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Abstract

In this work, the control of Translational
Oscillations with a Rotational Actuator (TORA)
system is presented in this paper. The optimal
sliding mode controller is proposed to control the
two DOF underactuated mechanical system. The
nonlinear coupling from the rotational to the
translational motion is the main problem that faces
the controller design. The H, sliding mode
controller is designed to give a better performance
if only sliding mode control is used. The results
illustrate that the proposed H: sliding mode
controller can achieve the stabilization of the
system with the variation in system parameters and
disturbance.

Keywords: TORA System, Robust Control,
Sliding Mode Control, H, Statefeedback, Optimal
Control.

1 Introduction

The Translational Oscillations with a
Rotational Actuator (TORA) or Rotational/
Translational Actuator (RTAC) system is one of
the nonlinear underactuated benchmark systems.
TORA system was proposed in the early 1990s,
Bupp et al [1]. TORA consists of the motion
control of a cart possessing one translational
degree of freedom, which is actuated by an
eccentric rotational mass actuator mounted on the
cart. TORA system is one of the complex control
problems of a dual-spin aircraft [2]. The interaction
between spin and nutation represents the
complicated part in the algorithm design task for
the control system engineers [3]. However, it is a
quite difficult task to prove the versatility of a
control algorithm on an actual dual-spin aircraft,
and it may even lead to a catastrophic system
failure.

Recently, many nonlinear controller design
methods applied to stabilize the TORA system
equation. Hung et al [4] in 2007 designed self-
tuning fuzzy sliding mode control for TORA
system using the decoupled method. Morillo et al
[5] in 2008 applied interconnection and damping
assignment control to stabilize the TORA system
using passivity based control approach. Li et al [3]
in 2009 proposed a design of Single Input Rule
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Modules (SIRMs) based Type-2 Fuzzy Logic
controller for TORA system and GA was used for
all parameter tuning to improve the control
performance. Chen et al [6] in 2010 presents a
smooth switching control for TORA system via
LMI in a linear parameter varying. Lee and Chang
[1] in 2012 implement a wavelet-based neural
network to develop an adaptive backstepping
controller design for TORA system. Chang et al [7]
in 2016 presented a hybrid algorithm to control
TORA system. Sliding mode controller is
combined with a fuzzy controller to achieve robust
performance. The result compared with a previous
work to show the effectiveness of the proposed
controller but the settling time still too long. Lin
and Chang [8] in 2017 developed a Takagi-Sugeno
fuzzy model-based for controlling TORA system.
They used two rules and triangular memberships.
The results show the presence of high oscillation in
the states time responses.

In this work, the model of the TORA system is
developed by Euler Lagrange equation of motion
methods. The design of H; sliding mode controller
is presented to achieve an optimal performance in
presence of system parameter variation and
disturbance.

2 System Mathematical Model

TORA system schematic representation is
shown in Figure 1. This system consists of a
rotating arm with mass (m) which added to a rotary
disk of inertia (I). This arm is riding on a cart
constrained to move horizontally. A spring of
stiffness (k) is used to attach the moving cart to a
wall. M represents the total mass of the disk and
the cart and e denote the distance between the
center of the disk and the unbalanced mass. In the
horizontal plane the cart and pendulum will move,
where Xc and x. denote the normalized translational
position and velocity of the cart, respectively, 6
and Odenote the angular position and velocity of
the rotational actuator where 6 = 0 corresponds to
the 90-degree rotation from the spring axis as
shown in Figure 1. The cart is perturbed by a
translational disturbance force F. The pendulum is
actuated by the control torque N [2].
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Figure 1: The TORA system schematic structure
(3.

