃𝑠𝒜12𝑅−1 𝒜12
𝑇𝑃𝑠 + 𝑄𝑞 −

𝑁𝑅−1 𝑁𝑇 =0                                               (36) 
where  

𝑃𝑠 = [
10 0
0 10

]                          (37) 

The gain matrix 𝐾 becomes:   

        𝐾 = [
0.2813 0.8035

−1.2053 −1.7065
]               (38) 

From eq. (17) and eq. (34), 𝐹 matrix is: 

𝐹 = [𝐾      𝐼𝑚]𝐻, =

 [
0.4926 −0.6944

−0.6944 1.9705
 

0.4926 −0.6944
−0.6944 1.9705

] (39) 

The selection of matrix 𝐹 or matrix 𝐾 is to ensure the 
system stability on the intersection of all hyperplanes. 

The standard LQ problem provided 𝑅 > 0 and if 𝑄 is 

selected to be positive definite, 𝑅 will be positive 
definite [16].  

In SMC, 𝑢𝑜 is conducted to satisfy the desired 

specification for nominal system corresponds to �̇�=0, 
from eq. (18), eq. (19) becomes: 

𝑢𝑜 = −(𝐹𝐵)−1𝐹𝐴 𝑥                (40) 
 

The uncertain parameters in human swing leg system 
are represented as a structured parametric uncertainty. 
This problem can be defined by the configuration in 

Fig.3. The 𝐺 is the plant and 𝑑(𝑡) is the disturbance, 
whose effect on the output signal to be minimize. The 

input 𝑢𝑜(𝑡) is the control signal which used to achieve 

this goal. The output 𝑒(𝑡) represents the signal to be 

minimized and the output 𝑦(𝑡) represents the system 
states which are available for feedback [17-19]. 

 
Figure (3): A full state feedback H-infinity control 
structure. 
 
Therefore, the full state feedback H-infinity controller 
will be expressed as [8, 16]: 

�̇� = 𝐴𝑥 + 𝐵 𝑢𝑜 + 𝐵𝑑    (41) 

𝑒 = 𝐶1𝑥 + 𝐷1𝑢𝑜            (42) 

𝑦 = 𝑥                             (43) 

where 𝑑 = (𝐴𝛿  𝑥 +  𝐵𝛿  𝑢𝑜 + 𝛿) is the disturbance 

matrix, and 𝐶1, 𝐷1 represent the controller design 
matrix. The solution of the corresponding H-infinity 
problem based on Riccati equation requires the 
following assumptions to be satisfied [8, 16]: 

• (𝐴, 𝐵) is stabilizable, (𝐶1, 𝐴) is detectable. 

• 𝐶1
𝑇 𝐷1 = 0 and 𝐷1

𝑇  𝐷1 = 𝐼. 
The H-infinity norm of the closed-loop transfer 

function between error and disturbance (𝑇𝑒𝑑) should be 
less than a given value of γ as: 

║𝑇𝑒𝑑(𝑠) ║
∞

 ˂ 𝛾                         (44) 

 

𝑑 tries to maximize the cost function Jwhile the control 

signal 𝑢𝑜tries to minimize it. The physical meaning of 
the relation given above competes to each other within 

infimum (𝑖𝑛𝑓) and supremum (𝑠𝑢𝑝). This problem of 

𝑖𝑛𝑓 − 𝑠𝑢𝑝 optimization can be written as [16]:      

        
  𝑖𝑛𝑓

      𝑢𝑜

  𝑠𝑢𝑝
𝑑

𝐽(𝑢𝑜, 𝑑) ˂ ∞                          (45)  

and 

𝐽(𝑒, 𝑑) = ∫ (𝑒𝑇𝑒 − 𝛾2𝑑𝑇𝑑)𝑑𝑡
∞

0
     (46) 

 

assume that 𝑑 and 𝑢𝑜have the following structures: 

