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Swing Leg System

Hazem 1. Ali', Azhar J. Abdulridha®™

Abstract

In this paper, the H-infinity Sliding Mode Control (HSMC) is designed
to produce a new dynamic output feedback controller for trajectory
tracking of the nonlinear human swing leg system. The human swing leg
system represents the support of human leg or the humanoid robot leg which is
usually modeled as a double pendulum. The thigh and shank of a human
leg is represented by two pendulum links and the hip joint will connect the
upper body to the thigh and the knee joint will connect the thigh to the
shank. The external torques (servo motors) are applied at the hip and knee
joints to move the muscles of thigh and shank. The results show that the
HSMC can robustly stabilize the system and achieve a desirable time
response specification better than if only H-infinity or SMC is used. This
controller achieves the following specifications: tg = 0.85 ser, egg = 0.01°
for hip joint and tg = 0.75 ser, €55 = 0.02° for knee joint.

Keywords: Human Swing Leg System, Full State Feedback Controller,
H-infinity, Sliding Mode Control (SMC), Uncertain System.
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1. Introduction

The ability of human to move from one place to
another is called Human movement. Walking, jogging,
and running gaits are considered the parts of Human
movement. Walking is one of the main gaits of
movement and happens more frequently than the other
ones [1]. Due to neurological injuries, such as spinal
cord injury and stroke, which result in motor-
incomplete gait; there are a vast number of people who
lose their walking ability [2]. The swing leg system is
very important; therefore, many researches have been
done to control this system using different control
approaches. Ono et al. [3] and Huang et al. [4],
designed P controller for human swing leg system and
the lost energy in joint self-impact stopper was

obtained. A torque has been applied to the hip joint to
restore the lost energy. Dallali et al. [5], presented a
comparison between PID and Linear Quadratic
Regulator (LQR) controllers. A better robustness was
obtained from the LQR controller. The test was done
on the robot leg from —11.5% to 11.5° and obtained
control action about30 N.m. Gregg et al. [0],
implemented virtual constraints that unify the stance
period, coordinate ankle and knee control on a
powered prosthetic leg. To simulate the torque limit of
the experimental prosthesis, the saturate prosthesis
torques at 80 N.m. Bazargan-Lari et al. [7], proposed a
nonlinear intelligent controller using Adaptive Neural
Network control for human swing leg at hip and knee
joints. The angular velocity for the joints was obtained
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with maximum etror of about 0.15% for the hip joint
and 0.35% for the knee joint.

The H-infinity and Sliding Mode Control (SMC)
techniques are used in the control theory to achieve
stabilization and robust performance. The advantages
of the H-infinity method over classical control methods
which are applicable to problems with cross-coupling
between  channels in  multivariable  systems.
Disadvantages of this method need a high level of
mathematical understanding to apply it successfully and
a reasonably good model of the system to be controlled
[8]. In the SMC, the sliding surface is chosen to force
the system state trajectory to move along it. The sliding
surface is always chosen in such a way that led a control
law guarantees to be stable [9]. SMC has been applied
for uncertain systems, stochastic systems, time delay
systems, and switched hybrid systems [10].

In this work, H-infinity, Sliding Mode Control and H-
infinity Sliding Mode Control are the proposed
controllers for the system. The main goal is to design
the H-infinity Sliding Mode controller to stabilize the
human swing leg system and achieve a desirable
tracking.

2. System Mathematical Model

In human and humanoids, the motion of the hip
and knee is achieved in the swing leg system while the
ankle contribution can be neglected. The system is
modeled as double pendulum with the thigh and shank
represented as two links. The unconstrained double
pendulum is shown in Fig.1. In this figure, the masses
of thigh and shank are m,,m, respectively. The
lengths of thigh and shank are 1y, I, respectively. The
hip and knee rotation angles are ¢ and 0> respectively.
The applied external torques are 71 and 7 to move the
thigh and shank links [7, 11, 12].

Hip Jome
| \I'hu;h

Knee Jomt

TRILFI &Shnnk

“A

Figure (1): Schematics human swing leg [7].

