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Abstract  

The free vibration analysis of rotating multi-
layered cylindrical shell is investigated based on 
the first order shear deformation theory (FSDT) of 
shell. Cylindrical shell consists of three layers; 
outer and inner layers are isotropic material and 
the middle layer is a functionally graded material 
(FGM). The material properties for middle layer 
are assumed to be graded in the thickness 
direction. Based on Hamilton’s principle, the 
equilibrium equations and the equations of motion 
are derived and then solved by using the 
differential quadrature method (DQM) as a 
numerical tool. MATLAB software was adopted 
for programming the equations and the related 
boundary condition. The effect of (FGM) layer 
thickness, angular speed, index power law, 
circumferential wave number on the natural 
frequency of the clamped-clamped rotating 
cylindrical shell were examined. The numerical 
results showed that a reasonable agreement 
between the present study and analytical data 
available in the literature. 
 
List of Symbols  
English Symbols  

Notation Description 
[C] Damping matrix 
{d} Degrees of freedom 
E Young's modulus 

𝐸𝐸�  Equivalence Young’s modulus for 
cylindrical shell 

G Shear rigidity 
H Total thickness of the cylindrical shell 
h Thickness of middle layer 
K Kinetic energy  

[𝐾𝐾�] Equivalent stiffness matrix 
ks Shear correction factor 
L Length of the cylindrical shell 

[M] Mass matrix 
m Circumferential wave number 

Nx 
Grid point in the longitudinal 
direction  

p  Index power law 
R Mean radius of cylindrical shell  

t Time 
t1, t2 Two arbitrary time 
U Strain energy 

u , v , w Displacement component at the 
reference surface 

W Work done 
x , θ , z Cylindrical coordinates 

 
Greek Symbols  
Notation Description 

𝛿𝛿 Mathematical operation called 
variation 

𝑣𝑣 Poisson's ratio 
𝜀𝜀 Normal strain component 
𝛾𝛾 Shear strain component 
𝜎𝜎 Stress component 

𝜑𝜑𝑥𝑥 ,𝜑𝜑𝜃𝜃  
Bending rotation of the cross section 
of the shell about θ and x-axis, 
respectively 

𝜌𝜌 Mass density 
λ Non-dimensional frequency parameter 
𝜔𝜔𝑛𝑛 Natural frequency 
Ω Rotating velocity 
Π Total potential energy 

𝜕𝜕( )
𝜕𝜕( ) 

Derivative with respect to specific axis 

 
1. Introduction   

Multi-layered rotating cylindrical shell is often 
used in mechanical, civil, electrical structures.  
The types of these structures vary from one 
application to other according to the function of 
this structure as well as the operating conditions. 
In recent years, a new class of engineering 
materials appeared called ‘Functionally Graded 
Materials’ (FGM) which is a mixture of two 
materials often ceramic and metal. With using 
FGM, the properties of structure can be enhanced 
and become more strength. Bayat et al. [1] studied 
the effect of mechanical and thermal loads on a 
functionally graded rotating disk according to first 
order shear deformation Mindlin plate and Von 
Karman theories. Malekzadeh et al. [2] used 
Hamilton’s principle to derive the equations of 
motion depending on first order shear 
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deformation theory (FSDT) and examined the 
effect of the temperature increase on the 
frequency for the functionally graded circular 
arches in thermal environment. Malekzadeh [3] 
investigated the free vibration of functionally 
graded thick circular in thermal environment 
depending on the two dimensional elasticity 
theory. Li et al. [4] employed the Flϋgges shell 
theory to obtain the governing equations for 
simply supported three-layer circular cylindrical 
shell with functionally graded middle layer and 
tested the effect of material properties and 
geometrical parameters on natural frequency. 
Malekzadeh et al. [5] examined the free vibration 
of functionally graded circular curved beam in 
thermal environment by using the differential 
quadrature method (DQM) to solve the equations 
of motion. Dai and Zheng [6] used the Donnell 
shell theory to study buckling and post-buckling 
for laminated cylindrical shell with functionally 
graded layer. Malekzadeh and Heydarpour [7] 
studied the effect rotation on the vibration 
characteristics of a functionally graded (FG) 
cylindrical shell in thermal environment based on 
the first order shear deformation theory (FSDT). 
Shah et al. [8] investigated the vibration of three-
layered cylindrical shell containing functionally 
graded layer in the middle and resting on elastic 
foundations.  Malekzadeh et al. [9] studied the 
three-dimensional (3D) free vibration of truncated 
conical shell made of functionally graded material 
(FGM) in thermal environment. Malekzadeh and 
Heydarpour [10] investigated the effect of 
rotating speed, coriolis acceleration, geometry, 
material properties and different boundary 
conditions on the vibration characteristics for 