𝑑 = 𝐾𝑑  𝑥                                    (47) 
and 

𝑢𝑜 = − 𝐾∞ 𝑥                              (48) 
 

where 𝐾𝑑 and 𝐾∞ represent the feedback gains for 
disturbance and controller. Substituting eq. (47) and eq. 
(48) in eq. (42), yields: 

𝑒 =  (𝐶1 − 𝐷11 𝐾∞ ) 𝑥                  (49) 
therefore 

𝑒𝑇𝑒  =  𝑥𝑇(𝐶1
𝑇𝐶1 + 𝐾∞

𝑇 𝐾∞ ) 𝑥       (50) 
and 

𝑑𝑇𝑑 = (𝐾𝑑  𝑥)𝑇(𝐾𝑑  𝑥) = 𝑥𝑇 (𝐾𝑑
𝑇𝐾𝑑  ) 𝑥  (51) 

 
Substituting eq. (50) and eq. (51) in eq. (45), gives: 

 𝐽(𝑢𝑜, 𝑑) = ∫ 𝑥𝑇( 𝐶1
𝑇𝐶1 + 𝐾∞

𝑇 𝐾∞  −  𝛾2𝐾𝑑
𝑇𝐾𝑑)𝑥 𝑑𝑡

∞

0
 

(52) 
and substituting eq. (47) and eq. (48) in eq. (41), yields: 

�̇� = (𝐴 − 𝐵𝐾∞ + 𝐵𝐾𝑑)𝑥                  (53) 
   where 

𝑮 

𝑲∞ 

𝑑 

𝑦 = 𝑥 𝑢𝑜 

𝑒 
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𝐾∞ = 𝐵𝑇𝑃1, 𝐾𝑑 =  
1

𝛾2 𝐵𝑇𝑃1                  (54) 

                                                                              
The Riccati equation required to solve this optimal 
problem is: 

𝑃1𝐴 + 𝐴𝑇𝑃1 + 𝑄1 − 𝑃1𝐵 (𝐼 −
1

𝛾2) 𝐵𝑇  𝑃1 = 0   (55) 

 

where 𝑃1 is a positive semi-definite symmetric matrix , 

and  𝑄1 = 𝐶1
𝑇𝐶1. By trial and error 𝑄1 matrix is 

selected as: 

  𝑄1 = [

400 0 0 0
0 300 0 0
0 0 10 0
0 0 0 10

], 

 𝐶1 = [

20 0 0 0
0 17.3205 0 0
0 0 3.1633 0
0 0 0 3.1633

]    (56) 

 

The values of 𝑃1, 𝐾𝑐 and 𝐾𝑑 of the system are: 

𝑃1=[

71.1377  2.3911 1.3238 0.4643
2.3911 56.3147 0.3972  0.2880
1.3238  0.3972  0.2491 0.0888
 0.4643  0.2880  0.0888 0.0596

], 

 
𝐾∞

=  [
32.9699  −0.4319  6.1050 0.2348
−0.4211 29.1696 0.1993  5.5801

], 

𝐾𝑑=[
21.7925  −0.2855 4.0353 0.1552

−0.2784    19.2806 0.1318 3.6883
]   (57)   

  

 By trial and error  𝛾 is selected to be: 

𝛾 = 1.23            (58) 
 
To compute the discontinue controller, eq. (48) is 
substituted in eq. (15) to give: 

  �̇� = (𝐴 − 𝐵𝐾∞)𝑥 + 𝐵𝑢𝑠 + 𝐵{(𝐴𝛿 −  𝐵𝛿  𝐾∞) 𝑥 +
 𝐵𝛿  𝑢𝑠 + 𝛿}                                                       (59)  
In the reaching phase, assuming that the closed-loop 
system has no finite-escape time, the switching surface 
is guarantee reached in finite time by control law 
despite the disturbance or uncertainty. The sliding 
motion is completely independent of the uncertainty 

[20]. For human swing leg system, the suitable  𝑢𝑠  is 
represented as a unit control signal. This leads to what 
is called "unity sliding mode control". For HSMC, 