The dynamic equations of the system using Lagrange’s
method can be represented by [7]:

(my+3my) 126
1

91 + l mzlllzéz COS(Gl - 92) +

b g s i
) .

% m, 130, +§ m,l; 1,6, cos(6; —
62) +§ mzlllzélz Sin(@l —

)

g lisinf; =14

92)+%m2g l,sinf, =1,

From eq. (1) and eq. (2), 61 and 8;ate [11, 12]:
6, =
Ky (T1-Kz 03 sin(8,—0,)—K3 sin 01) —Kz cos(81—0,)(t2+K, 0% sin(8,—0,)—Ks sin 6,)
(K1K4—K3 cos(01-62)2)
©)

Ky (T2+Kz 0% sin(8,—02)—Ks sin 0,)—K, cos(01-6,)(11—K, 03 sin(61-6,)—Ks sin 0;)

0,= (K1K4—K% cos(61-62)?)
+4 Ll

where K, = Zmatdms) . m2) 2 K mz 2 Ks =

(my+2my) _ my

(mma) g1, K, = le Ks = 7912

Assume the state variables are [11]:

X1 = 61: angular position of the upper link.

X, = 0;: angular position of the lower link.

X3 = 91: angular velocity of the upper link.
X, = By angular velocity of the lower link.
so that

X = X3 ©)
Xy = Xy ©)
X3 =
Ka(t1-Kp X sin(x1—x)=Ks sin(x1)) =Kz cos (1 —x2) (T2 +Kz 13 sin(xs—xz) =K sin(x2))
(K1 K4—K% cos(x1—x2)2)
)

Xy =
K1 (12+K2 x2 sin(xy—x5)—Ks Sin(xz))—Kz cos(xl—xz)(‘rl—l(z x2 sin(xq—x2)—K3 sin(xl))
(K1 K4=K3 cos(x1-x2)?)

8
Byg l)inearizing eq. (5) to eq. (8) using Jacobeans’ method
with the following initial condition: (681, 8;) = (
30°,10°) , (8,, 6,) = (0.3, 0.25) rad/sec , with( 1y, 75) =
(0503) Nw , and the resultng state space
representation for the system is:
x(t) = Ax(t) + Bu(t) ©)
y() = Cx(t) + Du(t) (10
whete A, B, C and D are obtained as:
0 1 0
0 0 1
—18. 9615 2.8818 —0.2155 -0.1274
20.2204 —23.9035 0.6116 0.1796
B = 0
’ 49.2616 —69.4362 |
1—68.4%620 197.04—0660
c=lo 1 o of-P=lo of v

The parameters of human swing leg system are given in
Table 1.

Table (1): The parameters of human swing leg model

[7,13].
parameter value unit
) 0.1 kg
h b 0.55 m

Consider the system with uncertainty and external
disturbance with matching condition is described as:

%= (A+AA)x+ B+ AB)u+d (12)
wherex € R", A and AAe€R™™" B and 4B €
R™™ and u € R™.The matrices AA and 4B represent
the uncertainties in the matrices A and B respectively
and d refers to external disturbance. Assume the
perturbations are about £10% of system parameters

Z’.é’.ml, mz = 0.1(1 i 10%) and ll’ lz = 0.55(1 i

S



NJES 23(2)117-126, 2020
Ali & Abdulridha

g

10%). Hence, 44, AB and d

condition, where

satisfy matching

AA=BAs,AB=BBsandd=B&§ (13
and
0 0 00
_ 0 0 00
A4=1 09504 05114 0 o[
[-1.0465 1.3813 0 0
A = [0.0235 0.0403 0 0
= 10.003 0.0212 0 ob
0 0
_ 0 0
4B =1 _122506 17.2678 |
i 10722587753 —%9.0026
B =700 _o2487) 14
Then substituting eq. (13) in eq. (12), yields:
x=Ax+Bu+B(Asx+ Bsu+4§) (15

The constraints on input torques and output joint
angles for the system are specified as:

—20<71, £20,-20 <71, <20,
-90° < 0, £90° -5° < 6, <150° (106)
3. Controller Design

In this work, H-infinity, Sliding Mode Control and
H-infinity Sliding Mode Control are proposed to
control the system. The SMC is one of the effective
nonlinear robust control methods which has two
phases: the reaching phase and the sliding phase. In the
reaching phase, a reaching control law is applied to lead
the system states to be on the sliding line and the
system is called to be in the sliding mode. When the
system states are on the sliding line, a nominal control
law is applied to lead the system states along the sliding
line to the origin [11, 12, 14]. Fig.2 illustrates the
reaching phase and the sliding surface in the SMC
design.