functionally graded (FG) truncated conical shell. 
Naeem et al. [11] examined the vibration of three-
layered cylindrical shell containing two 
functionally graded (FG) layer at inner and outer 
and the middle layer assumed isotropic material.  
Heydarpour et al. [12] calculated the natural 
frequency for rotating truncated conical shell 
based on the first order shear deformation theory 
(FSDT). Through the above, the free vibration of 
rotating multi-layered cylindrical shell with 
functionally graded (FG) middle layer have not 
been so fully investigated. Therefore, this 
research project focuses on the free vibration of 
rotating multi-layered cylindrical shell clamped at 
both ends and composed of three layer. Inner and 
outer layers will be in the form of isotropic 
material, while the middle layer in the form of 
functionally graded material (FGM).  
 
2. Geometric model  

A multi-layered cylindrical shell is 
schematically illustrated in Fig.1. Inner and outer 
as isotropic material and the middle layer as a 
functionally graded material (FGM). The 
geometrical parameters of cylindrical shell are: R 
is the mean radius, while H, h and L represent the 
shell thickness, thickness of middle layer and the 
length of the cylindrical shell, respectively. Ω is 
angular speed of the cylindrical shell spin around 
its axis.  Cylindrical coordinates (x,θ,z) are used 
to describe the material points of the cylindrical 
shell in the middle undeformed plane, where x, θ 
and  z  are the axial, circumferential and the radial 
directions, respectively.  

 
Figure 1: Detailed drawing of a rotating multi-layer cylindrical shell with functionally graded layer  

 
3. Material properties: 

For functionally graded material the Poisson's 
ratio assumed constant, while Young's modulus 
and density varies continuously in thickness 
directions (z. directions) depending on the simple 
power law distribution of materials.  The Young's 
modulus for FG layer can be calculated as: 
𝐸𝐸(𝑧𝑧) = 𝐸𝐸𝑚𝑚 + (𝐸𝐸𝑐𝑐 − 𝐸𝐸𝑚𝑚) �2𝑧𝑧+ℎ

2𝑧𝑧
�
𝑝𝑝
                 (1) 

where Ec  and Em  are values of  outer surface 
(ceramic rich ) and inner surface (metal rich) of 

the functionally graded layer , p represents the 
power law index which is a positive real 
number[10] limited to (0→∞). The material 
properties of the three layers are presented in 
Tables (1,2) .  
  
4. Initial dynamic equilibrium 
equations: 

Due to the rotation of the cylindrical shell, 
initial mechanical stresses are generated and then 
the effects of these stresses are taken in 
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consideration in the calculation of the free 
vibration.  Referring to the theory of elasticity and 
according to the cylindrical coordinates, the linear 
strain – displacement relations  [13]  are : 

𝜀𝜀0𝑥𝑥𝑥𝑥 =
𝜕𝜕𝑢𝑢�0
𝜕𝜕𝜕𝜕

 , 𝜀𝜀0𝜃𝜃𝜃𝜃 =
𝑤𝑤�0

(𝑅𝑅 + 𝑧𝑧) , 𝜀𝜀0𝑧𝑧𝑧𝑧 =
𝜕𝜕𝑤𝑤�0
𝜕𝜕𝑧𝑧

 , 

𝛾𝛾0𝑥𝑥𝑧𝑧 =   𝜕𝜕𝑤𝑤�0
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑢𝑢�0
𝜕𝜕𝑧𝑧

