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Abstract: 

In this paper, a comprehensive study of friction 
damper stiffness effects on the response 
characteristics of a typical turbine blade executing 
steady-state motion, is explored. The damper is 
modeled as a one-bar microslip type assembled in 
the intermediate platform attachment of the blade 
leaving the other attachment of a shroud mass at 
the blade tip to be free. A discrete lumped mass 
approach, previously theorized in another paper, is 
employed to predict the response amplitudes as well 
as the slip length parameter at any state of the 
forced frequency including the resonance 
condition. The analysis covers a practical range of 
damper stiffness values adapted from relevant 
studies in this field. The present main outputs show 
that a magnificent rising of the response  occurs 
with the increase in the stiffness, the characteristic  
behavior varies appreciably and the resonant 
amplitudes tend to increase linearly at high levels of 
damper stiffness, whereas the corresponding 
frequency and slip length show almost uniform 
trend. The results can serve very well for design and 
control purposes in the pre-manufacture stages of 
the given blade-damper system.   
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1. Introduction: 

  The aspect of dry friction is occasionally found as 
a powerful tool to reduce high resonant stresses in 
industrial jet-engine blades[1], where serial 
assembled blades are attached together through 
platforms to maintain friction damping of the 
motion[2]. Generally, the steady-state motion 
characteristics depend widely upon the geometrical 

and mechanical properties of the blade-damper 
system, the dry friction between mating surfaces of 
the damper play a role in describing the response 
behavior of the system[3]. The problem of friction 
modeling for reliable analysis of the process, 
becomes the major agency in relevant scopes of 
such subjects. The macroslip modeling type by 
Bazan et al [4], Ferri and Dowell[5], Muszynska 
and Jones[6], Wang et al [7], and the Microslip 
modeling by Meng et al [8,9,10], nonlinear 
vibration analysis for one dimensional dynamic 
microslip friction model and multi blade model by 
Cigeroglu et al [11,12]  and Gabor[13], represent 
the professional attempts in this field. Each 
modeling approach bears lot of merits and some 
other demerits. Most advantages of the microslip 
friction modeling over the macro one, reflected in 
sophisticated representation of motion-dependency 
of the damping itself that can not take place in the 
macroslip class of friction. The excellent 
theoretical work, in this issue, may be found in 
references[8,13] where a proposition of one-bar 
friction modeling was displayed thoroughly, while 
the work of Meng et al [9] and Gabor[13] succeeds 
in creating a developed two-bar microslip model. 
The main difference between the two models is 
limited by the number of slid regions occupied in 
the friction plate of the damper which contains, for 
both models, one stuck region. However, the 
result governing equation of motion seems 
identical in the form regardless the type of friction 
bar modeling. In spite of that, there exists some 
difficulty in estimating the equivalent damper 
stiffness for the two model. The two-bar model 
show much lengthy manipulation of stiffness 
compared with the one-bar model. A group of input 
data should be prepared correctly for such analysis, 
these are consisting of all necessary parameters 
affecting the system response (the discrete lumped 
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masses and associated bending stiffness, the normal 
pressure variation in the damper mating surfaces, 
the Coulomb friction coefficient, the elastic 
constant, length and sectional area of the modeled 
bar). In his paper,  the present author[14] 
investigated the effects of normal load parameters 
on the steady-state response comprehensively. 
Time comes now to extend the analysis to the 
friction damper effect regarding the elastic 
specification and geometry of the one-bar model 
(the physical length and sectional area). The author 
found that all these items can be gathered 
successfully in a single parameter referring to the 
damper longitudinal stiffness, without loss of 
originality, a matter which seems very important 
for quality control  of the vibrated system and more 
essentially for mechanical design of the damping 
device itself.  

2. Theoretical Analysis:

 

Keeping pace with the theoretical works of 
references[13], the present system of  2-degree of 
freedom, under consideration, is schematically 
shown in Fig.(1), with general notations used for 
analysis  

purpose. The damper is attached to the lower 
platform of mass, m1, while a shroud mass, m2, is 
kept at the free end where an exciting harmonic 
force, P, is acting independently. The friction 
damper has an equivalent stiffness, keq, and 
damping constant, ceq. Fig.(2) illustrates a possible 
normal pressure, q , acting on the mating surface of 
the damper plates whose Young modulus is denoted 
by E, length and sectional area by l and A 
respectively.  