 𝑢𝑠 is  
                            

𝑢𝑠 = −𝜎(‖𝑥‖)
𝐵𝑇∇𝑉

‖𝐵𝑇∇𝑉‖
                             (60) 

  for SMC, 𝑢𝑠 is: 

𝑢𝑠 = −(𝐹𝐵)−1𝜎𝑆𝑀𝐶(‖𝑥‖)
𝐵𝑇𝛻𝑉

‖𝐵𝑇𝛻𝑉‖
            (61) 

 
The  Lyapunov function with a positive definite matrix 

𝑃 is: 
𝑉 = 𝑥𝑇 𝑃𝑥 = 𝑆𝑇𝑆 = 𝑥𝑇𝐹𝑇𝐹𝑥             (62) 

where 𝑃 = 𝐹𝑇𝐹, differentiating 𝑉 with respect to time, 

such that �̇� < 0, ∀𝑥 ≠ 0: 

   �̇� = 𝛻𝑉𝑇�̇� = 2𝑆𝑇�̇� = 2𝑥𝑇𝐹𝑇𝐹�̇�          (63) 
 

where 𝛻𝑉𝑇 = 2𝑥𝑇𝐹𝑇𝐹 = 2𝑥𝑇𝑃, then substituting eq. 

(59) in eq. (63), yields: 

�̇� = 𝛻𝑉𝑇(𝐴 − 𝐵𝐾∞)𝑥 + 𝛻𝑉𝑇𝐵 𝑢𝑠 + 𝛻𝑉𝑇𝐵((𝐴𝛿 −

 𝐵𝛿𝐾∞)𝑥 +  𝐵𝛿  𝑢𝑠 + 𝛿)                           (64) 

where  

𝛻𝑉𝑇(𝐴 − 𝐵𝐾∞)𝑥 = 2𝑥𝑇𝑃(𝐴 − 𝐵𝐾∞)𝑥 =
−𝑥𝑇𝑄𝐻𝑆𝑀𝐶 𝑥 ≤ 0            (65) 
 
where 

𝑃 = [

0.7248 −1.7103 0.7248 −1.7103
−1.7103 4.3649 −1.7103 4.3649
0.7248 −1.7103 0.7248 −1.7103

−1.7103 4.3649 −1.7103 4.3649

], 

𝑄𝐻𝑆𝑀𝐶 =

104 [

1.0608 −2.2816 0.1733 0.4246
−2.6606 5.7658 −0.4342 1.0731
1.0608 −2.2816 0.1733 −1.4246

−2.6606 5.7658 −0.4342 1.0731

]  

(66) 

the Aδ ,  Bδ and δ are bounded, so 

 ‖(𝐴𝛿 −  𝐵𝛿𝐾∞)‖ ≤ 𝛼,‖ 𝐵𝛿  ‖ ≤ 𝛽, ‖𝛿‖ ≤ 𝜀     (67) 
and 

‖(𝐴𝛿 −  𝐵𝛿𝐾∞)𝑥 +  𝐵𝛿  𝑢𝑠 + 𝛿‖ ≤ 𝛼‖𝑥‖ + 𝛽𝜎(‖𝑥‖) + 𝜀 
(68) 

where 𝛼, 𝛽 and ε are positive constant, substituting eq. 
(65), eq. (67) and eq. (68) in eq. (64), yields: 

�̇� ≤ −𝑥𝑇 𝑄𝐻𝑆𝑀𝐶 𝑥 − 𝜎(‖𝑥‖)‖𝐵𝑇𝛻𝑉‖ +
‖𝐵𝑇𝛻𝑉‖{𝛼‖𝑥‖ + 𝛽𝜎(‖𝑥‖) + 𝜀} ≤
−‖𝐵𝑇𝛻𝑉‖{𝜎(‖𝑥‖)(1 − 𝛽) − 𝛼‖𝑥‖ − 𝜀} ≤ 0       (69)  

where  {𝜎(‖𝑥‖)(1 − 𝛽) − 𝛼‖𝑥‖ − 𝜀} ≥ 0, so that 

𝜎(‖𝑥‖) =
1

1−𝛽
{𝛼‖𝑥‖ + 𝑘 + 𝜀}                     (70) 

 

where 𝑘 > 0 is scalar gain to replace the inequality 
from control equation. 