                  (2a-d) 
 
The linear stress – strain relations [13] are : 
 𝜎𝜎0𝑥𝑥𝑥𝑥 = 𝐸𝐸�[𝜀𝜀0𝑥𝑥𝑥𝑥 + ѵ𝜀𝜀0𝜃𝜃𝜃𝜃],𝜎𝜎0𝜃𝜃𝜃𝜃 = 𝐸𝐸�[𝜎𝜎0𝜃𝜃𝜃𝜃 +
ѵ𝜎𝜎0𝑥𝑥𝑥𝑥],𝜎𝜎0𝑥𝑥𝑧𝑧 = 𝑘𝑘𝑠𝑠𝐺𝐺𝛾𝛾0𝑥𝑥𝑧𝑧     (3a-c) 
 
 Where:    Ẽ  is the equivalence  Young’s modulus 
for cylindrical shell   
 𝐸𝐸� = � 𝐸𝐸

1−ѵ2
�
𝑖𝑖𝑛𝑛

+ �𝐸𝐸(𝑧𝑧)
1−ѵ2

�
𝐹𝐹𝐹𝐹

+ � 𝐸𝐸
1−ѵ2

�
𝑜𝑜𝑢𝑢𝑜𝑜

  
 

G  is the shear rigidity   
 𝐺𝐺 = � 𝐸𝐸

2(1+ѵ)
�
𝑖𝑖𝑛𝑛

+ � 𝐸𝐸(𝑧𝑧)
2(1+ѵ)

�
𝐹𝐹𝐹𝐹

+ � 𝐸𝐸
2(1+ѵ)

�
𝑜𝑜𝑢𝑢𝑜𝑜

  

 
ks  is the shear correction factor ,  and  ѵ is  the 
Poisson’s ratio. The principle of virtual work is 
used to derive equilibrium equations with related 
boundary conditions. The total potential energy 
can be written as: 

∏ = U – W                       (4) 
 
Where, ∏, U, and W are the total potential 
energy, Strain energy, and the work done, 
respectively. By applying the integration by-part 
method, a set of ordinary differential equations 
are obtained and then the initial stresses are 
calculated. 

 
Table 1: Materials properties of inner and outer layer 

Layer Modulus of elasticity 𝐸𝐸(𝑁𝑁 𝑚𝑚2⁄ ) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃(𝑣𝑣) 𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝐷𝐷 𝜌𝜌(𝐾𝐾𝐾𝐾 𝑚𝑚3⁄ ) 
Inner (ceramic) 151E +09 0.3 5700 

Outer(metal) 68.95E +09 0.3 2714.5 
 

Table 2: Materials properties of (FGM) layer 
FGM Modulus of elasticity 𝐸𝐸(𝑁𝑁 𝑚𝑚2⁄ ) 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃𝑃𝑃(𝑣𝑣) 𝐷𝐷𝐷𝐷𝑃𝑃𝑃𝑃𝑃𝑃𝑟𝑟𝐷𝐷 𝜌𝜌(𝐾𝐾𝐾𝐾 𝑚𝑚3⁄ ) 

Zirconia 1.68E +11 0.3 5700 
Nickel 2.05098E +11 0.3 8900 

 
5. Free vibration equations  

On the assumption that the free vibration of 
the shell happens about its dynamic equilibrium 
positioning (non-deformed plane), therefore, 
based on this hypothesis, displacement 
components are measured from this position. 
According to the first order shear deformation 
theory (FSDT) of shell, the general displacement 
components (𝑢𝑢�  , 𝑣𝑣� ,𝑤𝑤�) at an arbitrary material 
point (x , θ , z ) in the thickness direction (z- 
direction ) measured from the non-deformed 
plane are as follows :  
 