Faclon g phess

el Sliding phase

rd

50
Figure (2): Two steps of SMC design.

There are two steps to design SMC; the first step is
selecting the sliding surface, and the second step is
designing the control input to force the system
trajectory toward the sliding surface [15]. If a system
has » inputs, there are m hyperplanes [16]. For the
human swing leg system which has two inputs so there
are two hyperplanes [11]. These hyperplanes are
defined as [10]:
S(t) = Fx(t) 17)

where F is mXn matrix which represent the gain to
form sliding surface. Differentiating eq. (17) and
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substituting eq. (9) in the resulting equation, yields [11,
17]:

S = F(Ax + Bu) (18)
The sliding mode control law is:
uU=1u,+ug (19)
where U, is the nominal control and ug is

discontinuous control input if the proposed controller
is Sliding Mode Control only, but u, will be designed
based on He-infinity controller if the proposed
controller is H-infinity Sliding Mode Control.
The vector S(t) = 0 represents the intersection of all
m sliding hyperplanes passing through the origin of the
state space. The F matrix is computed by minimizing a
quadratic objective function involving the state vector
and the effective input, that is, by solving a linear
quadratic (LQ) problem. This approach is called the
Optimal Sliding Mode controller where the objective
function to be minimized is [16]:

J=fyGTexa 20)
For the LQ control, it is necessary to have the input
term in the quadratic objective function and the input
term is not presented in the objective function in eq.
(20), and the constraints are that the system is on the
intersection on  sliding hyperplanes. The F matrix is
not specified a priori and will come out as a solution to
the problem. Using the similarity transformation [11,
16]:

q= Hx 21)
where q € R™ represents the transformed state.
The H € R™ represents the transformation mattix is:
H=[n B]" (2

where the matrix n € R™ ™™™ the columns of this
matrix are composed of basis vectors of the null space
of BT . Differentiating eq. (21) and substituting eq. (15)
and eq. (21) in the resulting equation, yields:

g=Aq+Bu+AAq+ABu+£ (23)
where
C/Z—HAH_lAc/Z—HBAH_l—[ 0 0 ]
- ’ - 8 T [AA,; AA,,
0 0
’B_HB_[BZ]’ AB = HBBg _[ABZ] and £ =

HBé = B6 (24)

The matrix H has a special structure, the first (n —m)
rows of B turn out to be zeroes and the vector q is
decomposed as follows:
a=[g]

where q; and q, are (n —m) and m-dimensional
vectors, respectively. Partitioning eq. (23), yields:

q1] _ [Aua dq12] 4 [ 0 ]

o =l alla) s ]
0 0 a1 0 0
[Aﬂu Achzz] Clz] * [ABZ] ut [Bz] J
Substituting eq. (21) in eq. (20), yields:

J=1J, @ Q.qat

(26)

@7
where,

Qq=(H") QH™! (28)
If Q = QT > 0, then Qq = QqT = 0; because the signs
of ecigenvalues are preserved under congruence
transformation. Partitioning Q4 to form the partition of

qin eq. (28) as:
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Q=|yr g 29)
Substituting eq. (25) and eq. (29) in eq. (27), yields:
/= fo (‘hT Qrq1 +2q:." N gz + q;" R q3) dt (30)
The matrix Q is selected by trial and error to be:

10 00

01 00
Q=1050010 (31)

0 0 0 1

From the selected Q matrix and according to eq. (28)
and eq. (29) the matrices Qq, Qr, R and N are obtained
as follows:
1 0 0 0
0 1 0 0
0 0 0.0018 0.0007(
(i (()) 0.0007 0.0003
— 105
G N,
k= [71.7 30.4]’N - [0 ol ©2

for S=0, the (n—m) dimensional dynamics is
represented by [16]:
q1 = A1 @1+ A

Q, = 10°

(33)

