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Abstract 
In this work, the control of Translational 

Oscillations with a Rotational Actuator (TORA) 

system is presented in this paper. The optimal 

sliding mode controller is proposed to control the 

two DOF underactuated mechanical system. The 

nonlinear coupling from the rotational to the 

translational motion is the main problem that faces 

the controller design. The H2 sliding mode 

controller is designed to give a better performance 

if only sliding mode control is used. The results 

illustrate that the proposed H2 sliding mode 

controller can achieve the stabilization of the 

system with the variation in system parameters and 

disturbance. 
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1 Introduction  
The Translational Oscillations with a 

Rotational Actuator (TORA) or Rotational/ 

Translational Actuator (RTAC) system is one of 

the nonlinear underactuated benchmark systems. 

TORA system was proposed in the early 1990s, 

Bupp et al [1]. TORA consists of the motion 

control of a cart possessing one translational 

degree of freedom, which is actuated by an 

eccentric rotational mass actuator mounted on the 

cart. TORA system is one of the complex control 

problems of a dual-spin aircraft [2]. The interaction 

between spin and nutation represents the 

complicated part in the algorithm design task for 

the control system engineers [3]. However, it is a 

quite difficult task to prove the versatility of a 

control algorithm on an actual dual-spin aircraft, 

and it may even lead to a catastrophic system 

failure. 

Recently, many nonlinear controller design 

methods applied to stabilize the TORA system 

equation. Hung et al [4] in 2007 designed self-

tuning fuzzy sliding mode control for TORA 

system using the decoupled method. Morillo et al 

[5] in 2008 applied interconnection and damping 

assignment control to stabilize the TORA system 

using passivity based control approach. Li et al [3] 

in 2009 proposed a design of Single Input Rule 

Modules (SIRMs) based Type-2 Fuzzy Logic 

controller for TORA system and GA was used for 

all parameter tuning to improve the control 

performance. Chen et al [6] in 2010 presents a 

smooth switching control for TORA system via 

LMI in a linear parameter varying. Lee and Chang 

[1] in 2012 implement a wavelet-based neural 

network to develop an adaptive backstepping 

controller design for TORA system. Chang et al [7] 

in 2016 presented a hybrid algorithm to control 

TORA system. Sliding mode controller is 

combined with a fuzzy controller to achieve robust 

performance. The result compared with a previous 

work to show the effectiveness of the proposed 

controller but the settling time still too long. Lin 

and Chang [8] in 2017 developed a Takagi-Sugeno 

fuzzy model-based for controlling TORA system. 

They used two rules and triangular memberships. 

The results show the presence of high oscillation in 

the states time responses.  

In this work, the model of the TORA system is 

developed by Euler Lagrange equation of motion 

methods. The design of H2 sliding mode controller 

is presented to achieve an optimal performance in 

presence of system parameter variation and 

disturbance. 

 

2 System Mathematical Model 
TORA system schematic representation is 

shown in Figure 1. This system consists of a 

rotating arm with mass (m) which added to a rotary 

disk of inertia (I). This arm is riding on a cart 

constrained to move horizontally. A spring of 

stiffness (k) is used to attach the moving cart to a 

wall. M represents the total mass of the disk and 

the cart and e denote the distance between the 

center of the disk and the unbalanced mass. In the 

horizontal plane the cart and pendulum will move, 

where xc and �̇�c denote the normalized translational 

position and velocity of the cart, respectively, 𝜃 

and �̇�denote the angular position and velocity of 

the rotational actuator where 𝜃 = 0 corresponds to 

the 90-degree rotation from the spring axis as 

shown in Figure 1. The cart is perturbed by a 

translational disturbance force F. The pendulum is 

actuated by the control torque N [2]. 
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Figure 1: The TORA system schematic structure 

[3]. 

 

Depending on the generalized coordinates 

[𝑥𝑐 , �̇�𝑐 , 𝜃, �̇�]𝑇 and using Newton 2nd law of 

motion, the equations of motion for the ideal 

TORA system can be expressed by: 
 

(𝑀 + 𝑚)�̈�𝑐 + 𝑚𝑒(�̈�𝑐𝑜𝑠𝜃 − �̇�2𝑠𝑖𝑛𝜃) + 𝑘𝑥𝑐 = 𝐹  (1) 

(𝐼 + 𝑚𝑒2)�̈� + 𝑚�̈�𝑐𝑒 𝑐𝑜𝑠𝜃 = 𝑁               (2) 
 

Then by introducing the normalized variables: 

