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Abstract 

This paper proposes robust control for three models of the linear 

inverted pendulum (one mass linear inverted pendulum model, two masses 

linear inverted pendulum model and three masses linear inverted 

pendulum model) which represents the upper, middle and lower body of a 

bipedal walking robot. The bipedal walking robot is built of light-weight 

and hard Aluminum sheets with 2 mm thickness. The minimum phase 

system and non-minimum phase system are studied and investigated for 

inverted pendulum models. The bipedal walking robot is programmed by 

Arduino microcontroller UNO. A MATLAB Simulink system is built to 

embrace the theoretical work. The results showed that one linear inverted 

pendulum is the worst performance, worst noise rejection and the worst 

set point tracking to the zero moment point. But two masses linear 

inverted pendulum models and three masses linear inverted pendulum 

model have a better performance, a better high-frequency noise rejection 

characteristic and better set-point tracking to the zero moment point. 

Keywords: Robust Stability, Control of Inverted Pendulum, Robust Control of 

Bipedal Robot. 

الس يطرة القوية على اس تقرارية روبوت ثنائي الارجل عن طريق نموذج البندول 

 المقلوب 
 أ .د. أ حمد عبدالحسين علي ، عبدالكريمعلي فوزي  

 الخلاصة: 

، تم اقتراح ثلاثة اشكال من البندول المقلوب للس يطرة القوية على اس تقرارية الروبوت ثنائي  البحث في هذا

الارجل )بندول مقلوب ذو كتلة واحدة، بندول مقلوب ذو كتلتين وبندول مقلوب ذو ثلاث كتل( حيث تشير الى  

نائي الارجل من صفائح الالمنيوم المقوى وذو  ء الوسط والجزء السفلي للروبوت. تم بناء الروبوت الث الجزء العلوي، الجز 

ملم. تم دراسة نظام الطور ونظام اللا طور لنماذج البندول المقلوب. تم برمجة الروبوت ثنائي  2فة بسمك كتلة خفي

بينت النتائج ان البندول   ريا بواسطة الماتلاب.تم محاكاة جميع النتائج نظ . UNOالارجل بواسطة المتحكم اردوينو 

بين الانواع الثلاثة من حيث الس يطرة على الضوضاء وسحب الروبوت الى  وب ذو الكتلة الواحدة ال سوأ  منالمقل

نقطة الاتزان المطلوبة. اما بالنس بة للبندول المقلوب ذو كتلتين وذو ثلاث كتل انهما افضل في رفض الضوضاء وسحب  

 لوبة. الروبوت لنقطة الاتزان المط

1. Introduction  
The humanoid or bipedal walking robot is one of 

the hot and fascinating objects of papers by engineers 
and scientists. Several kinds of humanoids are 
obtainable to depend on the functions, morphology, 
movement, and applications. All kinds have dynamic 
models and static models. Most of the researchers 
studied the problem of the stability of the humanoid. 
The humanoid is normally unstable, a considerable 
deal of overwork requires to spend on including that 
the control system backward the brains of the 
locomotion are robust and efficient [1]. When the 
humanoid's center of mass CoM is at all times inside 

the region between the feet on the ground that called 
static balance. Dynamic balance takes place when the 
robot's CoM may be outside the region between the 
feet on the ground. Gait factors are step length, speed, 
the height of leg lift, maximal inclination angle trunk 
sideways and inclination angle of the trunk forward 
direction. There are several methods for dynamic 
balance, which are discussed in many types of research 
such as zero moment point ZMP, inverted pendulum, 
and genetic algorithm. The experiments of ZMP needs 
the knowledge of torque between the robot's ankle and 
foot or kinetic on the bipedal robot body [2]. This 
information can be found by using gyroscope sensors 
in the robot ankle or load cell sensors in the robot's 
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feet. With all dynamic forces and contact forces on the 
robot known, it is possible to calculate ZMP which is 
the dynamic equivalent to the static CoM [3]. They 
designed a foot-mounted ZMP sensor depends on the 
load cell and ZMP data obtained from bipedal robot 
Mari-2 and Mari-1. Also, they compared the ZMP data 
and gait generation between human subjects and 
bipedal robots. Napoleon et al. proposed minimum 
phase system and non-minimum phase system by 
using two masses linear inverted pendulum model 
which represents the upper and lower body of the 
bipedal robot [4]. The design of the controller depends 
on the proposed model using optimal control by 
considering output is confirmed and described using 
simulation. Kemalettin and O. Kurt. suggested a 
generation algorithm based on moving support foot 
ZMP reference and the linear inverted pendulum 
model [5]. This type of generation possesses 
naturalness in that the zero moment point in the 
human walk doesn't stay constant, but it moves 
forward, bottom the supporting foot. K. H. et al. 
investigated an online learning framework to improve 
the robustness of the ZMP depends on the biped 
walking controller [6]. The objective is used for 
learning a feedforward compensative zero moment 
point CZMP trajectory from estimated ZMP errors 
during cyclic motions by using ZMP principles. 
Satoshi Ito et al. considered the balance control of a 
humanoid robot on the sloped ground or under a 
constant external force [7]. The proposed adaptive 
posture changes and realized a control method with 
the feedback of the GRF. Young-Dae Hong. 
proposed a stability control method for a dynamically 
modifiable bipedal walking robot using a CP tracking 
controller [8]. The key idea of this paper to discuss 
robust control of linear inverted pendulum model for 
a bipedal walking robot capable of walking for 
balancing.  