𝑢𝑢�(x,θ,z,t) =𝑢𝑢0(𝜕𝜕) + 𝑧𝑧𝜑𝜑0𝑥𝑥(𝜕𝜕) + u(x,θ,t) + 
𝑧𝑧𝜑𝜑𝑥𝑥(𝜕𝜕,𝜃𝜃, 𝑟𝑟)                                 (5a) 

𝑣𝑣�(x,θ,z,t) = 𝑣𝑣(𝜕𝜕,𝜃𝜃, 𝑟𝑟) + 𝑧𝑧𝜑𝜑𝜃𝜃(𝜕𝜕,𝜃𝜃, 𝑟𝑟)     (5b) 

𝑤𝑤�(𝜕𝜕,𝜃𝜃𝑧𝑧, 𝑟𝑟) = 𝑤𝑤0(𝜕𝜕) + 𝑤𝑤(𝜕𝜕,𝜃𝜃, 𝑟𝑟)            (5c) 

Where  𝜑𝜑𝑥𝑥(𝜕𝜕,𝜃𝜃, 𝑟𝑟) and 𝜑𝜑𝜃𝜃(𝜕𝜕,𝜃𝜃, 𝑟𝑟) are the 
bending rotation of the cross section of the shell 
about θ and x-axis, respectively. Hamilton's 
principle is employed in order to derive the 
equations of motion with the regarding boundary 
conditions,  

∫ (𝛿𝛿𝐾𝐾 − 𝛿𝛿𝛿𝛿)𝑜𝑜2
𝑜𝑜1 𝑑𝑑𝑟𝑟 = 0      (6) 

Where, t1 and t2 are two arbitrary times, 𝛿𝛿 is 
the variational operator, K is the kinetic energy 
and U is the potential energy of the shell. In this 
section, the initial mechanical stresses of the 
equilibrium state are included in the equations of 
motion. In order to achieve this, the nonlinear 
strain - displacement relations in the cylindrical 
coordinate [14] are taken into account. So, the 
form of potential and kinetic energy equations 
are: 
𝛿𝛿𝛿𝛿 = ∫ ∫ ∫ [(𝜎𝜎𝑥𝑥𝑥𝑥 + 𝜎𝜎0𝑥𝑥𝑥𝑥)𝛿𝛿𝜀𝜀�̂�𝑥𝑥𝑥 +

𝐻𝐻
2
−𝐻𝐻2

𝐿𝐿
0

2𝜋𝜋
0

(𝜎𝜎𝜃𝜃𝜃𝜃 + 𝜎𝜎0𝜃𝜃𝜃𝜃)𝛿𝛿𝜀𝜀�̂�𝜃𝜃𝜃 + (𝜎𝜎𝑥𝑥𝑧𝑧 + 𝜎𝜎0𝑥𝑥𝑧𝑧)𝛿𝛿𝛾𝛾�𝑥𝑥𝑧𝑧 +
𝜎𝜎𝑥𝑥𝜃𝜃𝛿𝛿𝛾𝛾�𝑥𝑥𝜃𝜃 + 𝜎𝜎𝜃𝜃𝑧𝑧𝛿𝛿𝛾𝛾�𝜃𝜃𝑧𝑧] (𝑅𝑅 + 𝑧𝑧)𝑑𝑑𝑧𝑧𝑑𝑑𝜕𝜕𝑑𝑑𝜃𝜃         (7)  
 

