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Abstract   

     In discrete amplitude modulation or 
integral-cycle control, subharmonic and higher 
order harmonic components are generated in 
the three phases of a three 

 

phase system. 
These harmonic components are found to be 
unbalanced in phase displacement. The 
correction of the unbalanced phase 
displacement angles of a particular 
subharmonic or higher order harmonic for this 
type of triggering is investigated to solve the 
limitation of use of this important type of 
control as a drive and many other industrial 
applications. The multiple of 2 phase shifting 
technique is used to correct unbalanced phase 
displacement angles produced in a three-phase 
system. A computer-based harmonic phase 
corrector is designed and tested with three-
phase resistive and induction motor loads. It is 
found that there is a well agreement between 
the theoretical and experimental results and it 
is believed that the major problems associated 
with the integral-cycle triggering mode with 
three-phase circuits have been solved in the 
present work.  

key words: Harmonics, integral cycle control, 
power electronics, phase angle correction, phase 
shifter  

I. Introduction 
Load voltage control by means of switching a pair 
of inverse parallel connected thyristors or triac is 
well established. It is customary to use modes of 
thyristor triggering known as integral-cycle 
triggering whereby burst of complete cycles of 
current are followed by complete cycles of 
extinction [1-4].  

Integral-cycle triggering results in conduction 
patterns that contain subharmonics of the supply 
frequency and so constitute a form of step-down 
frequency changing that can be considered as a 
form of frequency changer. Also integral-cycle 
triggering results in a considerable reduction in 
the amplitudes of the higher order harmonics as 
compared with other triggering techniques and it 
is possible that Radio Frequency Interference 

(RFI) is negligible [2]. The phase-control 
switching can produce higher order harmonics 
and heavy inrush current while switching on in a 
cold start [5], while integral-cycle control circuits 
have the advantage of low inrush current due to 
zero voltage switching ease in construction and 
low hardware cost. Therefore, integral-cycle 
control loads have been widely used in resistive 
loads, such as heaters, oven, furnaces, and spot 
welders [6-8]. Also it is used in speed control of 
single-phase induction motor and dc series motor 
[9-10]. 

As a frequency changing scheme, integral-cycle 
triggering was found not feasible for applications 
in the three-phase systems exploiting this 
technique for ac motor speed control [11]. This is 
because the amplitudes and phase displacement 
angles of the higher order harmonic and 
subharmonic components of the integral-cycle 
controlled waveform are determined by the 
conduction period N and the control period T and 
the order of the individual harmonic. The three-
phase analysis of voltage and current waveforms 
and phase relationships of the generated harmonic 
and subharmonic components for different circuit 
configurations are described [12-13].  
       Consider a three-phase resistive load with 
line voltage control as shown in Fig. 1. The 
resulting three-load voltage waveforms are 
identical and so are the three-load current 
waveforms. The supply frequency components 
are found to be balanced, since they are 120o apart 
in time-phase while the phase displacement 
angles of a particular subharmonic or higher order 
harmonic are unbalanced [11, 12]. Due to the 
unbalanced phase relationships of the 
subharmonic components, these components 
represent a source of trouble when these voltage 
waveforms are used to feed ac machines for speed 
control purposes [11]. In this paper an attempt is 
made to study the phase unbalanced 
characteristics of the subharmonics as well as the 
higher order harmonics generated due to integral-
cycle triggering, and a new phase shifting 
technique is found that is capable of correcting 
the unbalanced phases based on microprocessor 
implementation [14]. 
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Fig.1 Four-wire star-connected load with line controllers.  

