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Abstract

The free vibration analysis of rotating multi-
layered cylindrical shell is investigated based on
the first order shear deformation theory (FSDT) of
shell. Cylindrical shell consists of three layers;
outer and inner layers are isotropic material and
the middle layer is a functionally graded material
(FGM). The material properties for middle layer
are assumed to be graded in the thickness
direction. Based on Hamilton’s principle, the
equilibrium equations and the equations of motion
are derived and then solved by using the
differential quadrature method (DQM) as a
numerical tool. MATLAB software was adopted
for programming the equations and the related
boundary condition. The effect of (FGM) layer
thickness, angular speed, index power law,
circumferential wave number on the natural
frequency of the clamped-clamped rotating
cylindrical shell were examined. The numerical
results showed that a reasonable agreement
between the present study and analytical data
available in the literature.

List of Symbols
Enalish Symbols
Notation Description
[C] Damping matrix
{d} |Degrees of freedom
E Young's modulus
I Equivalence Young’s modulus for
cylindrical shell
G Shear rigidity
H Total thickness of the cylindrical shell
h Thickness of middle layer
K Kinetic energy
[K] |Equivalent stiffness matrix
Ks Shear correction factor
L Length of the cylindrical shell
[M] |Mass matrix
m Circumferential wave number
Grid point in the longitudinal
Ny A
direction
p Index power law
R Mean radius of cylindrical shell
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t Time
t, t,  |Two arbitrary time
) Strain energy
Displacement component at the
reference surface
W Work done
x, 0,z |Cylindrical coordinates

u,v,w

Greek Symbols

Notation Description
s Mathematical operation called
variation
v Poisson's ratio
€ Normal strain component
y Shear strain component
o Stress component
Bending rotation of the cross section
@*, @ |of the shell about 6 and x-axis,

respectively

D Mass density

A Non-dimensional frequency parameter
Natural frequency

Q Rotating velocity

I1 Total potential energy

Derivative with respect to specific axis

1. Introduction

Multi-layered rotating cylindrical shell is often
used in mechanical, civil, electrical structures.
The types of these structures vary from one
application to other according to the function of
this structure as well as the operating conditions.
In recent years, a new class of engineering
materials appeared called ‘Functionally Graded
Materials’ (FGM) which is a mixture of two
materials often ceramic and metal. With using
FGM, the properties of structure can be enhanced
and become more strength. Bayat et al. [1] studied
the effect of mechanical and thermal loads on a
functionally graded rotating disk according to first
order shear deformation Mindlin plate and Von
Karman theories. Malekzadeh et al. [2] used
Hamilton’s principle to derive the equations of
motion depending on first order shear
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deformation theory (FSDT) and examined the
effect of the temperature increase on the
frequency for the functionally graded circular
arches in thermal environment. Malekzadeh [3]
investigated the free vibration of functionally
graded thick circular in thermal environment
depending on the two dimensional elasticity
theory. Li et al. [4] employed the Fliogges shell
theory to obtain the governing equations for
simply supported three-layer circular cylindrical
shell with functionally graded middle layer and
tested the effect of material properties and
geometrical parameters on natural frequency.
Malekzadeh et al. [5] examined the free vibration
of functionally graded circular curved beam in
thermal environment by using the differential
quadrature method (DQM) to solve the equations
of motion. Dai and Zheng [6] used the Donnell
shell theory to study buckling and post-buckling
for laminated cylindrical shell with functionally
graded layer. Malekzadeh and Heydarpour [7]
studied the effect rotation on the vibration
characteristics of a functionally graded (FG)
cylindrical shell in thermal environment based on
the first order shear deformation theory (FSDT).
Shah et al. [8] investigated the vibration of three-
layered cylindrical shell containing functionally
graded layer in the middle and resting on elastic
foundations. Malekzadeh et al. [9] studied the
three-dimensional (3D) free vibration of truncated
conical shell made of functionally graded material
(FGM) in thermal environment. Malekzadeh and
Heydarpour [10] investigated the effect of
rotating speed, coriolis acceleration, geometry,
material properties and different boundary
conditions on the vibration characteristics for

Jarallah et al., pp.153-160

functionally graded (FG) truncated conical shell.
Naeem et al. [11] examined the vibration of three-
layered cylindrical shell containing two
functionally graded (FG) layer at inner and outer
and the middle layer assumed isotropic material.
Heydarpour et al. [12] calculated the natural
frequency for rotating truncated conical shell
based on the first order shear deformation theory
(FSDT). Through the above, the free vibration of
rotating multi-layered cylindrical shell with
functionally graded (FG) middle layer have not
been so fully investigated. Therefore, this
research project focuses on the free vibration of
rotating multi-layered cylindrical shell clamped at
both ends and composed of three layer. Inner and
outer layers will be in the form of isotropic
material, while the middle layer in the form of
functionally graded material (FGM).

2. Geometric model

A multi-layered  cylindrical ~ shell s
schematically illustrated in Fig.1. Inner and outer
as isotropic material and the middle layer as a
functionally graded material (FGM). The
geometrical parameters of cylindrical shell are: R
is the mean radius, while H, h and L represent the
shell thickness, thickness of middle layer and the
length of the cylindrical shell, respectively. Q is
angular speed of the cylindrical shell spin around
its axis. Cylindrical coordinates (x,0,z) are used
to describe the material points of the cylindrical
shell in the middle undeformed plane, where x, 6
and z are the axial, circumferential and the radial
directions, respectively.