 𝛿𝛿𝐾𝐾 =  ∫ ∫ ∫   𝜌𝜌 �𝜕𝜕𝑢𝑢�
𝜕𝜕𝑜𝑜

𝜕𝜕𝜕𝜕𝑢𝑢�
𝜕𝜕𝑜𝑜

+ 𝜕𝜕𝑣𝑣�
𝜕𝜕𝑜𝑜

𝜕𝜕𝜕𝜕𝑣𝑣�
𝜕𝜕𝑜𝑜

+ 𝜕𝜕𝑤𝑤�
𝜕𝜕𝑜𝑜

𝜕𝜕𝜕𝜕𝑤𝑤�
𝜕𝜕𝑜𝑜

+
𝐻𝐻
2
−𝐻𝐻2

𝐿𝐿
0

2𝜋𝜋
0

𝛺𝛺 �𝑤𝑤� 𝜕𝜕𝜕𝜕𝑣𝑣�
𝜕𝜕𝑜𝑜

+ 𝜕𝜕𝑣𝑣�
𝜕𝜕𝑜𝑜
𝛿𝛿𝑤𝑤� − 𝜕𝜕𝑤𝑤�

𝜕𝜕𝑜𝑜
𝛿𝛿𝑣𝑣� − 𝑣𝑣� 𝜕𝜕𝜕𝜕𝑤𝑤�

𝜕𝜕𝑜𝑜
� +

𝛺𝛺2(𝑣𝑣�𝛿𝛿𝑣𝑣� + 𝑤𝑤�𝛿𝛿𝑤𝑤�)�  (𝑅𝑅 + 𝑧𝑧)𝑑𝑑𝑧𝑧𝑑𝑑𝜕𝜕𝑑𝑑𝜃𝜃        (8)  
 

In equation (7), components [𝜎𝜎𝑥𝑥𝑥𝑥  ,
𝜎𝜎𝜃𝜃𝜃𝜃 ,𝜎𝜎𝑥𝑥𝑧𝑧  ,𝜎𝜎𝑥𝑥𝜃𝜃  ,𝜎𝜎𝜃𝜃𝑧𝑧] represent the dynamic stress 
parts as a result of the rotation of shell, 
(𝜎𝜎0𝑥𝑥𝑥𝑥 ,𝜎𝜎0𝜃𝜃𝜃𝜃 ,𝜎𝜎0𝑥𝑥𝑧𝑧) are the nonzero initial 
mechanical stress parts due to the equilibrium 
state, (𝜀𝜀�̂�𝑥𝑥𝑥 , 𝜀𝜀�̂�𝜃𝜃𝜃) and (𝛾𝛾�𝑥𝑥𝑧𝑧 , 𝛾𝛾�𝑥𝑥𝜃𝜃 , 𝛾𝛾�𝜃𝜃𝑧𝑧) represent the 
normal and shear Green's strain relations [14]. By 
substitution of equations (7) and (8) in equation 
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(6), then apply integration by-parts to obtain 
equations of motion with boundary conditions.   
 
6. Solution Method   

It is difficult to find an analytical solution to 
the equations that were derived in the previous 
section because of the coupling of equations. 
Therefore, numerical methods of analysis are 
used. In this paper, the differential quadrature 
method (DQM) employed to solve the differential 
equations as shown in Fig (6). The principle of 
this method is that the derivative of a function 
with respect to a coordinate direction is expressed 
as a linear weighted sum of all the functional 
values at all mesh points along that direction [15]. 
Then a system of linear algebraic equations is 
obtained, the equations of equilibrium can be 
easily solved by using a system of algebraic 
equations solver. The final form of free vibration 
equation can be written as : 

[𝑀𝑀]��̈�𝑑� + [𝐶𝐶]��̇�𝑑� + [𝐾𝐾�]{𝑑𝑑} = {0}                 (9) 
Where [𝑀𝑀] is the mass matrix, [𝐶𝐶] is the 

damping matrix and [𝐾𝐾�] is the equivalent stiffness 
matrix.  Finally, the eigenvalues and the natural 
frequency (𝜔𝜔𝑛𝑛) can be calculated from equation 
(9). 
 
7. Numerical results and discussion  

In this part, numerical results for rotating 
clamped-clamped multi-layered cylindrical shell 

is verified and compared with those found in the 
literature in order to examine the efficiency and 
accuracy of the differential quadrature method 
(DQM).  