 

II. The Proposed Phase Shifting 
Technique   

Fig. 2 depicts the waveforms of the load voltages 
for the case when using integral-cycle control 
with control period T = 2 and conduction period N 
= 1, for the circuit shown in Fig. 1 with R-L load. 
Let the notation 1, 2, 3 denote the three phases A, 
B, and C respectively. Thus the load voltage (vLj) 
for any jth phase will have the general form [12].  
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Fourier analysis of Eq. (1) results in the following 
mathematical expressions: 
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For the supply frequency component, the Fourier 
coefficients are   
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technique makes the phase displacement angles of 
the nth harmonic order balanced (120o between the 
phases) except when n is a multiple of 3 where in 
this case the phase displacement angles become in 
phase for all values of N and T except when T is a 
multiple of 3. Also it is noticed that the phase 
shifting of the phase displacement angles used in 
this technique do not depend on the value of N. 

This means that, the values of 2

 

and 3

 

that 

makes nth order harmonic balanced for certain 
values of N and T can make it balanced as well for 
the same value of T with N = N-1, N-2, , 1. 

Table (1) shows the values of 2m and 3m which 

make the phase displacement angles of the nth 

harmonic either balanced or in phase for typical 
values of T and N. This technique cannot correct 
the phase displacement angles of a particular 
subharmonic or higher order harmonic if T is a 
multiple of 3.   

Table (1)

 

T N 
2m 3m 

2 1 1 0 

4 3 

 

1 1 2 

5 4 

 

1 3 1 

7 6 

 

1 2 4 

8 7 

 

1 5 2 

10 9 

 

1 3 6 

  

III. Practical Implementation   

   The schematic diagram of the microprocessor-
based harmonic phase shifter for integral-cycle 
control is shown in Fig. 6. After reducing the 
three-phase supply voltage by the step-down 
transformers (T1, T2, and T3), the zero crossing 
detector (ZCD) circuits produces the 180o-degree 
pulses to an 8085 microprocessor-based system. 
The microprocessor now can sense the zero-
instant of the ac supply. Then the conduction of 
the triacs started by sending high pulses to the 
gate drive circuits (the gate drive circuit used 
from [16]). The output of each gate drive circuit is 

connected to pulse transformers (T4, T5, and T6), 
that are used to isolate the microprocessor circuit 
from the power circuit. In order to ensure 
successful triggering of the triac, the trigger 
voltage must be maintained for the entire 
conduction period. This can be achieved by using 
a square pulses at high frequency and these pulses 
are generated by the timing circuit. A NAND gate 
is used to modulate the higher frequency pulses 
with the main conduction pulse.  
Fig. 7 shows the signals at different stages in the 
control circuit for phase A programmed for a 
conduction period of 1 cycle out of two. The 
square pulse E goes through a buffer circuit that is 
found necessary for the elimination of the dc bias 
generated in the comparator. The microprocessor 
sends a square pulses through port PB0 of the 
8155 with ON/OFF ratio equal to N/(T-N).   

Fig. 3 Harmonic amplitude spectrum for  
T = 2 and N = 1, R-load. 
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(a)

 

(b)

 

(c)

 

(d)

   

Fig. 4 Phase displacement angles for T = 2 and N = 1, R-load (a) 1st

 

harmonic (25Hz) Vb (-60o) Vc (-120o) 
(b) supply frequency component Vb (-120o) Vc (-240o) (c) 3rd harmonic (75Hz) Vb (-180o) Vc (-360o) (d) 5th 

harmonic (125Hz). Vb (-300o) Vc (-240o) 
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Fig. 5 Phase displacement angles for T = 2 and N = 1, R-load (a) 1st

 

harmonic (25Hz) (b) supply frequency 
component (50Hz) (c) 3rd harmonic (75Hz) (d) 5th harmonic (125Hz) 

 

The output of each gate drive circuit is connected 
to pulse transformers (T4, T5, and T6), that are 
used to isolate the microprocessor circuit from the 
power circuit. In order to ensure successful 
triggering of the triac the trigger voltage must be 
maintained for the entire conduction period. This 
can be achieved by using a square pulses at high 
frequency and these pulses are generated by the 
timing circuit. A NAND gate is used to modulate 
the higher frequency pulses with the main 
conduction pulse.  
Fig. 7 shows the signals at different stages in the 
control circuit for phase A programmed for a 

conduction period of 1 cycle out of two. The 
square pulse E goes through a buffer circuit that is 
found necessary for the elimination of the dc bias 
generated in the comparator. The microprocessor 
sends a square pulses through PB0 of the 8155 
with ON/OFF ratio equal to N/(T-N).   