 

2. Theoretical Part 
a) Stability Theory  

In this section, the principles of ZMP are studied.  
Figure (1) shows the phases of foot contact on the 
ground where the supporting point may be either 
bottom the heel (phase I), bottom the foot (phase II) 
and the toes (phase III). Also, the law of the ZMP 
displacement may be discussed as follows: in the 
beginning of phase I the ZMP bottom of the heel; at 
the end of phase I, it jumps to the foot center; at the 
end of phase II it's shifted bottom of the toes; at the 
end of the half-step the ZMP jumps under of the other 
foot which is now being in contact with the ground [9]. 
To calculate ZMP for a bipedal robot, forward 
kinematics hypothesis as follows [10]: 

 
Figure 1: Phases of foot contact on the ground. 

 

• The humanoid robot creates n links. 

• All kinematic assumptions, like velocities, link 
orientation, and position of COM are 
estimated by kinematics principles. 

• The ground is motionless and rigid. 

• The foot can't slide above the floor surface. 

• The joint is actuated. 
Under these assumptions, the first step is to estimate 

mtot of the bipedal robot and 𝑝𝑖: 

m𝑡𝑜𝑡 = ∑ m𝑖
𝑛
𝑖=1                                           (1) 

And the distance from the origin to the CoM; 

𝑝𝐶𝑂𝑀and a graphical explanation are illustrated in 
Figure (2). 

 
Figure 2: Schematic 3-D biped model and point p 

[11]. 
 

ZMP is generally used as balance control and 
standard estimation of the balance of bipedal walking 

robot. P is the linear momentum and 𝐻 is the angular 
momentum concerning the base-frame-origin can be 
stated as:  

P = ∑ 𝑚𝑖 �̇�𝑖
𝑛
𝑖=1                                            (2) 

𝐻 = ∑ {p𝑖 × m𝑖 ṗ + I𝑖 ω𝑖}
𝑛

𝑖=1
                        (3) 

Where ꞷi and Ii are the angular velocity and the inertia 

tensor of the 𝑖-th link respectively w.r.t. the origin: 
For Ii the following equation holds: 

𝐼𝑖 = 𝑅𝑖𝐼𝑖𝑅𝑖
𝑇                                             (4) 

Where 𝑅𝑖 is the rotation matrix of i-th link w.r.t the 
origin connected to their links. 

�̇� and Ṗ are the rate of change of angular and linear 
momentums (being a moment and a force), 
respectively and can be derived as: 

Ṗ = ∑ 𝑚𝑖p̈𝑖
𝑛
𝑖=1                                              (5) 

�̇� = ∑ (𝑝�̇�
𝑛
𝑖=1 × (𝑚𝑖�̇�𝑖) + 𝑝𝑖 × (𝑚𝑖�̈�𝑖) + 𝐼𝑖�̇�𝑖 +

𝜔𝑖 × (𝐼𝑖𝜔𝑖))                                                 (6) 

Where �̇�𝑖 ∗ (𝑚𝑖�̇�𝑖)=0 because �̇�𝑖and (𝑚𝑖�̇�𝑖) are 

parallel (note that (𝑚𝑖�̇�𝑖) is a scalar multiplication 

of (�̇�𝑖), With this information the following holds [11]: 

𝐹𝑝 = −𝐹𝐴 = Ṗ − 𝑚𝑡𝑜𝑡𝑔                           (7) 

𝑀𝑜 = �̇� − 𝑝 × 𝑚𝑡𝑜𝑡𝑔                             (8) 

Where, as said earlier 𝑀𝑜 and 𝐹𝑝 are the moment and 

external forces that characterize how the floor is 

reacting to the humanoid w.r.t. the origin. 𝐹𝐴 is the 
force that the humanoid is acting upon the ground. 