The boundary conditions of the cylindrical 
shell is clamped-clamped for both ends (x=0 , 
x=L). Most of the results in this paper are 
presented as non-dimensional frequency 
parameter (λ) which is defined as follows:  

 

𝜆𝜆 = 𝜔𝜔𝑛𝑛𝑅𝑅�
𝜌𝜌(1−𝑣𝑣2)

𝐸𝐸
                   (10) 

 
Convergence of the differential quadrature 

method (DQM) has been verified as shown in 
Table (3). It is clear that when using number of 
grid points in the longitudinal direction more than 
seventeen(𝑁𝑁𝑥𝑥 > 17), there is no change in the 
value of frequency parameter (λ). In other words, 
when using (𝑁𝑁𝑥𝑥 ≥ 17) the results are more 
accurate.  

The natural frequencies (Hz) of different 
values of the circumferential wave number were 
compared with other results in the literature to 
determine the accuracy of the solution. Table (4) 
shows the maximum percentage of error between 
the present study and the results the literature [8] 
is 3.3144%. This maximum error occurs, when 
using circumferential wave number equals 2.    

 
Table 3: Convergence of the frequency parameters (λ) (Ω=500 rad/sec.  , L/R=2.5 , m=1 , p=1 , R=1m. , 

H/R=0.05 ) 
Grid point( Nx) 11 12 13 17 24 25 

λ1 0.0355 0.0023 0.0025 0.0019 0.0019 0.0019 
Table 4: Comparison of natural frequencies (Hz) ( Ω=0 rad/sec. , L/R=20 , p=5 , R=1m. , H/R=0.002 ) 

Circumferential wave 
number m 

Natural frequencies (Hz) 
(present) 

Shah et al. 
[8] 

Percentage of error 
(%) 

1 28.703 28.754 0.1773 
2 9.364 9.685 3.3144 
3 5.331 5.482 2.7544 
4 6.357 6.272 1.3552 
5 9.143 9.312 1.8148 

Table 5: Comparison of natural frequencies (Hz) ( Ω=0 rad/sec. ,L/R=20 , p=0.5 , R=1m. , H/R=0.002 ) 
Circumferential wave 

number m 
Natural frequencies (Hz) 

(present) 
Naeem et al. 

[11] 
Percentage of error 

(%) 
1 34.0303 34.6722 1.8513 
2 12.5907 12.1477 3.6467 
3 7.8552 7.2610 8.1834 
4 9.0282 9.0512 0.2541 

  
Another investigation of the accuracy is 

introduced in Table (5), the natural frequencies 
(Hz) of a cylindrical shell are compared with the 
available data in the reference [11]. The 
maximum difference between proposed approach 

and Naeem et al. [11] is 0.5942 Hz (percentage of 
error is 8.1834%), that happens with using 
circumferential wave number equals 3. 

From both Tables (4, 5), It can be seen that a 
good agreement and accuracy between the present 
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study and natural frequencies those available in 
the literature. After showing the convergence and 
accuracy of the differential quadrature method 
(DQM), several parameters were studied to find 
their effect on the natural frequencies and 
frequency parameters of the rotating clamped-
clamped multi-layered cylindrical shell with (FG) 
layer at middle. Fig (2) illustrates the effect of 
angular velocity on frequency parameters, it is 
observed that the frequency parameters increase 
with increasing angular velocity. In addition, the 
relationship between the circumferential wave 
number and the frequency parameter at a different 
angular velocity was examined and introduced in 
Fig (3), It is found that the frequency parameters 
decrease by increasing the circumferential wave 
number until the circumferential wave number 
reaching to value (3), then the frequency 
parameters increase with the increase of the 
circumferential wave number.  The effect of the 
thickness to mean radius ratio (H/R) on the 
frequency parameters at two different values of 
angular velocity are presented in Fig (4). The 
natural frequency of the cylindrical shell of the 
two angular velocity (Ω=0 rad/sec. and Ω=500 
rad/sec.) increases with increasing the thickness to 
mean radius ratio (H/R). Also, it is showed that 
the natural frequency values when the cylindrical 
shell under no rotation condition are higher than 
that in the case of high rotational velocity. Fig (5) 
shows the effect of the power law index on the 
frequency parameters. The results showed that the 
frequency parameters increase when the power 
law index is 0.5, while there is a decrease in the 
frequency parameters if the power index is more 
than 0.5 under different angular velocity 
condition. Finally, in Table (6) the effect of the 
thickness of the functionally graded material 
(FGM) layer on the frequency parameters is 
presented for high and low rotational speed. It 