𝑧1 ≜ √
𝑀+𝑚

𝐼+𝑚𝑒2 𝑥𝑐, 𝜀 ≜
𝑚𝑒

√(𝐼+𝑚𝑒2)(𝑀+𝑚)
, 

𝑢 ≜
(𝑀+𝑚)

𝑘(𝐼+𝑚𝑒2)
𝑁, 𝜏 ≜ √

𝑘

𝑀+𝑚
𝑡 and 𝐹𝑑 ≜

1

𝑘
√

𝑀+𝑚

𝐼+𝑚𝑒2 𝐹 

 

and rewriting equation (1) and (2) using the 

normalized variables yields: 

�̈�1 + 𝑧1 = 𝜀(�̇�2𝑠𝑖𝑛𝜃 − �̈�𝑐𝑜𝑠𝜃) + 𝐹𝑑        (3) 

�̈� = 𝑢 − 𝜀�̈�1𝑐𝑜𝑠𝜃                                     (4) 

 

where the differentiation is done with respect 

to 𝜏. By defining: 

𝑋 = (𝑥1, 𝑥2, 𝑥3, 𝑥4)𝑇 = (𝑧1, �̇�1, 𝜃, �̇�)
𝑇

 

The normalized state space representation of 

the system can be given by: 

�̇�1 = 𝑧2                                                    (5) 

�̇�2 =
−𝑧1+𝜀𝜃2

2 𝑠𝑖𝑛𝜃1
 

1−𝜀 
2𝑐𝑜𝑠2𝜃1

 +  
𝜀 

 𝑐𝑜𝑠 𝜃1
 

1−𝜀 
2𝑐𝑜𝑠2𝜃1

  𝑢            (6) 

�̇�1 = 𝜃2                                                       (7) 

�̇�2 =
𝜀 𝑐𝑜𝑠𝜃1

 (𝑧1−𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

 )

1−𝜀 
2𝑐𝑜𝑠2𝜃1

 +  
1

1−𝜀 
2𝑐𝑜𝑠2𝜃1

  𝑢  (8) 

 

where 𝑧1 represents the normalized 

displacement of the platform from the rest 

position, 𝑧2 = �̇�1,  𝜃1
 is the angle of the 

arm,𝜃2 = �̇�1 and 𝑢 is the control torque 

applied. 

 

By applying the decoupling algorithm we get 

[9]: 

𝑓1 =
−𝑧1+𝜀𝜃2

2 𝑠𝑖𝑛𝜃1
 

1−𝜀 
2𝑐𝑜𝑠2𝜃1

 ,         𝑔1 =
𝜀 

 𝑐𝑜𝑠 𝜃1
 

1−𝜀 
2𝑐𝑜𝑠2𝜃1

 , 

 𝑓2 =
𝜀 𝑐𝑜𝑠𝜃1

 (𝑧1−𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

 )

1−𝜀 
2𝑐𝑜𝑠2𝜃1

  and 𝑔2 =
1

1−𝜀 
2𝑐𝑜𝑠2𝜃1

  

then  
𝑔1

𝑔2
= 𝜀 

 𝑐𝑜𝑠 𝜃1
  

𝑥1 = 𝑧1 + 𝜀 
 𝑠𝑖𝑛𝜃1

                               (9) 

𝑥2 = 𝑧2 + 𝜀 
 𝜃2

 𝑐𝑜𝑠𝜃1
                         (10) 

𝑥3 = 𝜃1
                                               (11) 

𝑥4 = 𝜃2
                                               (12) 

 

It is shown that the control goals 𝑧1 → 0, 𝑧2 →
0, 𝜃1 → 0 𝑎𝑛𝑑 𝜃2 → 0 are equivalent to 𝑥𝑖 →
0, 𝑖 = 1,2,3,4. 
 

Since  

�̇�2 = �̇�2 + 𝜀�̇�2𝑐𝑜𝑠𝜃1
 − 𝜀𝜃2

2𝑠𝑖𝑛𝜃1
  

=
−𝑧1 + 𝜀𝜃2

2 𝑠𝑖𝑛𝜃1
 

1 − 𝜀 
2𝑐𝑜𝑠2𝜃1

 +  
𝜀 

 𝑐𝑜𝑠 𝜃1
 

1 − 𝜀 
2𝑐𝑜𝑠2𝜃1

  𝑢

+ 𝜀 (
𝜀 𝑐𝑜𝑠𝜃1

 (𝑧1 − 𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

 )

1 − 𝜀 
2𝑐𝑜𝑠2𝜃1

 