Also, the 𝑀𝑜 is: 

𝑀𝑜 = 𝑝𝑜𝑝 × 𝐹𝑝 + 𝑀𝑝                                    (9) 

Where 𝑝𝑜𝑝 is the vector from the origin to point p and 

𝑀𝑝 is the moment at p. Because 𝑀𝑝 is on the point p, 
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being either ZMP, its 𝑀𝑝= [0 0 𝑀𝑧]. Now, substitute 

eq. (7) and eq. (8) into eq. (9) resulting in: 

𝑀𝑝 = �̇� − 𝑝𝐶𝑜𝑀 × 𝑚𝑡𝑜𝑡𝑔 + (Ṗ − 𝑚𝑡𝑜𝑡𝑔) × 𝑝𝑜𝑝  

(10) 
 

From this, the distance from location of the ZMP 

to the origin 𝑝𝑧𝑚𝑝 = 𝑝𝑜𝑝 = [𝑥𝑍𝑀𝑃 , 𝑦𝑍𝑀𝑃 , 𝑧𝑍𝑀𝑃] can 

be calculated [11]: 

𝑥𝑍𝑀𝑃 =
𝑚𝑡𝑜𝑡𝑔𝑧𝑝𝐶𝑜𝑀𝑥+𝑧𝑍𝑀𝑃�̇�𝑥−�̇�𝑦

𝑚𝑡𝑜𝑡𝑔𝑧+�̇�𝑧
                   (11) 

𝑦𝑍𝑀𝑃 =
𝑚𝑡𝑜𝑡𝑔𝑧𝑝𝐶𝑜𝑀𝑦+𝑧𝑍𝑀𝑃�̇�𝑦−�̇�𝑥

𝑚𝑡𝑜𝑡𝑔𝑧+�̇�𝑧
             (12) 

Where 𝑥𝑍𝑀𝑃 and 𝑦𝑍𝑀𝑃 are the distances from 
ZMP to the base-frame-origin about x-axis and y-axis 

respectively. Remind that 𝑧𝑍𝑀𝑃 is the height of the 
ground. When the plane is placed on the floor 

𝑧𝑍𝑀𝑃becomes zero. 

Huang, et al. hypothesized that 𝑧𝑍𝑀𝑃= 0, and 
described the following equation for deriving the ZMP 
[11]: 

𝑥𝑍𝑀𝑃 =
∑ (𝑚𝑖(𝑝𝑖𝑥(�̈�𝑖𝑧+𝑔𝑧)−𝑝𝑖𝑧(�̈�𝑖𝑥+𝑔𝑥))−𝐼𝑖𝑦𝜔𝑖𝑦)𝑛

𝑖=1

∑ 𝑚𝑖(�̈�𝑖𝑧+𝑔𝑧)𝑛
𝑖=1

  (13) 

𝑦𝑍𝑀𝑃 =
∑ (𝑚𝑖(𝑝𝑖𝑦(�̈�𝑖𝑧+𝑔𝑧)−𝑝𝑖𝑧(�̈�𝑖𝑦+𝑔𝑦))−𝐼𝑖𝑥𝜔𝑖𝑥)𝑛

𝑖=1

∑ 𝑚𝑖(�̈�𝑖𝑧+𝑔𝑧)𝑛
𝑖=1

  (14) 

The only distinction from eq. (11), eq. (12) and 
eq. (13), eq. (14) is that the equations of the rate of 
angular momentum and linear momentum are derived 
in components.   

Also, there is a final model to estimate ZMP and 
so-called Cart-Table model as shown in Figure (3). A 
model of a humanoid, which combined a moving cart 
on a massless table. Its positions (x,z) represents the 
CoM of the humanoid and the cart has mass m.   

The 𝜏 around point 𝑝 can be estimated as: 

𝜏 = −𝑚𝑔(𝑥𝐶𝑜𝑀 − 𝑝) + 𝑚�̈�𝐶𝑂𝑀𝑧𝐶𝑜𝑀          (15) 
 

In the eq. (15), 𝑔 is the acceleration. Now, using 

the ZMP principles (𝜏 = 0) and thus𝑥𝑍𝑀𝑃 = 𝑝, this 
results: 

𝑥𝑍𝑀𝑃 = 𝑝 = 𝑥𝐶𝑜𝑀 −
�̈�𝐶𝑜𝑀

𝑔
𝑧𝐶𝑜𝑀                     (16) 

For the y-direction the derivation is similar, so: 

𝑦𝑍𝑀𝑃 = 𝑦𝐶𝑜𝑀 −
�̈�𝐶𝑜𝑀

𝑔
𝑧𝐶𝑜𝑀                             (17) 

 
Figure 3: Cart-Table model [11]. 