 Let 𝑘 = 0.1, so that 𝛼 = 8.3988, 𝛽 = 0.2487, 𝜀 =
0.1414, 𝜎(‖𝑥‖) =5.75                 (71)  
For SMC, to compute the discontinues controller, eq. 
(65) becomes: 
 

�̇� = 𝛻𝑉𝑇{(𝐴 − 𝐵(𝐹𝐵)−1𝐹𝐴 )𝑥 + 𝐵 𝑢𝑠 + 𝐵((𝐴𝛿 −

 𝐵𝛿(𝐹𝐵)−1𝐹𝐴 )𝑥 +  𝐵𝛿  𝑢𝑠 + 𝛿)} = 𝛻𝑉𝑇(𝐴 −

𝐵(𝐹𝐵)−1𝐹𝐴 )𝑥 + 𝛻𝑉𝑇𝐵 𝑢𝑠 + 𝛻𝑉𝑇𝐵((𝐴𝛿 −

 𝐵𝛿(𝐹𝐵)−1𝐹𝐴 )𝑥 +  𝐵𝛿  𝑢𝑠 + 𝛿)   (72) 

Let 

𝛻𝑉𝑇(𝐴 − 𝐵(𝐹𝐵)−1𝐹𝐴 )𝑥 = 2𝑥𝑇𝑃(𝐴 −
𝐵(𝐹𝐵)−1𝐹𝐴 ) = −𝑥𝑇𝑄𝑆𝑀𝐶𝑥 ≤ 0         (73) 

where 𝑄𝑆𝑀𝐶 = 2𝑃(𝐴 − 𝐵(𝐹𝐵)−1𝐹𝐴 ) equals to: 
 

𝑄𝑆𝑀𝐶 = [

0.0931 −0.0703 0.0007 0.0016
−0.2267 0.1800 −0.0026 −0.0044
0.0931 −0.0703 0.0009 0.0016

−0.2267 0.1800 −0.0026 −0.0026

] 

(74) 

𝐴𝛿 ,  𝐵𝛿  and 𝛿 are bounded as: 

 ‖(𝐴𝛿 −  𝐵𝛿(𝐹𝐵)−1𝐹𝐴 )‖ ≤ 𝛼𝑆𝑀𝐶 , ‖ 𝐵𝛿  ‖ ≤ 𝛽, ‖𝛿‖ ≤ 𝜀 
       (75) 
and 

‖(𝐴𝛿 −  𝐵𝛿(𝐹𝐵)−1𝐹𝐴 )𝑥 + 𝐵𝛿  𝑢𝑠 + 𝛿‖ ≤
𝛼𝑆𝑀𝐶‖𝑥‖ + 𝛽𝜎𝑆𝑀𝐶(‖𝑥‖) + 𝜀                         (76) 

where αSMC, β and ε are positive constants and ‖us‖ ≤
σSMC(‖x‖). 
  Substituting eq. (73), eq. (75) and eq. (76) in eq. (72), 
yields: 
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�̇� ≤ −𝑥𝑇 𝑄𝑆𝑀𝐶 𝑥 − 𝜎𝑆𝑀𝐶(‖𝑥‖)‖𝐵𝑇𝛻𝑉‖ +
‖𝐵𝑇𝛻𝑉‖{𝛼𝑆𝑀𝐶‖𝑥‖ + 𝛽𝜎𝑆𝑀𝐶(‖𝑥‖) + 𝜀} ≤
−‖𝐵𝑇𝛻𝑉‖{𝜎𝑆𝑀𝐶(‖𝑥‖)(1 − 𝛽) − 𝛼𝑆𝑀𝐶‖𝑥‖ − 𝜀} ≤ 0   (77)  
 