Then sliding hyperplanes can be described as
S=Kq + q, 34

where the gain matrix K is obtained for the minimum
value of ] is:

K=R (A, P,+NT) (35
where Py matrix is found by the solution of the Riccati
equation:
Py(Ayy — ARTINT ) +(Ayy —
AR NT)'P—PA R Ay P+ Qq —

NR™INT =0 (36)
where
_J1mo0 o0
ko= [0 10] 37
The gain matrix K becomes:
_10.2813 0.8035
K=1_12053 —1.7065 38)

From eq. (17) and eq. (34), F matrix is:
F =[K I,]H, =

0.4926 —0.6944 0.4926 —0.6944] (39)

—0.6944 19705 —0.6944 19705

The selection of matrix F or matrix K is to ensure the
system stability on the intersection of all hyperplanes.
The standard LQ problem provided R > 0 and if Q is
selected to be positive definite, R will be positive
definite [16].

In SMC, u, is conducted to satisfy the desired
specification for nominal system corresponds to S=0,
from eq. (18), eq. (19) becomes:

u, = —(FB) 'FAx (40)

The uncertain parameters in human swing leg system
are represented as a structured parametric uncertainty.
This problem can be defined by the configuration in
Fig.3. The G is the plant and d(t) is the disturbance,
whose effect on the output signal to be minimize. The
input u, (t) is the control signal which used to achieve

120
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this goal. The output e(t) represents the signal to be

minimized and the output y(t) represents the system
states which are available for feedback [17-19].

Figure (3): A full state feedback H-infinity control
structure.

Therefore, the full state feedback H-infinity controller
will be expressed as [8, 16]:

Xx=Ax+Bu,+Bd (41)
e = Cix + Dyu, (42)
y=x (43)

d=(Asx+ Bsu,+9)is the disturbance
matrix, and C;, D; represent the controller design
matrix. The solution of the corresponding H-infinity
problem based on Riccati equation requires the
following assumptions to be satisfied [8, 16]:

e (4, B) is stabilizable, (C;, A) is detectable.

e CID;=0andDI D, =1
The H-infinity norm of the closed-loop transfer

where

function between error and disturbance (Teq) should be
less than a given value of y as:
ITeats) [l <¥ (44
d tries to maximize the cost function Jwhile the control
signal U,tries to minimize it. The physical meaning of
the relation given above competes to each other within
infimum (inf) and supremum (sup). This problem of
inf — sup optimization can be written as [16]:

g d) <0 )
and
J(e,d) = [, (eTe — y2dTd)dt  (46)

assume that d and u,have the following structures:
d=K;x 7
and
U, = — Ko x (48)
where K; and K, represent the feedback gains for
disturbance and controller. Substituting eq. (47) and eq.
(48) in eq. (42), yields:

e = (C,—Dy1 K ) x 49)
therefore

eTe = xT(CTC, +KIK,)x  (50)
and

dTd = (Kg x)T(Kg x) = xT (KTK; ) x (51)

Substituting eq. (50) and eq. (51) in eq. (45), gives:

J@o,d) = ["xT(CTC, + KEKo, — y2K]Ky)x dt

(2)

and substituting eq. (47) and eq. (48) in eq. (41), yields:
% =(A—-BKy, + BKy)x (53)

where
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Ko = B"Py, Ky = BTy (54)
The Riccati equation required to solve this optimal
problem is:

PLA+ATP + Q- PB (I - %) BTP, =0 (55

where P, is a positive semi-definite symmetric matrix ,
and Q; = CI'C,. By trial and error Q; matrix is
selected as:

400 0 0 O
0, = 0 300 0 O
71 o 0 10 of
0 0 0 10
20 0 0 0
0 17.3205 0 0
G= 0 0 3.1633 0 (56)
0 0 0 3.1633