 

b) Robust Control System 
Systems are called robust when the systems have 

adequate variations in performance due to inaccuracies 
or model variations. A robust system appeared the 
required performance while the existence of 
considerable process uncertainty. The classical 

feedback control system is the system structure that 
integrates the potential uncertainties as shown in 
Figure (4).  This system consists of the sensor 

noise 𝑁(𝑠), the disturbance input 𝐷(𝑠), and a transfer 

function 𝐺(𝑠) with parameter changes and potentially 
unmodeled dynamics. The parameter changes and 
unmodeled dynamics may be significant, and for these 
systems, the robust is used to make a design that 
conserves the required performance. A system is said 
to robust when (1) it have low sensitivities, (2) is 
balance over the range of factor changes and (3) the 
performance sustained to meet the properties in the 
presence of a set changes in the system factors [12].  

 
Figure 4: Classical feedback control system. 

 
Robust systems are low sensitivity to effects that 

aren't significant in the design phase and analysis, for 

example, 𝑁(𝑠), 𝐷(𝑠), and unmodeled dynamics. The 
system must be capable to resist these eliminated 
changes when performing the functions for which it 
was designed. 

𝑌

𝐷
(𝑠) = 𝑆(𝑠) =

1

1+𝐺(𝑠)𝐶(𝑠)
                          (18) 

 
And define a complementary sensitivity function 

𝑇(𝑠) = 1 − 𝑆(𝑠) =
𝐺(𝑠)𝐶(𝑠)

1+𝐺(𝑠)𝐶(𝑠)
                 (19) 

 

If 𝑇(𝑠) = 1, there the system has both perfect 
noise acceptance and set-point tracking. However, the 
problem in the frequency domain, it may be 
considered that at low frequencies, complementary 

sensitivity 𝑇(𝑗𝑤) ⟶ 1 (good set-point tracking) and 
the complementary sensitivity at high frequencies must 
be zero to give a good noise rejection. Robust stability 
can be explained in the frequency domain, using the 
Bode diagram. Also, it gives a minimum requirement 
in an environment where there is transfer function 
uncertainty. When the system has a robust 
performance, it should be able to minimize the error 

for the worst plant. For a robust system, 𝑆(𝑠) must be 

a small as possible. The frequency 𝑤𝑛 is a criterion of 
the boundary the region whose balance margin is 
important and between the frequencies regions in 

which the sensitivity is important. Thus, 𝑤𝑛 is properly 
to take into consideration the frequency of external 
disturbance and the extent of modeling error, the 
system expects to have a satisfactory value of 
robustness. The system is sensitive to changes in gain 

𝐾 and the performance of the system might be 
significant probably satisfactory for a variety of gain. 
The design of robust control systems depends on two 
factors: adjusting the controller's factor to make an 
"optimal" system performance and finding the 
structure of the controller. This design process is 
naturally achieved with "hypothesized complete 
knowledge" of the approach. In other words, the 
method is naturally characterized by a linear time-
invariant continuous model [13]. To design a 
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controller, the structure of the controller must be 
chosen, such that the system's response can meet the 
considerable performance standards. One possible 
purpose in the design of a robust control system is that 
the output should instantaneously and exactly 
reproduce its input. Furthermore, the system must be 
adequate on a Bode gain versus frequency diagram 
with a 0-dB gain of zero phase shift and infinite 
bandwidth. In practice, this isn't sustained, since every 
system will contain capacitive and inductive type 
components that conserve energy in some form. 
These interconnections and elements with energy-
dissipative components produce the system's dynamic 
response characteristics. Hence, the systems show 
some inputs aren't reproduced at all while the other 
inputs almost exactly, considering that the system 
bandwidth is less than infinite. Setting the design of 
robust systems in frequency-domain terms, a proper 