IV. Experimental Results   
    The control circuit shown in Fig. 6 was built 
and tested in the laboratory with a three-phase 
balanced resistive load. Fig. 8 shows oscillograms 
of the load voltage waveforms vLA, vLB, and vLC for 
the case when T = 4 and N = 2 before and after 

(a)

 

(b)

 

(c)

 

(d)
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the application of the phase-shifting technique 
while Fig. 9 shows the harmonic amplitude 
spectrum.  
The system was tested also with a three-phase, 
cage-type induction motor described in Appendix 
A. The stator windings were connected in 4-wire, 
star-connected form. Practically this type of 
voltage control, i.e. integral-cycle, is found to 
produce some problems to the motor such as 
noise, vibration, and heat rising to the motor 
windings. These problems become severe 
especially at high voltages and when the motor 
runs continuously. However, table 2 shows the 
speed measurement of the motor at different 
values of N and T using a digital tachometer 
before and after the phase displacement angles 
correction in addition with the frequency of 
rotation for each case that is calculated using the 
following equation of the three-phase induction 
motor speed [17]:  

p

f
ns 120               

 

14 

 

where p = number of poles and f = supply 
frequency.  

It is important to mention that the motor rotates in 
the reverse direction for some cases after the 
correction of the phase displacement angles and 
this is due to the variation in the phase sequence 
after the correction of the phase displacement 
angles. 
However, these results show that, the motor speed 
ns is changed after the correction of the phase 
displacement angles. This is because the phase 
displacement angles of the first harmonic become 
balanced, i.e. separated by 120o in time phase, and 
it will produce its own speed. This means that 

after the correction of the phase displacement 
angles of the first harmonic, the motor began to 
rotate at the desired subharmonic frequency .   
The three-phase induction motor is loaded by a dc 
dynamometer available in the laboratory to 
examine the performance of the motor under load 
condition. The dc dynamometer is connected as a 
separately excited machine as shown in Fig. 10. 
The specifications of the 3-phase motor and the 
dynamometer (found in Machines laboratory, 
Electronic and Communications Department, 
Nahrain University) are given in Appendix B. The 
field winding of the dynamometer is connected to 
a 220V dc source and the field current is set to the 
maximum permissible value.   

Fig.6 Schematic circuit diagram 
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Fig.7 Waveforms of signals at different points in the control circuit.  

  

Figure 9 Harmonic amplitude spectrum for (AM) T = 4 and N = 2, R load  
(a) theoretically (b) practically. 

 

Fig. 8 Load voltages for T = 4 and N = 2, R load (a) before the correction (b) after the 
correction. 

 

Voltage scale 400V/DIV.  Time scale 10ms/DIV. 
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Table 2 

  
T 

 
N 

ns (r.p.m.) 
before using 

shifting 
technique 

Frequency of 
rotation (Hz) 

(Experimental) 

ns (r.p.m.) 
after using 

shifting 
technique 

Frequency of 
rotation (Hz) 

(Experimental) 

Frequency of the 
1st harmonic (Hz) 

(Theoretical) 

4 2 1914 31.9 760 12.6 12.5 

4 3 2922 48.7 1006 16.8 12.5 

5 2 2190 36.5 605 10.1 10 

7 3 2455 40.9 480 8 7.1 

7 4 2893 48.2 546 9.1 7.1 

8 3 2534 42.2 369 6.15 6.2 

 