The values of Py, K, and K; of the system are:
71.1377  2.3911 1.3238 0.4643
23911 56.3147 0.3972 0.2880
1.3238 0.3972 0.2491 0.0888)

0.4643 0.2880 0.0888 0.0596
_[32.9699 —0.4319 6.1050 0.2348

Ko™ |_04211 291696 0.1993 5.5801)
_[ 21.7925 —0.2855 4.0353 0.1552] 67

471-0.2784 19.2806 0.1318 3.6883

P1:

By trial and error ¥ is selected to be:
y =123 (58)

To compute the discontinue controller, eq. (48) is
substituted in eq. (15) to give:

% = (A —BKy)x + Bug+ B{(As — Bs K,) x +

Bs ug + 6} (59)
In the reaching phase, assuming that the closed-loop
system has no finite-escape time, the switching surface
is guarantee reached in finite time by control law
despite the disturbance or uncertainty. The sliding
motion is completely independent of the uncertainty
[20]. For human swing leg system, the suitable ug is
represented as a unit control signal. This leads to what
is called "unity sliding mode control". For HSMC,
Uy is

BTvv
Us = _a(llxll) ||BTVV|| (60)
for SMC, ug is:
1 BTwvv
us = =(FB) ™ asuc (IxID) 1y ©1)

The Lyapunov function with a positive definite matrix
P is:

V=x"Px=5"S=x"FTFx (62)
where P = FTF, differentiating V with respect to time,
such that V < 0, Vx # 0:

V=0VTx=2STS = 2x"FTFx (63)
where VVT = 2xTFTF = 2xTP, then substituting eq.
(°%) in eq. (6V), yields:
V=0VT(A—BK,)x+VVT'Bu, + VWTB((As —
BsKw)x + B us + 6) (64)

121
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VVT(A — BK,))x = 2xTP(A — BK,))x =

—x"Qusmcx <0 (65)
whetre
0.7248 —-1.7103 0.7248 —-1.7103
_|—1.7103 43649 —-1.7103 4.3649
~ 107248 —1.7103 0.7248 —1.7103[
—1.7103 4.3649 —-1.7103 4.3649
Qusmc =
1.0608 —2.2816 0.1733 0.4246
10* —2.6606 57658 —0.4342 1.0731
1.0608 —2.2816 0.1733 —1.4246
—2.6606 57658 —0.4342 1.0731
(66)

the As, Bg and 8 are bounded, so

I(As — BsK)Il < all Bs || < B, 16l < ¢
and

I(As — BsKw)x + Bsus + 6| < allx| + Bo(llx]) + €
(68)

whete a, f and € ate positive constant, substituting eq.
(65), eq. (67) and eq. (68) in eq. (64), yields:

V < —xT Qusmcx — o(llxIDIBTVV| +

IBTVV ([{allx|l + Bo(llx|]) + £} <
=IB"vVIl{o(llxIN(1 = B) — allx]| — e} < 0
where {o(||x[)(1 = B) — allx|| — &} = 0, so that
o(llxll) = =5 (allxll + k + &} (70)

67)

69)

whete k > 0 is scalar gain to replace the inequality
from control equation.

Letk = 0.1, so that @ =8.3988, = 0.2487,¢ =
0.1414, o (||x||) =5.75 71)

For SMC, to compute the discontinues controller, eq.
(65) becomes:

V =0VT{(A—B(FB) *FA)x + Bu, + B((4s —
Bs(FB)™'FA)x + Bsus+6)} =VVT(A -
B(FB) *FA)x +VVTBu, + VWTB((As —
Bs(FB)™'FA)x + Bsus+68) (72

Let

VVT(A— B(FB) 'FA)x = 2x"P(A —
B(FB)™'FA) = —xTQsycx < 0 (73)

where Qgye = 2P(A — B(FB)™'FA) equals to:

0.0931 —0.0703 0.0007  0.0016
Qoo = —0.2267 0.1800 —0.0026 —0.0044
SMC =1 0.0931 —0.0703 0.0009  0.0016