compensator 𝐺𝑐(𝑠) must be determined such that the 
closed-loop sensitivity is less than some tolerance 
value. But sensitivity reduction includes finding a 
suitable compensator such that the arbitrarily close to 
the minimal attainable sensitivity or the closed-loop 
sensitivity equals. Also, the gain margin problem is to 
determine a proper controller to obtain some 
prescribed gain margin. So, the gain margin 
maximization includes determining a proper 
compensator to consider the maximal obtainable gain 
margin. The objective of the robust control is to design 
a controller that regulates all plants lying within the 
specified domain of uncertainty. Considerably a 
controller is said to robustly balance the family of 
plants. Robust stability supplied a minimum necessity 
is an environment where there is a transfer function 
unconfirmed. For a control system to have a robust 
performance it must be able to minimize the error for 
the worst plant. The plant has neither zeros nor poles 
in the right half s plane is minimum phase transfer 
functions, whereas that has zeros and/or poles in the 
right half s plane is non-minimum phase transfer 
functions. A system with minimum phase transfer 
functions is called minimum phase systems, whereas 
the system with non-minimum phase transfer 
functions is called non-minimum phase systems. The 
non-minimum phase situations may arise in two 
different ways. One situation may arise in the case 
where a minor loop is unstable. The other is simply 
when a system includes elements or a non-minimum 
phase element. The response of the non-minimum-
phase system is slow because of their incorrect 
behavior at the start of a response [13]. In the most 
practical control system, excessive phase lag should be 
carefully invalid. In designing a system if fast speed 
response is of primary importance, non-minimum 
phase components are not used as shown in Figure 
(5).  

 
Figure 5: (a) Minimum phase system and (b) Non-

minimum phase system. 
 

c) Kinetic of Rigid Body system 
Kinetic of Rigid Body 

In this section, the kinetic of the linear inverted 
pendulum model is analyzed. Figure (6) shows one 
mass inverted pendulum model and the COM of the 
humanoid. The differential equation of the system is 

derived according to Newton's second law (∑𝑀 =
𝐼𝑢). The one mass linear inverted pendulum, where it 

has a single input 𝜃 and single output ZMP 𝑝 SISO 
system. And assumptions for the figure (small moment 

of inertia 𝐼=0) and for controlling the angle 𝜃 is small, 

where (sin 𝜃 ≈ 𝜃 and cos 𝜃 ≈ 1) [4]. Hence, 

𝑚𝑔(𝑝 − 𝑙 𝑠𝑖𝑛𝜃) + 𝑚𝑙�̈�(𝑙) = 0                     (20) 

𝑝 = [𝑙    0] [
𝜃
�̇�
] + [−

𝑙2

𝑔
] 𝑢                               (21) 

The transfer function of the system is: 

𝐺(𝑠) =
𝑔𝑙−𝑙2𝑠2

𝑔𝑠2                                              (22) 

 
Figure 6: One mass inverted pendulum model. 

 
Napoleon, et al., 2002. proposed ZMP feedback 

control using two masses linear inverted pendulum 
model which represents the upper and lower body of 
the bipedal robot as shown in Figure (7). Two 

transfer functions are included: 
𝑝

𝜃1
. And 

𝑝

𝜃2
, (when 

considering input 𝜃1, the input 𝜃2 is zero and vice 
versa is assumed). The input-output transfer function 
of the two masses inverted pendulum is [4]: 

𝐺(𝑠) = [
𝑑1𝑠2+𝑐1

𝑠2    
𝑑2𝑠2+𝑐2

𝑠2 ]                       (23) 

 
For two DOF or double inverted pendulum the 

state space is shown: 

(𝐴      𝐵
𝐶       𝐷

) = {

𝑑

𝑑𝑡
[
𝜃
�̇�
] = [

0 𝐼
0 0

] [
𝜃
�̇�
] + [

0
𝐼
] 𝑢

𝑝 = [𝐶1       0] [
𝜃
�̇�
] + 𝐷𝑢

         (24) 

Where  

𝐶1 = [
(𝑚1 + 𝑚2)𝑙1 + 𝑚2𝑙2

𝑚1 + 𝑚2
    

𝑚2𝑙2
𝑚1 + 𝑚2

] 

𝐷1 = [−
𝑚1𝑙1

2 + 𝑚2(𝑙1 + 𝑙2)
2

(𝑚1 + 𝑚2)𝑔
    −

𝑚2(𝑙1 + 𝑙2)𝑙2
(𝑚1 + 𝑚2)𝑔

] 
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Figure 7: Two masses linear inverted pendulum of 

the bipedal walking robot. 
 