The motor speed ns is then measured at different 
values of load current (iL) for T = 4 and N = 2 for 

both before and after correction cases of nj , the 

results are shown on curve1 and curve2 in Fig. 11 
respectively. It is found that, the motor speed is 

reduced after the correction of nj and this is 

obvious since the motor rotates at the 1st harmonic 
frequency. The highest value of the load current 
shown on curve2 is less than that on curve1, this 
is because the generated e.m.f. in the 
dynamometer proportional to motor speed ns, and 
any reduction in the speed leads to further 
reduction in the generated e.m.f. which in turn 
reduces the load current. Also any reduction in the 
value of the load resistance R in order to increase 
the load current at a certain value of VAH leads to a 
reduction in the speed. This limitation in the 
loading machine performance does not allow us to 
take further readings to reach maximum loading 
of the motor.   

V. Conclusion  

The unbalanced sets of subharmonic and higher 
order harmonic voltages generated by integral 
cycle control technique create severe problems for 
ac machines as they found to cause excessive 
heat, mechanical vibrations and noise. Therefore, 
this type of control was abanded as an ac motor 
speed controller since many years ago. The 
proposed phase shifting technique in the present 
work is a try to solve the inherent limitation of 
this important type of control by shifting the 
second and third phases of the three-phase system 
by multiples of 2 . This technique is found to be 
more suitable than using the phase-angle control 
scheme to correct the unbalanced phase 
displacement angles of the generated harmonics. 
The last scheme is found to cause unbalanced    

harmonic amplitude spectrums for the three 
phases.                    
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Fig. 10 Connection diagram for separately-excited dc dynamometer.  

  

Fig. 11 Speed 

 

current characteristic.   
It is found, from the theoretical and practical tests, 
that the performance of the three-phase induction 
motor with phase corrected voltage waveforms is 
very similar to that when fed from balanced 
sinusoidal voltages of the same amplitude and 
frequency when using the proposed phase-shifter. 
Finally, it is believed that the major problems 
associated with integral-cycle triggering control 
technique, when used for speed control of ac 
motor, have been solved in the present work.   
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Appendix A  

The three 

 

phase induction motor used to carry 
out the experimental investigation is a Elettronica 
Veneta (EV) demonstrating set (found in 
Machines laboratory, Electronic and 
Communications Department, Nahrain 
University). Other details of the motor are as 
follows:  
P = 500W, V = 380VY / 220V , I = 1.2A / 2.1A, 
ns = 2850 r.p.m., frequency = 50Hz, No. of poles 
= 2  

Appendix B  
The machine used to carry out the experimental 
investigation is a Elettronica Veneta (EV) 
demonstrating set (found in Machines laboratory, 
Electronic and Communications Department, 
Nahrain University). The unit consists of a three 

 

phase induction motor coupled to a dc 
dynamometer. 
Other details of the motor are as follows: 
P = 500W, V = 380VY/ 220V , I = 1.4A / 2.4A, 
ns = 2840 r.p.m., frequency = 50Hz, No. of poles 
= 2, Vrot. = 365V, Irot. = 1.05A  
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While for the DC dynamometer  
P = 450W, V = 220V, I = 2A at full-load, Exc. = 
SEP., Vexc. = 220V, Iexc. = 0.25A 

Nomenclature  
ao Zero order Fourier coefficient. 
an, bn nth order Fourier coefficients. 
aT, bT n = T order Fourier coefficients. 
cn Peak amplitude of nth Fourier harmonic. 
cT Peak amplitude of Tth Fourier harmonic. 
j Integers, = 1, 2, 3 
mj Integers, = 1, 2, 3,  , T-1 
n Order of harmonic. 
nS Motor speed, r.p.m. 
N Number of conducting (on) cycles. 
T Control period = on + off cycles. 
vLj Load voltage at the jth phase, V. 
V Supply r.m.s. voltage, V. 

 

Angular supply frequency, rad/s. 

 

Phase-angle, rad. 

n

 

Phase angle for nth harmonic, rad. 

T

 

Phase angle for T th harmonic, rad. 

j

 

Phase displacement of the jth phase, rad. 
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