—0.2267 0.1800 —0.0026 —0.0026
74

As , Bs and 6 are bounded as:
I(As — Bs(FB) 'FA)Il < asuc, I Bs | < B, ISl < €
75)
and
”(A(g - Bé‘(FB)_lpA )X + Bé‘ Ug + 8” <
asycllx|l + Bosuc(lxID) + & (76)
where Ogyc, B and € are positive constants and ||ug|| <
osmc(IxID.
Substituting eq. (73), eq. (75) and eq. (706) in eq. (72),
yields:



NJES 23(2)117-126, 2020
Ali & Abdulridha

g

V < —xT Qsmex — osuc (IxIDIBTVVI +
IBTVV |[{asucllxll + Bosuc(lxI) + €} <

=BT VVIi{osmc (IxIN(1 = B) — asucllxll —e} < 0 (77)

the {agyc(lxID(1 = B) — asucllxll — €} = 0, so that
1
asuc (x| = g{asmc”x” +k+e} (79)

Letk = 0.1, and then agyc = 18.675, f = 0.2487,

£= 01414, asuc(llxl) = 50.72 ,
B 10,0928 0.0363

(FB) " osucllxll) = [0.0363 0.0154

so that

V < —k||BTVV||, V|lx|l # 0O (79)

Eq. (79) implies that in a finite time, the trajectory
reaches the sliding surface and remains on the sliding
surface for all future time. Note that the reaching time
is related to the magnitude of the gain ggyc(||x]|) for

SMC or o (|[x]]) for HSMC directly, and the unit vector
T
term BV of the control law is effective on the finite
BT wv ]|

reaching time [15, 20]. The SMC law for the system
dynamics in eq. (19) is:
BTwv

u=—(FB)"'{FAx + asmc (IXID gyt (80)
and for HSMC is:
BTwv
u= _Koo X — U(llel) ||BTVV|| (81)

The SMC has chattering problem, which is a very
high frequency oscillation of the sliding variable around
the sliding manifold. The chattering is undesirable for
the real systems and actuator. Many approaches have
been  projected to the  chattering
phenomenon. In this work, to eliminate the chattering

overcome

phenomena a small positive value (@) is added to
denominator of the unit vector to approximate the
discontinuous controller ug as [20]:
BTw  BTwy
IBTov] ™ [BTwv[+u
where p is a positive value. For § # 0, it can be

(82)

observed that point wise, when [ approaches to 0 then:
BTvv BTwv

T = e ®3)
The control law for SMC becomes
_ BTvv
u=u, —(FB) 1USMC(||X||)W 64
and the control law for HSMC becomes
BTvv
u =y = Ouswc (1XID re (85)

In this work, the suitable value of u is selected by
trial and error to be 0.2 for the full state feedback SMC
and 0.1 for the full state feedback HSMC. These
selected values for both controllers made the sliding
surface and control action very smooth trajectories.

4. Results and Discussion

Fig.4 illustrate the behavior of the human swing
leg system without controller and the system's
eigenvalues {0.0463 + 5.4358i, -0.0643 +
3.6555i}. It means that the system is unstable because
it has roots in the right hand side of s-plane. That is, the

are

122

design of a suitable controller to stabilize the system
and achieve the desirable specifications is required.

150 ,-————
s

===Hip joint
== Knee joint

Angular Position (deg)
W
=

Time (sec)
Figure (4): Time response of human swing leg system
for hip and knee joints.

A comparison among the three designed controllers
to specify the best robust controller for the system
depending on the time response specifications, the
coupling effect the control action, and the robustness is
presented.

Fig.5 shows the tracking case of the nonlinear
human swing leg system with H-infinity controller by
the Simulink MATLAB program.

Fig.6 represents the Simulink diagram in MATLAB
for the nonlinear human swing leg system which can
use it for full state feedback SMC and HSMC controller
with necessary modification.
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Figure (5): Simulink diagram of the nonlinear human
swing leg system with H-infinity controller.
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Figure (6): Simulink diagram of for the nonlinear
human swing leg system SMC or HSMC controller.