In this work, three masses inverted pendulum 
model is investigated for improving the set-point 
tracking and noise rejection for the bipedal robot as 
shown in Figure (8). Also, the transfer function of the 
three masses inverted pendulum model proposed in 
this work is similar to the two masses inverted 
pendulum model as shown in eq. (23) and eq. (24). 
The difference between the transfer functions of two 
masses linear inverted pendulum model and three 
masses linear inverted pendulum model in the 

matrices 𝐶1 and 𝐷1. Three transfer functions are 

included: 
𝑝

𝜃1
, 

𝑝

𝜃2
 and 

𝑝

𝜃3
   (when considering input 𝜃1, 

the input 𝜃2, and the input 𝜃3 are zero and vice versa 
is assumed). 
Where  
𝐶1

=

[
 
 
 
 
𝑚1𝑙1 + 𝑚2𝑙1+𝑚2𝑙2 + 𝑚3𝑙1 + 𝑚3𝑙2 + 𝑚3𝑙3

𝑚1 + 𝑚2 + 𝑚3

    
𝑚2𝑙2 + 𝑚3𝑙2 + 𝑚3𝑙3

𝑚1 + 𝑚2 + 𝑚3

  

𝑚3𝑙3
𝑚1 + 𝑚2 + 𝑚3 ]

 
 
 
 

 

𝐷1

= [−
𝑚1𝑙1

2 + 𝑚2(𝑙1 + 𝑙2)
2 + 𝑚3(𝑙1 + 𝑙2 + 𝑙3)

2

(𝑚1 + 𝑚2 + 𝑚3)𝑔
    

−
𝑚2(𝑙1 + 𝑙2)𝑙2 + 𝑚3(𝑙2 + 𝑙3)(𝑙1 + 𝑙2 + 𝑙3)

(𝑚1 + 𝑚2 + 𝑚3)𝑔
    

−  
𝑚3(𝑙1 + 𝑙2 + 𝑙3)𝑙3
(𝑚1 + 𝑚2 + 𝑚3)𝑔

] 

 

 
Figure 8: Three masses linear inverted pendulum 

model of the bipedal walking robot. 
 

3. Experimental Part 
The design of the humanoid robot involves both 

electronics and mechanical considerations equally. So, 
the design and fabrication of a bipedal robot are 
described. Also, all the devices that used for 
programming the bipedal robot by Arduino are 
illustrated in detailed. Analyzing, design and the 
making of the humanoid robot will be carried out 
through the following steps. A humanoid can be 
considered described as the kind of an autonomous 
system this can simulate human walking motion with 
maintaining postural stability during the walking. The 
design of a humanoid is very important for the 
accomplishable performance of the humanoid, 
especially the weight of the system hypothesizes 
physical limits. The servo motor type MG996R is used 
and will be arranged in the upper bracket and 

connected with the lower bracket by screws as shown 
in Figure (9). Two brackets are connected to create a 
link to the humanoid robot. The lower bracket is used 
to transmit the output of the servomotor and the 
servomotor will be fixed in the upper bracket. The 
bipedal robot can be broken into three blocks servo 
controller board, control unit and the servo used as an 
actuator. The PC sends the program to the Arduino 
microcontroller UNO bases on the movement 
required. The servo controller generates pulse width 
modulation PWM signal with period pulse width based 
on the instruction received thereby rotating the servos 
with angles and speed as required. The following 
experimental setup will show the components present 
in a humanoid robot.  The initial design used 16 high-
torque servomotors as shown in Figure (10) and 
resulted in a fast motion and quick reaction. 

 
Figure 9: Black Aluminum sheets and high torque 

servo motor. 

 
Figure 10: Bipedal walking robot. 

 
For programming the bipedal walking robot, 

Arduino microcontroller is used and connected with 
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the PC. The main parts that need for programming the 
bipedal walking robot are:  

• Arduino UNO, 

• Battery LIPO 7.2V, 

• Voltage regulator, 

• Breadboard, 

• 16-PWM channels servo driver Adafruit 
96685. 