was observed that the frequency parameters 
increases by increasing the thickness of the 
functionally graded layer. This means that the 
performance of the structure can be improved and 
made more rigidity by increasing the thickness of 
the functionally graded material layer. 
 
Table 6: Variation of frequency parameters (λ) 
together with different values of thickness of (FG) 
layer , where (L/R=2.5,  p=1 , m=1 , R=1m , 
H/R=0.1 ). 
Thickness of (FG) 

layer h (m) 
λ1 at (Ω=50 

rad/sec.) 
λ1 at (Ω=1000 

rad/sec.) 
0.01 0.7583 1.9295 

0.015 3.6927 1.9391 
0.02 4.1640 4.453 

  
8. Conclusion   

According to the first order shear deformation 
theory (FSDT) the free vibration analysis of 
rotating multi-layered cylindrical shell contains 
functionally graded material (FGM) in the middle 
was investigated. The effect of the initial 
mechanical stresses generated by the rotation of 
the cylindrical shell was taken into account in this 
study. Several parameters were studied to 
demonstrate their effect on the natural frequency. 
The increase in the thickness of the FG layer leads 
to an increase in the frequency parameters. Also, 
the increase of angular velocity may lead to an 
increase or decrease in frequency parameter 
depending on the geometrical and material 
parameters. On the other hand, the power law 
index has a significant effect on the frequency 
parameters especially in high rotational speed, the 
highest value of the frequency parameters can be 
obtained at the lowest value of the power law 
index.   

 
Figure 2 : Variation of frequency parameters (λ) with the angular velocity , Where (p=1 , L/R=2.5 ,   m=1 , 

R=1m , H/R=0.05). 
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Figure 3: Variation of frequency parameters (λ) with the circumferential wave number(m), Where (p=1 , 

L/R=2.5 ,R=1m , H/R=0.05 ). 
 

 
Figure 4: Variation of natural frequencies (Hz) together with (H/R) ratios , Where (p=0.5 , L/R=2.5 , m=4 , 

R=1m). 
 

 
Figure 5: Variation of frequency parameters (λ) for different values of the power law index (p), Where 

(L/R=2.5 , m=1 , R=1m , H/R=0.05). 
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MATLAB software 

Materials & geometry parameters Section 1 

Sampling grid points 

Equations of motion derived 
according to FSDT   

Weighting coefficients 

Section 2 

Load ( rotational velocity Ω) Section 3 

Governing 
equations  

Terms  which involve  derivatives Terms  which do not involve  
derivatives  

Section 4 

Boundary condition  

Build stiffness matrix [K] 

[𝑴𝑴]��̈�𝒅� + [𝑪𝑪]��̇�𝒅� + [𝑲𝑲�]{𝒅𝒅} = {𝟎𝟎}                  
                  

Section 5  

Section 6  

Natural frequency 𝝎𝝎𝒏𝒏 Section 7  

Figure 6: Flowchart illustrates solution algorithm in DQM  
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Appendix A   
The nonlinear strain relations in the cylindrical 
coordinate system are [14] :  

 𝜀𝜀𝑥𝑥𝑥𝑥 = 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 1
2
��𝜕𝜕𝑢𝑢

𝜕𝜕𝑥𝑥
�
2

+ �𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
�
2

+ �𝜕𝜕𝑤𝑤
𝜕𝜕𝑥𝑥
�
2
�.  