+  
1

1 − 𝜀 
2𝑐𝑜𝑠2𝜃1

  𝑢 ) cos 𝜃1
  − 𝜀𝜃2

2 𝑠𝑖𝑛𝜃1
  

=
−𝑧1 + 𝜀𝜃2

2 𝑠𝑖𝑛𝜃1
 

1 − 𝜀 
2𝑐𝑜𝑠2𝜃1

 +
𝜀2 𝑐𝑜𝑠𝜃1

 (𝑧1 − 𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

 )

1 − 𝜀 
2𝑐𝑜𝑠2𝜃1

  

−𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

  

=
−𝑧1(1 − 𝜀2𝑐𝑜𝑠𝜃1

 ) + 𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

 (1 − 𝜀2𝑐𝑜𝑠𝜃1
 )

1 − 𝜀 
2𝑐𝑜𝑠2𝜃1

  

−𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

  
= −𝑧1 = −𝑥1 + 𝜀 sin 𝑥3                          (13) 

Let 𝑣 =
𝜀 𝑐𝑜𝑠𝜃1

 (𝑧1−𝜀𝜃2
2 𝑠𝑖𝑛𝜃1

 )

1−𝜀 
2𝑐𝑜𝑠2𝜃1

 −
1

1−𝜀 
2𝑐𝑜𝑠2𝜃1

  𝑢   

i.e.𝑢 = 𝜀 𝑐𝑜𝑠𝜃1
 (𝑧1 − 𝜀𝜃2

2 𝑠𝑖𝑛𝜃1
 ) − (1 −

             𝜀 
2𝑐𝑜𝑠2𝜃1

 ) 𝑣                                  (14) 

From equation (13)  𝑧1 = 𝑥1 − 𝜀 sin 𝑥3 then: 

𝑁 = 𝜀 cos 𝑥3(𝑥1(1 + 𝑥4
2)𝜀 sin 𝑥3) −

                 (1 − 𝜀 
2𝑐𝑜𝑠2𝑥3

 )𝑣                     (15) 

  

From the above analysis, the system equations 

can be decoupled as: 

�̇�1 = 𝑥2                                                  (16) 

�̇�2 = −𝑥1 + 𝜀 sin 𝑥3 + 11𝜀𝑥3               (17) 

�̇�3 = 𝑥4                                                  (18) 

�̇�4 = 𝑢                                                    (19) 

 

The Jacobian linearization method is used 

to obtain the TORA system linearized model 

of the TORA system. The resulted model is: 
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑓(𝑥(𝑡), 𝑢)                               (20) 
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where:                           

𝑥(𝑡) = [

𝑥1

𝑥2
𝑥3
𝑥4

]                                            (21) 

The Jacobian equation is applied for the 

system with equilibrium points (𝑋0, 𝑈0) 

defined as: 

𝑋0 = (𝑥10, 𝑥20, 𝑥30, 𝑥40) = (1, 0, 0, 0)    (22) 

𝑈0 = 0                                                      (23) 

Then, the final model is:              

[

�̇�1

�̇�2

�̇�3

�̇�4

] = [

   0 1
−1 0

0 0
12𝜀 0

    
0 0
0 0

0    1
0    0

] [

𝑥1

𝑥2
𝑥3
𝑥4

] + [

0
0
0
1

] [𝑢]  (24) 

[
𝑥1(𝑡)
𝑥3(𝑡)

] = [
1 0 0 0
0 0 1 0

] [

𝑥1

𝑥2
𝑥3
𝑥4

] +  𝐷[𝑢]       (25) 

3 Controller Design 
TORA system model can be expressed as a 

LTI by: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵1 𝑑(𝑡) + 𝐵2 𝑢(𝑡)         (26) 

𝑒(𝑡) = 𝐶1𝑥(𝑡) + 𝐷12 𝑢(𝑡)                       (27) 

𝑦(𝑡) = 𝑥(𝑡)                                              (28) 

 

To represent the system uncertainty the 

uncertain TORA model can be described by: 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝛥𝐴𝑥 + 𝐵1 𝑢(𝑡) 𝛥𝐵1𝑢(𝑡) +
      𝐵2 𝑢 (𝑡) + 𝛥𝐵2 𝑢(𝑡) + 𝑑(𝑡)               (29) 

where 𝑥(𝑡) ∈ 𝑅𝑛 is the state vector, 𝑒(𝑡) ∈ 𝑅ℎ 

is the output to be controlled vector, 𝑦(𝑡) ∈
𝑅𝑟 is the output, 𝑢(𝑡) ∈ 𝑅𝑚 is the control 

signal vector, 𝑑(𝑡) ∈ 𝑅𝑡 the disturbance, 𝐴, 

𝐵2  state space system matrix, 𝐵1 disturbance 

matrix, 𝛥𝐴, 𝛥𝐵1, 𝛥𝐵2  explain the matched 

uncertainty in 𝐴, 𝐵1 , 𝐵2 and 𝐶1, 𝐷12 represent 

controller design matrix. 