The design concentrated primarily on the 
movement by using servos. The design for the walking 
distinct the servos with a parallel axis of rotation. But, 
this led to a significant problem through the lack of 
lateral balance control. The final design of the 
humanoid combined of two legs with five servos for 
each leg, and a microcontroller that is mounted on the 
head. The servos give a suitable amount of flexibility 
during the motion. The structure replaced with the 
head was used to house the controller and also the 
payload to the humanoid. Microcontroller, PCA 16 
servo driver channel, battery, voltage regulator and 
bread are connected on the fiberglass board 2mm 
thickness. The main structure is built from the hard 
aluminum bracket of 2mm thickness. This provides 
enough strength, flexibility and gives the robot 
lightweight. The bracket is the manufacture of 
different sizes of sheets to connect with the 
servomotor in high precision [14]. The center of a 
mass of the humanoid is one of the necessary key 
parameters for stability. This is a parameter of weight 
distribution, the distance between the legs and the 
height of the robot. Angular motion is another 
significant factor in the counter-balance and balances 
the walking. The servomotors were placed in the knee, 
hip and ankle joints to get leg configuration similar to 
humans. The servos on the knee and hip have the same 
axis of rotation while the servomotor on the ankle 
joint moves the humanoid left and right. The ankle 
joint was chosen to rotate in this way to stabilize the 
humanoid's center of gravity from side to side while 
the knee and hip joints were designed to stabilize the 
humanoid about the backward and forward directions. 
Figure (11) shows the control panel of the bipedal 
robot. 

 
Figure 11: Control panel of the Robot. 

 
The servomotors are connected with Arduino 

microcontroller UNO and are daisy-chained, so a 
serial port is considered to control the servomotors. 
The digital servos can act as actuators, electrical 
current data, and returning positions when being sent 
a suitable order sequence. 

 
 

4. Robust Control Results 

In this section, the effect of increasing the masses 
on the linear inverted pendulum model of robust 
stability control for the bipedal walking robot is 
discussed. To obtain the set-point tracking and noise 
rejection of robust stability control of the bipedal 
robot, a Bode diagram must be used. Napoleon, et al. 
showed that the one mass linear inverted pendulum 
model as shown in Figure (6) is a non-minimum 
phase system and improved that when proposed two 
masses linear inverted pendulum model. Hence, they 
showed that two masses linear inverted pendulum 
model is a minimum phase system [4]. First, the 
sensitivity of the one mass inverted pendulum is 
estimated according to eq. (18) and the 
complementary sensitivity must be calculated 
according to the eq. (19). Simulation parameters of 
one mass linear inverted pendulum model of the 

bipedal robot are 𝑚 = 1.8𝑘𝑔 and 𝑙=28cm. Figure 

(12) shows that the 𝑇(𝑗𝑤) at low frequencies is 
between 0.01dB and climbs to 0.118 dB at high 
frequencies, hence the system tend to become the 
worst performance, worst set-point tracking to zero 
moment point reference and the worst noise rejection 
because the one mass linear inverted pendulum model 
is non-minimum phase system and has unstable zeros 
[4]. To minimize the estimation time during real-time 
application to maintain the stability and to simplify the 
design of the controllers it is generally used one mass 
model linear inverted pendulum model which 
represents the lower body of a humanoid. Thus, the 
stability control of the humanoid is conducted by 
moving the trunk of a humanoid so that the actual 
position of ZMP tracks the required position ZMP, 
while the upper body of the robot doesn't move too 
much. For improving the set-point tracking and noise 
rejection, two linear inverted pendulum model and 
three masses linear inverted pendulum model is 
proposed. For two masses linear inverted pendulum 
model as shown in Figure (7), the mass of the lower 
body is represented by the center of mass and the mass 
of the upper body is represented at the head. 
Simulation parameters of two masses linear inverted 

pendulum model of the bipedal robot are 𝑚1 =
0.8𝑘𝑔, 𝑙1=28cm, 𝑚2 = 1kg and 𝑙2 = 10cm. To 
analyze this system, it is essential to reduce the 
complexity of the expressions, as well as to resort to 
the computers for most of the tedious computations 
necessary in the analysis. 

 
Figure 12: Complementary sensitivity of one mass 
inverted pendulum of bipedal robot Bode diagram. 
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The limitation in the performance of the robust 
stability control is happened because of the existence 
of unstable zero in the open-loop transfer function of 
the system. Thus, it needs to confirm that the new 
modeling of robust stability does not the system 
become bad noise rejection and set-point tracking. It 
can be examined by the analysis of zeros of the transfer 
function. However, since the new modeling consists 
of three inputs and one output, the concept of zero in 
the multi-input multi-output (MIMO) system is 
different from a single input single output SISO 
system. The zero of the system actually can be found 
by transforming systems to the Smith-McMillan form 
[4]. The system involves two inputs and one output. 
Two masses inverted pendulum is fast of responding 
because has stable zeros and tends to become a 
minimum phase system. In this work, set-point 
tracking to the reference ZMP is studied of the two 
pendulum model of the bipedal walking robot. Figure 
(13) shows the complementary sensitivity at low 
frequencies approximately 1.4dB and decreases to 
o.1dB at high frequencies. The results showed that the 
system is approximately good noise rejection and good 
set-point tracking to the ZMP to the reference because 
the system has stable zeros and a minimum phase 
system. New modeling of three masses linear inverted 
pendulum model of a bipedal walking robot may have 
three inputs and one output, and these may be 
interrelated in a complicated manner. Two masses 
linear inverted pendulum model results showed that 
the system is the robust performance than one mass 
linear inverted pendulum model. 