Fig.7 represents the time response of angular
position and control actions for hip and knee joints for
the system using the three proposed controllers with
initial conditions {30°, 10°, (0.3, 0.25) rad/sec}. The
state trajectories obtained using HSMC approaches the
equilibrium state faster than using H-infinity or SMC
approaches. Also, HSMC has given better performance
rather than if only one of them is used with Low
control effort.
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(b) control action for hip and knee respectively.

Figure (7): The states trajectories of the nonlinear
human swing leg system using H-infinity controller,
SMC and HSMC.

For tracking, assume the desired trajectory that the
system will be follow is described as:

0 hip desirea = 4sin 0.5t + 3 sint + sin 1.5¢ + 20,
6 knee desired — 05x%x6 hip desired (86)

Fig.8 represents the time response of angular positions
and control actions for hip and knee joints of the
system using the three proposed controllers for specific
trajectory. It can be noticed that HSMC is better and
faster to follow the desired trajectory than H-infinity or
SMC controller with Low control effort.
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(b) control action for hip and knee respectively.
Figure (8): Tracking properties for the nonlinear

human swing leg system using H-infinity controller,
SMC and HSMC.

Fig.9 represents states trajectories of nonlinear
system when applying external disturbance for hip and
knee joints to show the ability of the three proposed
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controllers to overcome external disturbance. The
disturbance signal which applied on the system is about
10% from the desired trajectory and it will be applied
at specific time period (i.e. tygw, thign)- The disturbance
equation describes as:

ghip disturbance =
0 0<t<tpw

0.4sin 0.5t + 0.3sint + 0.1sin1.5t + 2
0 t> thign

gknee disturbance = 0.5 x ehip disturbance (87)

It is noticed that SMC and HSMC can overcome the
external disturbance better than H-infinity with Low
control effort.
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(b) control action for hip and knee respectively.
Figure (9): Disturbance rejection proprieties on state
trajectories of the nonlinear human swing leg system
using H-infinity controller, SMC and HSMC.

Fig.10 shows the system position trajectories of the
system with a perturbation of £10% in patameters of
the system. It is appatrent that the full state feedback H-
infinity controller and SMC can effectively compensate
the system parameters perturbation without eliminating
the steady state error. The HSMC can effectively
compensate the system parameters perturbation and

tiow st< thigh )

achieve the required robustness for the system with a
desirable time response better than H-infinity and SMC
when used separately.
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Fig.11 represents the states trajectories of nonlinear
system when applying step inputs for hip and knee
joints to show the ability of the three proposed
controllers to overcome the cross coupling problem. It
is noticed that H-infinity and HSMC can overcome this
problem better than SMC. The trajectories of state
using HSMC approaches to the steady state faster than
the trajectories of state obtained using H-infinity or
SMC approaches.
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(c) the desired hip at 0°and the desired knee at 30°.
Figure (11): The cross coupling properties of the
nonlinear human swing leg system using H-infinity
controller, SMC and HSMC.

From Fig.9 can noticed that, under effect of H-
infinity controller, the settling time tg = 1.1 sec with
steady state etror egs = —0.32° for hip joint and tg =
1.3 sec with egs = —0.24° for knee joint. In SMC, the
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ts = 3.3 sec with egg = 0.02° for hip joint and tg =
3.1 sec with egg = 0.04° for knee joint. In HSMC, the
ts = 0.85 sec with egg = 0.01° for hip joint and tg =
0.75 sec with egg = 0.02° for knee joint. So that,
HSMC has given better performance than if only one
of them is used.

5. Conclusions

In this paper, H-infinity, SMC and HSMC were
proposed to achieve trajectory tracking and
stabilization of the uncertain and nonlinear human
swing leg system. The results showed that the
effectiveness and the applicability of the proposed
controller. The design of the robust control using H-
infinity and SMC for this nonlinear and uncertain
systems necessary. Although the H-infinity
controller improves the transient response of the
system and compensates the cross coupling effect,
there was still error. The SMC can effectively
attenuates the error but the resulting transient response
was not desirable in addition to the high effect of the
cross coupling. The design using the HSMC was very
efficient and it has given a response better than if only
one of them was used. The superiority of the HSMC
was because it can achieve the design requirements that
arise from both H-infinity and SMC simultaneously.

was
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