The obtaining of a scalar control law is the 

main objective of this work. The control law 

is illustrated by: 

𝑢  = 𝑢𝑠𝑤 + 𝑢𝑒𝑞                                       (30) 

where 𝑢𝑠𝑤 is the corrective control used to 

compensate the deviations from the sliding 

plane. 𝑢𝑒𝑞 is the equivalent control or the 

robust control which guarantees that the rate 

of change of the sliding plane is equal to zero 

to stay on the sliding surface. 

The first part of the control law is achieved by 

unity sliding design, and the second one will 

be performed using H2 state feedback 

controller. A unity sliding mode control 

approach for the system is presented with the 

uncertainty and disturbance with the TORA 

system model [10]. 

From equation (29) which includes the terms 

that represent the parametric uncertainty and 

disturbance and the matrix A is not full rank, 

the Singular Value Decomposition (SVD) 

technique is used to obtain a full rank matrix 

then with a controllable pair (𝐴, B) yields:  

𝐴𝑜 = 𝐴 − 𝐵𝐾                                          (31) 

where 𝐾 is selected such that the matrix 𝐴𝑜 is 

Hurwitz with the desired characteristic roots. 

then equation (29) becomes: 
 

�̇�(𝑡) = 𝐴𝑜𝑥(𝑡) + 𝛥𝐴𝑥 + 𝐵1𝑢𝑜(𝑡) +
     𝛥𝐵1𝑢𝑜(𝑡) + 𝐵2𝑢𝑜 (𝑡) + 𝛥𝐵2 + 𝑑(𝑡)    (32) 
 

Now, let the uncertainty in matrices 𝐴 and 𝐵 

can be written as: 

𝛥𝐴 = 𝐵𝐴𝛿   𝑎𝑛𝑑  𝛥𝐵 = 𝐵𝐵𝛿 

Then the bracket {𝛥𝐴𝑥 + 𝛥𝐵𝑢 + 𝑑(𝑡)} can 

be written as: 

𝛥𝐴𝑥 + 𝛥𝐵1𝑢 + 𝛥𝐵2𝑢 + 𝑑(𝑡) = 𝐵{𝐴𝛿𝑥 +
𝐵𝛿𝑢 + 𝛿(𝑡)} = 𝐵{(𝐴𝛿 − 𝐵𝛿𝐾)𝑥 +
            𝐵𝛿𝑢𝑜 + 𝛿(𝑡)}                                  (33) 

Assuming that the uncertainty (𝐴𝛿 , 𝐵𝛿) and the 

external disturbance (𝛿(𝑡)) are bounded, then 

we can get: 

‖(𝐴𝛿 − 𝐵𝛿𝐾)𝑥 + 𝐵𝛿𝑢𝑜 + 𝛿(𝑡)‖ ≤ 𝛼‖𝑥‖ +
             𝛽‖𝑢𝑜‖ + 𝜀                                   (34)   

𝑢  = −𝛾(‖𝑥‖)
𝑆

‖𝑆‖
− 𝐾𝑥                         (35) 

where  

𝑆 = 𝐵𝑇2𝑃𝑥 and   𝛾(‖𝑥‖) =
1

(1−𝛽)
{𝛼‖𝑥‖ +

             𝜀 + 𝑘} ,    𝑘 > 0 
So, the sliding mode control law basically is: 

𝑢𝑠𝑤 = −𝛾(‖𝑥‖)
𝑆

‖𝑆‖
                                (36) 

 

The H2 control objective is to obtain an 

optimal controller that minimizes a quadratic 

performance index (the H2 norm) of the 

system. Also, this controller offers a way of 

combining the design criteria of quadratic 

performance and disturbance rejection [11]. 

For the control system in equations 

(26),(27) and (28), it is required that the matrix 

𝐴 is of full rank, the pairs (𝐴, 𝐵1) and (𝐴, 𝐵2) 

are required to be stabilizable, (𝐶1, 𝐴) is 

required to be detectable and it is required that 

all the system state measurements are 

possible. 