 𝜀𝜀𝜃𝜃𝜃𝜃 = 1
(𝑅𝑅+𝑧𝑧)

�𝜕𝜕𝑣𝑣
𝜕𝜕𝜃𝜃

+ 𝑤𝑤� + 1
2(𝑅𝑅+𝑧𝑧)2

��𝜕𝜕𝑤𝑤
𝜕𝜕𝜃𝜃
− 𝑣𝑣�

2
+

�𝜕𝜕𝑣𝑣
𝜕𝜕𝜃𝜃

+ 𝑤𝑤�
2

+ �𝜕𝜕𝑢𝑢
𝜕𝜕𝜃𝜃
�
2
�.  

 𝜀𝜀𝑧𝑧𝑧𝑧 = 𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧

+ 1
2
��𝜕𝜕𝑢𝑢

𝜕𝜕𝑧𝑧
�
2

+ �𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧
�
2

+ �𝜕𝜕𝑤𝑤
𝜕𝜕𝑧𝑧
�
2
�.   

 𝛾𝛾𝜃𝜃𝑧𝑧 = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧

+ 1
(𝑅𝑅+𝑧𝑧)

�𝜕𝜕𝑤𝑤
𝜕𝜕𝜃𝜃
− 𝑣𝑣� + 1

(𝑅𝑅+𝑧𝑧)
�𝜕𝜕𝑤𝑤
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�𝜕𝜕𝑤𝑤
𝜕𝜕𝜃𝜃
−

𝑣𝑣� + 𝜕𝜕𝑣𝑣
𝜕𝜕𝑧𝑧
�𝜕𝜕𝑣𝑣
𝜕𝜕𝜃𝜃
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𝜕𝜕𝑧𝑧

𝜕𝜕𝑢𝑢
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 𝛾𝛾𝑥𝑥𝜃𝜃 = 𝜕𝜕𝑣𝑣
𝜕𝜕𝑥𝑥
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(𝑅𝑅+𝑧𝑧)

𝜕𝜕𝑢𝑢
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(𝑅𝑅+𝑧𝑧)
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�𝜕𝜕𝑤𝑤
𝜕𝜕𝜃𝜃
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𝜕𝜕𝜃𝜃

+ 𝑤𝑤� + 𝜕𝜕𝑢𝑢
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑢𝑢
𝜕𝜕𝜃𝜃
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تحلیل الاھتزاز الحر لأسطوانة دوارة متعددة الطبقات تحتوي على طبقة وسطى 
 متدرجة الوظائف

 
 إیھاب وجیھ جارالله

 الھندسة المیكانیكیةقسم 
 ، العراقجامعة الانبار

 حمد محمد حسن 
 قسم الھندسة المیكانیكیة 

 ، العراقجامعة الانبار

 خالد بتال نجم 
 قسم الھندسة المدنیة 

 ، العراقجامعة الانبار
 

 الخلاصة: 
) FGMالطبقات تحتوي على مادة متدرجة وظیفیا () تم تحلیل الاھتزاز الحر لأسطوانة متعددة FSDTوفقا لنظریة التشوه القصي الاولى (

في الوسط. الاسطوانة تتكون من ثلاث طبقات, الطبقتان الداخلیة والخارجیة مصنوعة من مواد متجانسة, بینما الطبقة الوسطى مصنوعة من 
باستخدام مبدأ ھاملتون ومن ثم تم حلھا  مواد متدرجة وظیفیا تتغیر خواصھا خلال سمك الطبقة. تم اشتقاق معادلات التوازن ومعادلات الحركة

). تم اعتماد برنامج الماتلاب في برمجة المعادلات وایجاد النتائج. تأثیر سمك طبقة ال DQMعددیا باستخدام طریقة التربیع التفاضلي(
)FGM .حیث اظھرت النتائج ),السرعة الزاویة وغیرھا من المتغیرات على التردد الطبیعي للھیكل الاسطواني تم دراستھا في ھذا البحث

  العددیة توافق جید عند مقارنتھا مع نتائج تحلیلیة لدراسات سابقة.
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