  

Figure (1) The forced friction-damped  2DOF    
dynamic system.[13] 
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Figure (2) The friction one-bar micro-slip 

model 

 

The plate, under friction action, is simulated as one-
bar model, as shown in Fig.(3), with sliding part of 
length . The plate, in Figs.(2,3),  is plotted at 900 
rotation with that in Fig.(1). The piece-wise equation 
of motion, for the first and second mass of the given 
system, can be simplified in the following forms (see 
Ref.[15]):    
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Figure (3) The one-bar micro-slip modeling with 
notations 
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where x1 and x2 represent the displacement 
functions for the lower and upper attachments 
respectively, k1 and k2 the lumped bending stiffness 
respectively, Pa, x1a and x2a are the amplitudes of 
the exciting force and the piece-wise displacements 
respectively, while 

 

is the external frequency of the 
applied force and that j is the usual imaginary root 
and t is the elapsed time of excitation. To solve for 
the main response parameters x1a, x2a, then the 
substitution of the third of eq.(1), back into the first 
two equations, yields :   

m1 m2 
k2 k1 

ceq 

P

 

x1

 

x2

 

keq 



  

NUCEJ, Vol.10, NO.1   Tolephih 29  

Among all input data of (Pa, k1, k2, m1, m2 and ) 
the indirect data keq and ceq, appearing in eq.(2) 
were usually estimated using Lazan[16] formula in 
the form of:  

                           2
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where F0 and u0 are the amplitudes of the translated 
force and corresponding displacement, at the damper 
bar tip respectively (refer to Fig.(3)). In reference 
[14], a thorough derivation of both baranthes terms, 
in eq.(3), has been achieved successfully. The final 
expressions of these items may be summarized 
below:  
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Noting that the quantity (q2/q0) is simply the 
normal load ratio and 

 

is the slip length ratio. The 
damper plate mechanical properties are evidently 
declared by the term (EA/l) appearing in above 
equation. It can be referred to one parameter entitled 
as the damper longitudinal stiffness whose effect 
stands as the main objective of the current work. In 
order to utilize eq.(4) the value of 

 

must be pre-
estimated. Gabor[13] has solved this problem by 

equating u0 with x1a, as the matter should be 
recognized naturally. Reference [14] displays a 
target function , very useful to determine 

 
upon 

usage of last idea, in the form of:  
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The introduced quantities Q0 and Q2 are just 
alternative forms of q0 and q2 respectively in non-
dimensional fashion (with m denotes friction 
coefficient). The employment of eq.(5) needs further 
numerical method to assign the true value of . An 
iteration procedure of extended bi-secant 
technique, familiarly found in related fields, may be 
very active to achieve the goal. At the end, the 
present computed results of x1a and x2a as varied 
with , would be conveniently altered to non-
dimensional quantities of 1, 2 and 

 

respectively 
in the form of:  
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where e1 denotes the first eign-frequency of the 
free-damped system, while x1s and x2s represent the 
static amplitudes respectively. 

3. Numerical results and discussion: 

First of all, a software program, built-up for present 
iteration procedure, is strictly run for fixed input data 
of: k1= k2=107N/m, m1= m1= m2=0.05kg, and 
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eight selected values of Q0=5.6, 
16,32,80,160,320,800 and 8000 with Q2/Q0=-0.5. 
These are the actual constant parameters held well 
by [13,15]. In these references, the damper plate 
properties are kept constant with EA=40000N and 
l=0.2m. In the present computation this is identical 
to EA/l=200000. Therefore, a choice of nine distinct 
values of (12500, 25000, 50000, 100000, 200000, 
500000, 800000 and 860000), for this parameter, 
seem adequate to estimate the entire effect on the 
system. The plan is then devoted to spread the huge 
out printings of 1, 2 and 

 

as related with 

 

for 
given (EA/l) value, as well as the corresponding 
resonant parameters 1res, 2res, res and res as 
varied with the same damper stiffness. Figs.(4-15) 
and Tables(1-4) satisfy this condition briefly. In 
Figs.(4,5) the variation of 1 with 

 

is plotted for 
fixed Q2/Q0 but for all the different values of (EA/l). 
Fig.(4) takes the lowest set value of Q0=5.6 whilst 
Fig.(5) takes the largest one Q0=8000. As seen, the 
behavior is altered obviously. The peak points 
(resonant) go down with (EA/l) when Q0 is small, 
whereas they go up for large Q0. The same trend can 
be noticed for 2 parameter as shown in Figs.(6,7) 
respectively and also for 

 

parameter in Figs.(8,9) 
where at 

 

approaches unity (from left or right), the 
peak 

 

tends to equal one (i.e. the damper plate 
would totally slide). Tables(1-4) show a collection of 
resonant values of all the main parameters for a 
variety of settings of (AE/l) and Q0 values keeping 
Q2/Q0=-0.5 as mentioned before. In each table, the 
data in the fifth row correspond to those recomputed 
from Gabor[13]. The figures, afterwards, relate to 
the resonant values as functions of the damper 
stiffness. The first two ones, in Figs.(10,11), show 