Figure 2 presents the block diagram of the 

full state feedback H2 control. Assume that: 

 

𝑀 = [
𝐴 𝐵1 𝐵2

𝐶 0 𝐷12

𝐼 0 0
]                    (37) 
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Figure 2: H2 control structure [11]. 

where 𝑤(𝑡) is the exogenous inputs (set 

point 𝑟(𝑡) and disturbance input 𝑑(𝑡)).The 

system error for a white noise input can be 

represented using H2 norm by:  

‖𝑇𝑒𝑑‖𝐻2

2 = 𝐸(𝑒𝑇(𝑡)𝑒(𝑡))                   (38) 

where 𝑇𝑒𝑑 illustrates the total transfer function 

of the system to be controlled from 𝑑(𝑡) to 

𝑒(𝑡), then from  equation (38), we can obtain: 

𝑒𝑇(𝑡)𝑒(𝑡) = 𝑥(𝑡)𝑇𝑄𝑓𝑥(𝑡) +

       2𝑥(𝑡)𝑇𝑁𝑓𝑢(𝑡) + 𝑢(𝑡)𝑇𝑅𝑓 𝑢(𝑡)           (39) 

The minimization of ‖𝑇𝑒𝑑‖𝐻2

2  is equivalent to 

the stochastic regulator problem solution by 

setting: 𝑄𝑓 = 𝐶1
𝑇𝐶1,  𝑁𝑓 = 𝐶1

𝑇𝐷12 and 

𝑅𝑓=𝐷12
𝑇𝐷12 then, the cost function to be 

minimized is [11]:   

𝐸(𝑒𝑇(𝑡)𝑒(𝑡)) = 𝐽(𝑥(𝑡), 𝑢(𝑡)) =

∫ [
∞

0
𝑥(𝑡)𝑇𝑄𝑓𝑥(𝑡) + 2𝑥(𝑡)𝑇𝑁𝑓𝑢(𝑡) +

               𝑢(𝑡)𝑇𝑅𝑓 𝑢(𝑡)]𝑑𝑡                         (40) 

Consequently: 

𝐽 = ∫ [
𝑡𝑓

𝑡0
𝑥(𝑡)𝑇𝑄𝑓𝑥(𝑡) + 2𝑥(𝑡)𝑇𝑁𝑓𝑢(𝑡) +

                 𝑢(𝑡)𝑇𝑅𝑓 𝑢(𝑡)]𝑑𝑡                        (41) 

where 𝑄𝑓 ∈ 𝑄𝑓
𝑛×𝑛 is a symmetric positive 

semidefinite state weighting matrix, 𝑁𝑓 ∈

𝑁𝑓
𝑛×𝑛 is a symmetric positive semidefinite 

state and control weighting matrix and 𝑅𝑓 ∈

𝑅𝑓
𝑛×𝑛 is a control weighting matrix which is 

required to be symmetric positive definite. 

The optimal control action is: 

𝑢𝑒𝑞 = −𝐾 𝑥(𝑡)                                     (42) 

where 

𝐾 = 𝑅𝑓
−1(𝐵1

𝑇𝑃 +  𝑁𝑓
𝑇)                     (43) 

The Riccati equation is: 

(𝐴 − 𝐵2𝑅𝑓
−1 𝑁𝑓

𝑇)
𝑇

𝑃 + 𝑃(𝐴 −

     𝐵2𝑅𝑓
−1 𝑁𝑓

𝑇) − 𝑃𝐵2 𝑅𝑓
−1𝐵1

𝑇𝑃 + 𝑄𝑓 −

          𝑁𝑓 𝑅𝑓
−1𝑁𝑓

𝑇 = 0                        (44) 

 

where 𝐾 is represents the state feedback gain 

matrix. 

4 Results and Discussion 
Figure 3 shows the time response of the 

system before applying the proposed 

controller. It shows that the system is 

oscillatory and the design of a controller is 

required. The response of the system using 

sliding mode control and H2 sliding mode 

controller is shown in Figure 4. It is shown 

from sliding mode control results that the 

system position reaches the steady state within 

7 sec. and the pendulum angle deviates 

between -46ᴼ and 30ᴼ. The time response 

specifications of the system using H2 sliding 

mode controller are: position settling time 

equal to 5 sec. and the pendulum angle 

deviates between 0ᴼ and 6.3ᴼ. The resulting 

control signal can be shown in Figure 5. As 

can be seen, the control signal of sliding mode 

control deviates between -116 N.m and 45 

N.m and for H2 sliding mode controller, the 

control signal deviates between 1.5 N.m and -

0.5 N.m. 

From this result, it is clear that the 

superiority of the proposed H2 sliding mode 

controller in that it can achieve a more 

improved time response in comparison to that 

obtained using sliding mode controller. 