the {𝜎𝑆𝑀𝐶(‖𝑥‖)(1 − 𝛽) − 𝛼𝑆𝑀𝐶‖𝑥‖ − 𝜀} ≥ 0, so that 

          𝜎𝑆𝑀𝐶(‖𝑥‖) =
1

1−𝛽
{𝛼𝑆𝑀𝐶‖𝑥‖ + 𝑘 + 𝜀}  (78) 

 

Let 𝑘 = 0.1, and then  𝛼𝑆𝑀𝐶 = 18.675, 𝛽 = 0.2487, 

𝜀 =   0.1414, 𝜎𝑆𝑀𝐶(‖𝑥‖) = 50.72 , 

(𝐹𝐵)−1𝜎𝑆𝑀𝐶(‖𝑥‖) = [
0.0928 0.0363
0.0363 0.0154

]                    

so that 

�̇� ≤ −𝑘‖𝐵𝑇𝛻𝑉‖, ∀‖𝑥‖ ≠ 0                     (79) 
 

Eq. (79) implies that in a finite time, the trajectory 
reaches the sliding surface and remains on the sliding 
surface for all future time. Note that the reaching time 

is related to the magnitude of the gain 𝜎𝑆𝑀𝐶(‖𝑥‖) for 

SMC or 𝜎(‖𝑥‖) for HSMC directly, and the unit vector 

term 
𝐵𝑇𝛻𝑉

‖𝐵𝑇𝛻𝑉‖
 of the control law is effective on the finite 

reaching time [15, 20]. The SMC law for the system 
dynamics in eq. (19) is: 

   𝑢 = −(𝐹𝐵)−1{𝐹𝐴 𝑥 + 𝜎𝑆𝑀𝐶(‖𝑥‖)
𝐵𝑇𝛻𝑉

‖𝐵𝑇𝛻𝑉‖
}    (80) 

and for HSMC is: 

     𝑢 = −𝐾∞ 𝑥 − 𝜎(‖𝑥‖)
𝐵𝑇∇𝑉

‖𝐵𝑇∇𝑉‖
                            (81) 

 
The SMC has chattering problem, which is a very 

high frequency oscillation of the sliding variable around 
the sliding manifold. The chattering is undesirable for 
the real systems and actuator. Many approaches have 
been projected to overcome the chattering 
phenomenon. In this work, to eliminate the chattering 

phenomena a small positive value (𝜇) is added to 
denominator of the unit vector to approximate the 

discontinuous controller 𝑢𝑠 as [20]: 
𝐵𝑇∇𝑉

‖𝐵𝑇∇𝑉‖
≈

𝐵𝑇∇𝑉

‖𝐵𝑇∇𝑉‖+𝜇
                           (82) 

where 𝜇 is a positive value. For 𝑆 ≠ 0, it can be 

observed that point wise, when μ approaches to 0 then: 

𝑙𝑖𝑚
𝜇→0

𝐵𝑇𝛻𝑉

‖𝐵𝑇𝛻𝑉‖+𝜇
=

𝐵𝑇𝛻𝑉

‖𝐵𝑇𝛻𝑉‖
                         (83) 

The control law for SMC becomes          

𝑢 = 𝑢𝑜  − (𝐹𝐵)−1𝜎𝑆𝑀𝐶(‖𝑥‖)
𝐵𝑇𝛻𝑉

‖𝐵𝑇𝛻𝑉‖+𝜇
      (84) 

and the control law for HSMC becomes           

𝑢 = 𝑢𝑜  − 𝜎𝐻𝑆𝑀𝐶(‖𝑥‖)
𝐵𝑇𝛻𝑉

‖𝐵𝑇𝛻𝑉‖+𝜇
                (85) 

 

In this work, the suitable value of 𝜇 is selected by 

trial and error to be 0.2 for the full state feedback SMC 

and  0.1 for the full state feedback HSMC. These 
selected values for both controllers made the sliding 
surface and control action very smooth trajectories. 