Depending on the generalized coordinates
[x., %, 0,0]T and using Newton 2™ law of
motion, the equations of motion for the ideal
TORA system can be expressed by:

(M + m)i, + me(fcosd — 62sind) + kx. = F (1)

(I + me?)6 + mi.e cosd = N (2)
Then by introducing the normalized variables:
g, A [ Mim a_____me
L= \1+me2” ¢ ° = [U+me2)(M+m)’
A (M+m) a k a
= k(+me?) t= \IM+mt and  Fy 2
l M+m F
kA I+me?

and rewriting equation (1) and (2) using the
normalized variables yields:
# + 21 = €(0%sin — Hcosh) + Fy

0 =u— ¢eZ;cos0

3)
(4)

where the differentiation is done with respect
to 7. By defining:
X = (xl, Xo, X3,X4)T = (Zl,Zl, 9, H)T
The normalized state space representation of
the system can be given by:

(%)

Zl == ZZ
—2z1+€67 sinf, (6)
(7)

u (8)

£ cos 0,

Zy =
2 1-£2co0s26,

91:92

5 £ cos0, (z,—£6% sinb,) 1
92 =

1-g2c0s26,

1-&2c0s20, 1-&2co0s%6,
where z; represents the normalized
displacement of the platform from the rest
position, z, = z;, 64is the angle of the
arm,6, = ; and u is the control torque
applied.
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By applying the decoupling algorithm we get
[9]:

fi= —2z,+€60% sin6, _ ecos O,
17 1-¢2cos26, 91= 1—-¢£2co0s20,’

_ £c0s0,(z;—€02 sinb,) _ 1
f2= and g, =

1-&2co0s26, 1-&2co0s?0,

then 2 = ¢ cos 6,
92

X1 =z + € 5inby 9)
Xy = Zy + £ 0,c0560; (10)
X3 =6, (11)
X4 =06, (12)

It is shown that the control goals z; — 0,z, —
0,6, —» 0 and 8, — 0 are equivalent to x; —
0,i=1,234.

Since
X, = 7 + £0,c050, — £62sinb,
—z; + 6% sinf, € cos 0,
~ 1—¢&2co0s26, 1 —&2cos?6, “
. (e cosB,(z, — €02 sinb,)

1 — e%cos?6,

N 1

—_— Uu

1 —&2cos?6,
—z, + €62 sinf, &2 cosB,(z; — £6% sinb,)

> cosf; — €62 sinf,

1 — €2cos?0,
—£6% sinb,
_ —2;(1 — €%cos,) + €65 sinh; (1 — e*cos6,)

1 — e2cos?6,

1 — &2cos?0,
—£6% sinb,
= —zy = —Xx1 + £sinx;
£ 050, (z,—£62 sind 1
Let v = 1( 1 2 1) _

(13)

1-£2co0s20, 1-€2co0s?0,
i.eu = £ cosO(z; — €62 sinf;) — (1 —

c2cos?0,) v (14)
From equation (13) z; = x; — € sinx3 then:
N = ecosx3(x;(1 +x3)esinxz) —

(1 — €2cos?x3)v (15)

From the above analysis, the system equations
can be decoupled as:

x1 = xz (16)
X, = —x1 +esinx; + 1lexs an
X3 = Xy (18)

The Jacobian linearization method is used
to obtain the TORA system linearized model
of the TORA system. The resulted model is:

O = fx(®),w) (20)
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where:
X1

x(6) = |32 21)
X4

The Jacobian equation is applied for the
system with equilibrium points (X,, Up)
defined as:

Xo = (x10,X20, %30, X40) = (1,0,0,0) (22)

Uy=0 (23)
Then, the final model is:
'{cl 01 0 01 0
Yl _|-1 0 12¢ of|x 0
x3‘[ 00 0 1|lx|*|o|l (24
%, 0 0 0 o0llx 1
X1
'xl(t)]_ 1 0 0 07]x,
L (£) _[0 0 1 ollw|t Pl (29
X4

3 Controller Design
TORA system model can be expressed as a
LTI by:

x(t) = Ax(t) + B; d(t) + B, u(t) (26)
e(t) = Cyx(t) + Dip u(t) 27)
y() = x(t) (28)

To represent the system uncertainty the
uncertain TORA model can be described by:
x(t) = Ax(t) + AAx + By u(t) ABju(t) +

B, u (t) + AB, u(t) + d(t) (29)
where x(t) € R™ is the state vector, e(t) € R"
is the output to be controlled vector, y(t) €
R" is the output, u(t) € R™ is the control
signal vector, d(t) € Rt the disturbance, 4,
B, state space system matrix, B; disturbance
matrix, 44,4B;,AB, explain the matched
uncertainty in A, By , B, and C;, Dy, represent
controller design matrix.