Moreover, it can be seen that a low control 

effort has been achieved as shown in Figure 5. 

The resulting state feedback gain matrix 

which represents the H2 control part is:  
K2 = [0.5964   46.2602  101.3292   18.7792] 

 

For robustness test of a change of ±50% in 

system parameters is considered. Figure 6 

shows the output response of the system with 

parameters uncertainty. Figure 8 shows the 

output response of the system with 

disturbance of 1 N.m at the 4.5 second. As is 

seen, the proposed can compensate for the 

change in system parameter and achieve the 

desired performance.  
 
In order to further show the effectiveness 

of the proposed H2 sliding mode controller, a 

comparison with previously done works has 

been considered. Table 1 compares the results 

of the proposed controller and Decoupled 

Self-tuning Signed-Distance Fuzzy Sliding 

Mode Controller (DSSFSMC) which was 

done by Hung et al in 2007 [4]. The table 

clearly shows that the benefits of the proposed 

controller over the controllers done 

previously. 

𝒘(𝒕) 

𝒖(𝒕) 

𝑀  

−𝐾𝟐  

 

𝒆(𝒕) 

          𝒚(𝒕) 
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(a) 

 

  
(b) 

 

Figure 3: System response without controller (a) 

position (b) pendulum angle. 

 

 

(a) 
 

 

(b) 

 

 
(c) 

 

 
(d) 

 
 

 

Figure 4: Nonlinear system response with sliding 

mode controller and H2 sliding mode controller 

(a) position (b) velocity (c) pendulum angle, (d) 

pendulum velocity. 
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Figure 5: The resulting control signal using 

sliding mode control and H2 sliding mode 

controller for the nonlinear system.  

 

 
(a) 

 

 
 

 

(b) 

Figure 6: Nonlinear controlled system response 

with parameters uncertainty using H2 sliding 

mode controller (a) position (b) pendulum angle. 
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 (b) 

 

Figure 7: Nonlinear controlled system response 

with disturbance using H2 sliding mode controller 

(a) position (b) pendulum angle.  

 

 

Table 1: Comparison between DSSFSMC, 

optimal sliding mode control and H2 sliding mode 

controller. 

 

Controller 

System 

position 
Pendulum angle 

𝒕𝒔 
(𝒔𝒆𝒄. ) 

𝒕𝒓 
(𝒔𝒆𝒄. ) 

𝒕𝒔 
(𝒔𝒆𝒄. ) 

𝒕𝒓 
(𝒔𝒆𝒄. ) 

dev. 
(𝒅𝒆𝒈𝒓𝒆𝒆) 

DSSFSMC 19 1.36 62 1.2 
100.33 

to -84.3 

Optimal 

SMC 
4.9 0.46 5.5 0.38 

−45.33 
to 30.3 

H2SMC 2.7 0.7 3.9 0.2 0 to 6.3 
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5 Conclusion 

In this paper, the design of H2 sliding mode 

control for TORA system has been presented. 

It was shown that the combination between H2 

control and sliding mode control has achieved 

a performance better than if only one of them 

is used. Also, it was found that the proposed 

controller can compensate the model 

uncertainties to improve the system 

performance significantly. A comparison with 

previous works has been considered to 

illustrate the efficiency of the proposed 

controller. 
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 TORAمسيطر النمط الانزلاقي للسيطرة على منظومة  المدمج مع 2Hمسيطر تصميم 

 

 الخلاصة
والتي تعتبر منظومة ثنائية درجة الحرية   TORAفي هذا البحث تم اقتراح مسيطر النمط الانزلاقي الامثل للسيطرة على منظومة 

 ومنظومة تحت التحكم. ويعتبر التداخل اللاخطي الموجود في هذه المنظومة واحدا من اهم المشاكل التي تواجه المسيطر المصمم.ولغرض تحسين

مما لو تم استخدام المسيطر انزلاقي  ليعطي مواصفات اداء للمنظومة افضل  2H اكثر لاداء المسيطر الانزلاقي النمط تم دمجه مع المسيطر 

وبوجود  ةالنمط فقط. النتائج المستحصلة تبين كفاءة وقوة المسيطر المقترح في توفير الاستقرارية بوجود التغييرات المحتملة في معاملات المنظوم
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