 

4. Results and Discussion   
Fig.4 illustrate the behavior of the human swing 

leg system without controller and the system's 

eigenvalues are {0.0463 ±  5.4358i, -0.0643 ±
 3.6555i}. It means that the system is unstable because 
it has roots in the right hand side of s-plane. That is, the 

design of a suitable controller to stabilize the system 
and achieve the desirable specifications is required.   

 

 
Figure (4): Time response of human swing leg system 
for hip and knee joints. 
 

A comparison among the three designed controllers 
to specify the best robust controller for the system 
depending on the time response specifications, the 
coupling effect the control action, and the robustness is 
presented.  

Fig.5 shows the tracking case of the nonlinear 
human swing leg system with H-infinity controller by 
the Simulink MATLAB program. 

Fig.6 represents the Simulink diagram in MATLAB 
for the nonlinear human swing leg system which can 
use it for full state feedback SMC and HSMC controller 
with necessary modification.  

 

 
Figure (5): Simulink diagram of the nonlinear human 
swing leg system with H-infinity controller. 
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Figure (6): Simulink diagram of for the nonlinear 

human swing leg system SMC or HSMC controller. 
 

Fig.7 represents the time response of angular 
position and control actions for hip and knee joints for 
the system using the three proposed controllers with 

initial conditions {30o, 10o, (0.3, 0.25) rad/sec}.  The 
state trajectories obtained using HSMC approaches the 
equilibrium state faster than using H-infinity or SMC 
approaches. Also, HSMC has given better performance 
rather than if only one of them is used  with Low 
control effort. 

 
 (a) angular position for hip and knee respectively. 

 

(b) control action for hip and knee respectively. 
Figure (7): The states trajectories of the nonlinear 
human swing leg system using H-infinity controller, 
SMC and HSMC. 
 
For tracking, assume the desired trajectory that the 
system will be follow is described as: 
 

𝜃 ℎ𝑖𝑝 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 4 𝑠𝑖𝑛 0.5𝑡 + 3 𝑠𝑖𝑛 𝑡 + 𝑠𝑖𝑛 1.5𝑡 + 20,        

𝜃 𝑘𝑛𝑒𝑒 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 = 0.5 × 𝜃 ℎ𝑖𝑝 𝑑𝑒𝑠𝑖𝑟𝑒𝑑            (86) 

 
Fig.8 represents the time response of angular positions 
and control actions for hip and knee joints of the 
system using the three proposed controllers for specific 
trajectory. It can be noticed that HSMC is better and 
faster to follow the desired trajectory than H-infinity or 
SMC controller with Low control effort. 
 . 

 

 
(a) angular position for hip and knee respectively. 

 

 
(b) control action for hip and knee respectively. 
Figure (8): Tracking properties for the nonlinear 
human swing leg system using H-infinity controller, 
SMC and HSMC. 
 

Fig.9 represents states trajectories of nonlinear 
system when applying external disturbance for hip and 
knee joints to show the ability of the three proposed 
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controllers to overcome external disturbance. The 
disturbance signal which applied on the system is about 

10% from the desired trajectory and it will be applied 

at specific time period (i.e. 𝑡𝑙𝑜𝑤, 𝑡ℎ𝑖𝑔ℎ). The disturbance 

equation describes as: 
 
𝜃 ℎ𝑖𝑝 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 =

{

0 0 ≤ 𝑡 < 𝑡𝑙𝑜𝑤

0.4 𝑠𝑖𝑛 0.5𝑡 + 0.3 𝑠𝑖𝑛 𝑡 + 0.1 𝑠𝑖𝑛 1.5𝑡 + 2 𝑡𝑙𝑜𝑤 ≤ 𝑡 ≤ 𝑡ℎ𝑖𝑔ℎ

0 𝑡 > 𝑡ℎ𝑖𝑔ℎ

},  

 

𝜃 𝑘𝑛𝑒𝑒 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒 = 0.5 × 𝜃 ℎ𝑖𝑝 𝑑𝑖𝑠𝑡𝑢𝑟𝑏𝑎𝑛𝑐𝑒    (87) 

 
It is noticed that SMC and HSMC can overcome the 
external disturbance better than H-infinity with Low 
control effort. 
   