1res variation for two setting values of Q0 
respectively. As shown, Fig.(10) illustrates a 
decreasing trend of 1res with (AE/l) for Q0=5.6 to 
80, whereas Fig.(11) shows counter-wise linear trend 
for larger Q0 value. The characteristic behavior, in 
this manner, seems new. The resonant curve 
decreases with Q0 in Fig.(10), but it increases 
appreciably in Fig.(11). A similar style is observed 
in Figs.(12,13) for 2res parameter respectively with 
one exception that the counter-wise increase in 2res  
does not seem to be perfect linear. The last 
Figs.(14,15) show the variation of res and res 
with (EA/l) respectively for all the nine set values of 
Q0. In Fig.(14) the slip length ratio varies linearly 
with very slight increase, besides the curve itself 
goes down with Q0. A reversed behavior is noticed 
in Fig.(15) for res variation, where the ratio shows  
large increase, while it goes up as Q0 increases 
further. 

4. Conclusions: 

In brief, the pertinent remarks, listed below, 
represent the main conclusion drawn from present 
analysis and discussion: 

(a) The 1 and 2 response curves show 
special shifting with the increase in the 
exciting frequency as the damper stiffness 
increases. The artificial shift, for 1, is in the 
down-right direction (i.e. the peaks decrease 
and move right with ), whereas for 2  the 
shift is in the up-right direction. 

(b)  The 

 
response curve rises with the damper 

stiffness and shows peak values near =1 
when Q0 is small. The stuck part length 
approaches maximum value at this situation. 
For large value of Q0 the response curve 
goes up to the right with the increase in . 

(c) The resonant displacements 1res and 2res 
show two different trends with (AE/l). The 
first one concerns comparable small Q0 
value, where the curve goes down with both 
Q0 and (AE/l). The second one shows 
counter-wise manner absolutely with linear 
increase as (AE/l) increases. 

(d) The resonant curves, of slip length ratio res 
and frequency ratio res, give a humble 
linear rising with (AE/l), but is strongly 
affected by Q0 value. The characteristic 
curve of res goes down with the increase in 
Q0, whilst res curve shows a trend 
opposite to that comparably.  
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Figure (4) Variation of resonant (Phi1)with the normalized frequency (Omega) for different damper stiffness 
values (EA/L)and Fixed normalized loading of Q0 & Q2/Q0. 
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Figure (5) Variation of (Phi1) with the normalized exciting frequency (Omega) for different damper stiffness values 
(EA/L) and fixed normalized loading of Q0 & Q2/Q0. 

   

Fig.(6) Variation of resonant (Phi2) with the normalized exciting frequency (Omega) for different damper stiffness 
values (EA/L) and fixed normalized loading of Q0 & Q2/Q0. 

  

Figure (7) Variation of (Phi2) with the normalized exciting frequency (Omega) for different damper stiffness values 
(EA/L) and fixed normalized loading of Q0 & Q2/Q0. 
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Figure (8) The resonant (Delta) as varied with normalized exciting frequency (Omega) for different damper 
stiffness values (EA/L) and fixed normalized loading Q0 & Q2/Q0. 

  

Figure.(9) The normalized (Delta) as varied with normalized exciting frequency (Omega) for different damper 
stiffness values (EA/L) and fixed normalized loading Q0 & Q2/Q0. 

  

Figure (10) Variation of resonant (Phi1) with damper stiffness (EA/L) for fixed normalized load (Q2/Q0) and the 
first four values of the normalized  load ((Q0). 
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Figure (11) Variation of resonant (Phi1) with damper stiffness (EA/L) for fixed normalized load (Q2/Q0) and 
the second four  values of the normalized load (Q0). 

  

Figure (12) Variation of resonant (Phi2) with damper stiffness (EA/L) for fixed normalized load (Q2/Q0) and 
the first  six values of the normalized load (Q0). 

  

Figure (13) Variation of resonant (Phi2) with damper stiffness (EA/L) for fixed normalized load (Q2/Q0) and 
the last  two values of the normalized load (Q0). 
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Table(1). The normalized amplitudes, slip lengths and frequencies at resonance   for variety of damper 
stiffness values (EA/L) and two normal load    coefficients (Q0=5.6, 16). 