The obtaining of a scalar control law is the
main objective of this work. The control law
is illustrated by:

U = Ugy + Ugg (30)
where uy,, is the corrective control used to
compensate the deviations from the sliding
plane. u., is the equivalent control or the
robust control which guarantees that the rate
of change of the sliding plane is equal to zero
to stay on the sliding surface.

The first part of the control law is achieved by
unity sliding design, and the second one will
be performed using H, state feedback
controller. A unity sliding mode control
approach for the system is presented with the
uncertainty and disturbance with the TORA
system model [10].
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From equation (29) which includes the terms
that represent the parametric uncertainty and
disturbance and the matrix A is not full rank,
the Singular Value Decomposition (SVD)
technique is used to obtain a full rank matrix
then with a controllable pair (A4, B) yields:
Ao=A-BK (31)

where K is selected such that the matrix 4, is
Hurwitz with the desired characteristic roots.
then equation (29) becomes:

x(t) = Apyx(t) + AAx + Byu,(t) +
AByu,(t) + Bou, (t) + AB, +d(t) (32)

Now, let the uncertainty in matrices A and B
can be written as:
AA = BAg and AB = BBy
Then the bracket {4Ax + ABu + d(t)} can
be written as:
AAx + AByu + AByu + d(t) = B{Asgx +
Bsu + §()} = B{(A5 - B5K)x +

Bsu, + 8(t)} (33)
Assuming that the uncertainty (45, Bs) and the
external disturbance (5(t)) are bounded, then
we can get:
I(As — BsK)x + Bsu, + 6Ol < allx|| +

Blluoll + € (34)
u = —y(llxl) o — Kx (35)
where
s=B"2Px and y(llxll) = =5 lalixl +
e+k}, k>0
So, the sliding mode control law basically is:
s = =y (lxlD (36)

The H, control objective is to obtain an
optimal controller that minimizes a quadratic
performance index (the H, norm) of the
system. Also, this controller offers a way of
combining the design criteria of quadratic
performance and disturbance rejection [11].

For the control system in equations
(26),(27) and (28), it is required that the matrix
A is of full rank, the pairs (4, B;) and (4, B,)
are required to be stabilizable, (Cy,A4) is
required to be detectable and it is required that
all the system state measurements are
possible.

Figure 2 presents the block diagram of the
full state feedback H, control. Assume that:

A B, B,
M=|c 0 Dy (37)
I 0 0
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w(t) —>
—>

—> ()

b40)

u(t)

—K, le

Figure 2: H, control structure [11].
where w(t) is the exogenous inputs (set
pointr(t) and disturbance inputd(t)).The
system error for a white noise input can be
represented using H, norm by:

ITeallf, = E(e” (t)e(t)) (38)
where T, illustrates the total transfer function
of the system to be controlled from d(t) to
e(t), then from equation (38), we can obtain:
ef(Me() = x(O)Qpx(t) +

2x(OTNpu(t) + u(t)" Ry u(t) (39)
The minimization of ||Ted||§,2 is equivalent to
the stochastic regulator problem solution by
setting: Qr = €, €y, N; = ¢," Dy, and
Rf=D12TD12 then, the cost function to be
minimized is [11]:

E(e"(®)e®)) =J(x(®),u(®)) =
J Tx(OTQpx(®) + 2x(OT Npu(t) +

u() Ry u(t)]dt (40)
Consequently:
J = [I1x®TQpx(6) + 2x(O) Npu(t) +
u(t)" Ry u(t)]dt (41)

where Qf € Q™™ is a symmetric positive
semidefinite state weighting matrix, Ny €
N™™ is a symmetric positive semidefinite
state and control weighting matrix and Ry €
R;™™ is a control weighting matrix which is

required to be symmetric positive definite.
The optimal control action is:

Ueqg = —K x(t) (42)
where
K=R/'(B,"P+ N") (43)

The Riccati equation is:
-1 T\T
(A=B,R,™"N") P+P(A-
B,R; ™ N};T) - PB, R;™'By"P + Q; —

where K is represents the state feedback gain
matrix.
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4 Results and Discussion

Figure 3 shows the time response of the
system before applying the proposed
controller. It shows that the system is
oscillatory and the design of a controller is
required. The response of the system using
sliding mode control and H: sliding mode
controller is shown in Figure 4. It is shown
from sliding mode control results that the
system position reaches the steady state within
7 sec. and the pendulum angle deviates
between -46° and 30°. The time response
specifications of the system using H: sliding
mode controller are: position settling time
equal to 5 sec. and the pendulum angle
deviates between 0° and 6.3°. The resulting
control signal can be shown in Figure 5. As
can be seen, the control signal of sliding mode
control deviates between -116 N.m and 45
N.m and for H, sliding mode controller, the
control signal deviates between 1.5 N.m and -
0.5 N.m.

From this result, it is clear that the
superiority of the proposed H; sliding mode
controller in that it can achieve a more
improved time response in comparison to that
obtained using sliding mode controller.
Moreover, it can be seen that a low control
effort has been achieved as shown in Figure 5.

The resulting state feedback gain matrix
which represents the H, control part is:

K, =[0.5964 46.2602 101.3292 18.7792]

For robustness test of a change of £50% in
system parameters is considered. Figure 6
shows the output response of the system with
parameters uncertainty. Figure 8 shows the
output response of the system with
disturbance of 1 N.m at the 4.5 second. As is
seen, the proposed can compensate for the
change in system parameter and achieve the
desired performance.

In order to further show the effectiveness
of the proposed H: sliding mode controller, a
comparison with previously done works has
been considered. Table 1 compares the results
of the proposed controller and Decoupled
Self-tuning Signed-Distance Fuzzy Sliding
Mode Controller (DSSFSMC) which was
done by Hung et al in 2007 [4]. The table
clearly shows that the benefits of the proposed
controller over the controllers done
previously.
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Figure 3: System response without controller (a)
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Figure 4: Nonlinear system response with sliding
mode controller and H; sliding mode controller
(a) position (b) velocity (c) pendulum angle, (d)

pendulum velocity.
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Figure 5: The resulting control signal using
sliding mode control and H; sliding mode
controller for the nonlinear system.
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Figure 6: Nonlinear controlled system response
with parameters uncertainty using H: sliding

mode controller (a) position (b) pendulum angle.
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Figure 7: Nonlinear controlled system response
with disturbance using H: sliding mode controller
(a) position (b) pendulum angle.

Table 1: Comparison between DSSFSMC,
optimal sliding mode control and H; sliding mode

controller.
Sgssitt?g?] Pendulum angle
Controller |—P

t, t, t, t, dev.
(sec.) | (sec.) | (sec.) | (sec.) | (degree)
100.33
DSSFSMC | 19 | 136 | 62 | 1.2 t0-843
Optimal —45.33
SMC 49 | 046 | 55 | 0.38 t0 30.3
H.SMC 27 | 07 | 39 | 0.2 |0to6.3
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5 Conclusion

In this paper, the design of H; sliding mode
control for TORA system has been presented.
It was shown that the combination between H.
control and sliding mode control has achieved
a performance better than if only one of them
is used. Also, it was found that the proposed
controller can compensate the model
uncertainties to improve the system
performance significantly. A comparison with
previous works has been considered to
illustrate the efficiency of the proposed
controller.
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