 

 
(a) angular position for hip and knee respectively. 

 

 
(b) control action for hip and knee respectively. 

Figure (9): Disturbance rejection proprieties on state 
trajectories of the nonlinear human swing leg system 
using H-infinity controller, SMC and HSMC. 
 

Fig.10 shows the system position trajectories of the 

system with a perturbation of ±10% in parameters of 
the system. It is apparent that the full state feedback H-
infinity controller and SMC can effectively compensate 
the system parameters perturbation without eliminating 
the steady state error. The HSMC can effectively 
compensate the system parameters perturbation and 

achieve the required robustness for the system with a 
desirable time response better than H-infinity and SMC 
when used separately. 

 

 
(a) H-infinity for hip and knee position respectively. 

 

 
(b) SMC for hip and knee position respectively. 

 

 
(c) HSMC for hip and knee position respectively. 

Figure (10): Time response of the nonlinear system 

with ±10% perturbation in system parameters. 
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Fig.11 represents the states trajectories of nonlinear 
system when applying step inputs for hip and knee 
joints to show the ability of the three proposed 
controllers to overcome the cross coupling  problem. It 
is noticed that H-infinity and HSMC can overcome this 
problem better than SMC. The trajectories of state 
using HSMC approaches to the steady state faster than 
the trajectories of state obtained using H-infinity or 
SMC approaches.  

 
(a) the desired hip at 80oand the desired knee at 30o. 

  

 
(b) the desired hip at 80oand the desired knee at 0o. 

 

 
(c) the desired hip at 0oand the desired knee at 30o. 

Figure (11): The cross coupling properties of the 
nonlinear human swing leg system using H-infinity 
controller, SMC and HSMC. 

 
From Fig.9 can noticed that, under effect of H-

infinity controller, the settling time 𝑡𝑠 = 1.1 sec with 

steady state error 𝑒𝑠𝑠 = −0.32𝑜 for hip joint and 𝑡𝑠 =
1.3 sec with 𝑒𝑠𝑠 = −0.24𝑜 for knee joint.   In SMC, the 

𝑡𝑠 = 3.3 sec with 𝑒𝑠𝑠 = 0.02𝑜 for hip joint and 𝑡𝑠 =
3.1 sec with 𝑒𝑠𝑠 = 0.04𝑜 for knee joint.   In HSMC, the 

𝑡𝑠 = 0.85 sec with 𝑒𝑠𝑠 = 0.01𝑜 for hip joint and 𝑡𝑠 =
0.75 sec with 𝑒𝑠𝑠 = 0.02𝑜 for knee joint.  So that, 
HSMC has given better performance than if only one 
of them is used. 

 

5. Conclusions 
In this paper, H-infinity, SMC and HSMC were 
proposed to achieve trajectory tracking and 
stabilization of the uncertain and nonlinear human 
swing leg system. The results showed that the 
effectiveness and the applicability of the proposed 
controller. The design of the robust control using H-
infinity and SMC for this nonlinear and uncertain 
systems was necessary. Although the H-infinity 
controller improves the transient response of the 
system and compensates the cross coupling effect, 
there was still error.  The SMC can effectively 
attenuates the error but the resulting transient response 
was not desirable in addition to the high effect of the 
cross coupling. The design using the HSMC was very 
efficient and it has given a response better than if only 
one of them was used. The superiority of the HSMC 
was because it can achieve the design requirements that 
arise from both H-infinity and SMC simultaneously. 
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