Curve EA/L 
Q0=5.6 Q0=16 

1,res

 
2,res

 
a,res

 
res

 
1,res

 
2,res

 
a,res

 
res

 
1 12500 358.3900 274.8890 0.4957 1.0033 430.7643 318.0713 0.2823 1.0033 
2 25000 412.5412 309.3502 0.7500 1.0033 233.5297 165.9546 0.2829 1.0067 
3 50000 388.3821 282.0630 0.9415 1.0033 131.1735 88.2626 0.2842 1.0133 
4 100000 215.3262 149.4697 0.9462 1.0067 81.2281 50.5852 0.2945 1.0233 

5(Gabor) 200000 125.1859 81.4756 0.9547 1.0133 53.1103 29.6315 0.3040 1.0433 
6 500000 67.7086 38.7271 0.9736 1.0333 37.0060 16.6162 0.3322 1.0967 
7 800000 53.5863 27.9348 0.9951 1.0500 34.3822 13.2966 0.3582 1.1367 
8 820000 53.1490 27.5662 0.9973 1.0500 34.3294 13.1760 0.3599 1.1367 
9 860000 51.9321 26.6350 0.9989 1.0533 34.2592 12.9176 0.3632 1.1433 

 

Table(2). The normalized amplitudes, slip lengths and frequencies at resonance  for variety of damper 
stiffness values (EA/L) and two normal load    coefficients (Q0=32, 80). 

Curve EA/L 
Q0=32 Q0=80 

1,res

 

2,res

 

a,res

 

res

 

1,res

 

2,res

 

a,res

 

res

 

1 12500 169.3906 169.3906 0.1304 1.0067 114.3412 75.2558 0.0502 1.0167 

2 25000 134.4862 90.4921 0.1312 1.0133 70.3389 42.4752 0.0511 1.0300 

3 50000 80.4874 50.1661 0.1330 1.0233 48.4170 25.8071 0.0532 1.0600 
4 100000 53.7798 29.9858 0.1385 1.0467 38.3699 17.2400 0.0570 1.1033 

5(Gabor) 200000 40.1684 19.1934 0.1467 1.0833 36.2025 12.9657 0.0637 1.1667 

6 500000 35.4111 12.6673 0.1692 1.1633 45.0106 10.9932 0.0804 1.2733 

7 800000 37.7586 11.1966 0.1891 1.2167 56.5110 11.0304 0.0940 1.3300 
8 820000 37.9755 11.1414 0.1904 1.2200 57.2941 11.0466 0.0949 1.3333 
9 860000 38.4143 11.0382 0.1928 1.2267 58.8478 11.0794 0.0965 1.3400 

 

Table(3). The normalized amplitudes, slip lengths and frequencies at resonance  for variety of damper 
stiffness values (EA/L) and two normal load  coefficients          (Q0=160, 320). 

Curve EA/L 
Q0=160 Q0=320 

1,res

 

2,res

 

a,res

 

res

 

1,res

 

2,res

 

a,res

 

res

 

1 12500 70.1927 42.3300 0.0251 1.0333 48.7399 25.9845 0.0130 1.0600 
2 25000 48.6410 25.9296 0.0262 1.0600 38.6195 17.3636 0.0139 1.1033 
3 50000 38.5449 17.3260 0.0280 1.1033 36.6055 13.1073 0.0155 1.1700 
4 100000 36.4692 13.0533 0.0313 1.1700 42.1323 11.3903 0.0182 1.2500 

5(Gabor) 200000 41.9061 11.3204 0.0368 1.2500 57.8128 11.3214 0.0226 1.3333 
6 500000 65.4657 11.4744 0.0497 1.3567 107.0689 13.2231 0.0322 1.4267 
7 800000 89.7416 12.3961 0.0597 1.4067 155.5951 15.0678 0.0394 1.4633 
8 820000 91.3779 12.4698 0.0603 1.4067 158.7989 15.1773 0.0398 1.4667 
9 860000 94.5824 12.5890 0.0615 1.4133 165.2096 15.4034 0.0406 1.4700 

 

Table(4). The normalized amplitudes, slip lengths and frequencies at resonance  for variety of damper 
stiffness values (EA/L) and two normal load coefficients           (Q0=800, 8000).

 

Curve EA/L 
Q0=800 Q0=8000 

1,res

 

2,res

 

a,res

 

res

 

1,res

 

2,res

 

a,res

 

res

 

1 12500 37.2405 15.6553 0.0057 1.1233 76.9926 12.0998 0.0011 1.3833 
2 25000 37.5797 12.3708 0.0065 1.1933 128.8557 14.2304 0.0014 1.4467 
3 50000 46.0021 11.2602 0.0077 1.2767 230.7795 17.8043 0.0019 1.4933 
4 100000 66.3226 11.6577 0.0097 1.3567 430.6270 23.1904 0.0026 1.5300 

5(Gabor) 200000 107.7988 13.3363 0.0127 1.4267 823.1804 30.9992 0.0036 1.5567 
6 500000 229.4562 17.6633 0.0190 1.4933 1978.2296 46.6391 0.0056 1.5800 
7 800000 348.5711 21.0105 0.0236 1.5200 3136.9676 58.1153 0.0070 1.5867 
8 820000 356.4561 21.2149 0.0238 1.5200 3212.5258 58.7813 0.0071 1.5867 
9 860000 372.2272 21.6083 0.0244 1.5233 3355.0038 60.0098 0.0073 1.5867 
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