 
Figure 13: Complementary sensitivity of two masses 

inverted pendulum Bode diagram. 
From the results, the reference and disturbance to 

the error of the system have closed-loop robustness 
and performance properties of the system. Thus, the 
system can make the reference quickly, it needs to give 

the sensitivity function 𝑆(𝑗𝑤) ≪ 1 and the 
complementary sensitivity must be reduced from (1) 
to (0) at low frequencies and high frequencies 
respectively. Simulation parameters of three masses 
inverted pendulum as shown in Figure (8)of the 

bipedal robot are 𝑚1 = 0.4𝑘𝑔, 𝑙1=14cm, 𝑚2 =
0.4kg, 𝑙2 = 14cm, 𝑚3 = 1kg and 𝑙3 = 10cm. Figure 
(14) showed that the complementary sensitivity at low 
frequencies approximately 1.38dB and falls to 0 dB at 
high frequencies. The results showed that the three 
masses inverted pendulum has better noise rejection 

and better set-point tracking to the reference ZMP 
than two masses linear inverted pendulum model and 
one mass linear inverted pendulum model because the 
system has stable zeros and minimum phase system as 
shown in Figure (14). Three masses linear inverted 
pendulum model results showed that the system is the 
robust performance than one mass linear inverted 
pendulum and two masses linear inverted pendulum 
model. Finally, if the system has unstable zeros, the 
system becomes the worst to set-point tracking to the 
zero moment point and the worst rejection. But, the 
system has stable zeros, the system has the better to 
set-point tracking to the zero moment point and the 
better noise rejection.  

 
Figure 14. Complementary sensitivity of three 

masses inverted pendulum model. 
 

5. Conclusions 
This paper described the set-point tracking to the 

zero moment point and the noise rejection of the 
robust stability control for the bipedal walking robot. 
One mass linear inverted pendulum model has bad set-
point tracking to the ZMP reference and bad noise 
rejection because the complementary sensitivity 

𝑇(𝑗𝑤) at low frequency approximated 0.01dB and 
climbs to 0.118 dB at high frequency due to the system 
has unstable zeros and non-minimum phase system. 
For improving the set-point tracking to the reference 
ZMP and noise rejection, two masses linear inverted 
pendulum and three masses linear inverted pendulum 
model are investigated. The complementary sensitivity 
of the two masses linear inverted pendulum model 
approximately (1.4 dB) at low frequency and falls to 
0.1 dB at high frequency. So, the complementary 
sensitivity of three masses linear inverted pendulum 
model is (1.38 dB) at low frequencies and falls to (0 
dB) at high frequency. The results showed that the 
three masses linear inverted pendulum model and two 
masses linear inverted pendulum model is the robust 
performance than one mass linear inverted pendulum. 
The proposed models have better set-point tracking to 
the zero moment point ZMP reference and better 
good noise rejection because it has stable zeros. 
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7. Nomenclature 
𝐹𝑝    = External force, N. 

G(s) = Transfer function.   
H     = Angular momentum, kg.m2/s.                   
I       = Moment of inertia, kg.m2. 

𝑙       = length of the pendulum, m. 
M     = Moment, N.m. 

𝑚     = Mass of the robot, kg. 
N(s)  = Noise of the sensor. 
P      = Linear momentum, kg.m/s. 

𝑝      = Zero moment point, m. 

𝑝𝑖   = distance of the center of link on the zero 
moment point, m. 

𝑅      = Rotation matrix. 
R(s) = Input of the system. 
S(s) = Sensitivity of the system. 
T(s) = Complementary sensitivity. 

𝑢 (�̈�)=Angular acceleration rad/s2.  
 

Greek Symbols 
𝜏  Torque 

𝑤  

𝜃  

Angular velocity 
Angle 

 

Abbreviations 
  CoM      Center of mass 
  CZMP    Compensative zero moment point 
  CP          Capture point 
  GRF        Ground reaction forces 
   MIMO    Multi input-multi output 
   PWM     Pulse width modulation 
   SISO      Single input-single output 
   ZMP       Zero moment point   
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