—Isotropic layer
F.GM. layer

Isotropic layer

Figure 1: Detailed drawing of a rotating multi-layer cylindrical shell with functionally graded layer

3. Material properties:

For functionally graded material the Poisson's
ratio assumed constant, while Young's modulus
and density varies continuously in thickness
directions (z. directions) depending on the simple
power law distribution of materials. The Young's
modulus for FG layer can be calculated as:

E() = By + (B — Ep) (220)

— @
2z
where E. and E, are values of outer surface

(ceramic rich ) and inner surface (metal rich) of
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the functionally graded layer , p represents the
power law index which is a positive real
number[10] limited to (0—o0). The material
properties of the three layers are presented in
Tables (1,2) .

4.  Initial
equations:
Due to the rotation of the cylindrical shell,
initial mechanical stresses are generated and then
the effects of these stresses are taken in

dynamic  equilibrium
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consideration in the calculation of the free
vibration. Referring to the theory of elasticity and
according to the cylindrical coordinates, the linear
strain — displacement relations [13] are :

Eoxx = = 1000 = 75— €02z = >
0xx dx 066 (R +Z) 0zz 0z
aw, ou
Yoxz = axo + aZO (2a-d)

The linear stress — strain relations [13] are :
Ooxx = El€oxx + VEogol, 0090 = Eldoee +
VOoxx] Ooxz = ksGYoxz  (32-C)

Where: E is the equivalence Young’s modulus
for cylindrical shell

F= (), +(29),, + (59),.,
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G is the shear rigidity

_(_E E(2) E
G= (2(1+v))in + (2(1+v))FG + (2(1+v))

ks is the shear correction factor , and v is the
Poisson’s ratio. The principle of virtual work is
used to derive equilibrium equations with related
boundary conditions. The total potential energy
can be written as:

[[=U-W (4)

out

Where, [[, U, and W are the total potential
energy, Strain energy, and the work done,
respectively. By applying the integration by-part
method, a set of ordinary differential equations
are obtained and then the initial stresses are
calculated.

Table 1: Materials properties of inner and outer layer

Layer Modulus of elasticity E(N/m?) | Poissonratio(v) | Density p(Kg/m?)
Inner (ceramic) 151E +09 0.3 5700
Outer(metal) 68.95E +09 0.3 27145
Table 2: Materials properties of (FGM) layer
FGM Modulus of elasticity E(N/m?) | Poissonratio(v) | Density p(Kg/m?)
Zirconia 1.68E +11 0.3 5700
Nickel 2.05098E +11 0.3 8900

5. Free vibration equations

On the assumption that the free vibration of
the shell happens about its dynamic equilibrium
positioning (non-deformed plane), therefore,
based on this hypothesis, displacement
components are measured from this position.
According to the first order shear deformation
theory (FSDT) of shell, the general displacement
components (ii,7,w) at an arbitrary material
point (x , 8 , z ) in the thickness direction (z-
direction ) measured from the non-deformed
plane are as follows :

U(x,0,2,t) =up (x) + zgg (x) +u(x,0,t) +
zp*(x,6,1) (5a)

D(x,0,zt) =v(x,0,t) + zp?(x,0,t) (5b)
W(x,0z,t) = wy(x) + w(x,0,t) (5¢)

Where  ¢*(x,6,t) and ¢°(x,0,t) are the
bending rotation of the cross section of the shell
about 0 and x-axis, respectively. Hamilton's
principle is employed in order to derive the
equations of motion with the regarding boundary
conditions,

[l6K —sU)dt=0 (6)

Where, t; and t, are two arbitrary times, § is
the variational operator, K is the kinetic energy
and U is the potential energy of the shell. In this
section, the initial mechanical stresses of the
equilibrium state are included in the equations of
motion. In order to achieve this, the nonlinear
strain - displacement relations in the cylindrical
coordinate [14] are taken into account. So, the
form of potential and kinetic energy equations
are:

2w oL 4
6U = fo fg f_zﬂ[(axx + UOxx)5éxx +
2
(089 + UOGB)SéGB + (sz + O—Oxz)é‘],/\xz +
00070 + 09,670,] (R + z)dzdxdb @)

H
— > Lz ouogsu 99950 | 9w Isw

0K = fO fO f_g p[at at  at at = at ot
06D 0V o~ oW o A A~ 06w

02(D8D + wsm] (R + z)dzdxdd  (8)

In  equation (7), components [o,,,
Opo » Oxz » Oxg » Op,] TEPresent the dynamic stress
parts as a result of the rotation of shell,
(Ooxx » 0006 »O0xz) are the nonzero initial
mechanical stress parts due to the equilibrium
state, (€, ,€90) and (P, , Vxo » Vo2) represent the
normal and shear Green's strain relations [14]. By
substitution of equations (7) and (8) in equation
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(6), then apply integration by-parts to obtain
equations of motion with boundary conditions.

6. Solution Method

It is difficult to find an analytical solution to
the equations that were derived in the previous
section because of the coupling of equations.
Therefore, numerical methods of analysis are
used. In this paper, the differential quadrature
method (DQM) employed to solve the differential
equations as shown in Fig (6). The principle of
this method is that the derivative of a function
with respect to a coordinate direction is expressed
as a linear weighted sum of all the functional
values at all mesh points along that direction [15].
Then a system of linear algebraic equations is
obtained, the equations of equilibrium can be
easily solved by using a system of algebraic
equations solver. The final form of free vibration
equation can be written as :

[M){d} + [C){d} + [K]{d} = {0} 9)

Where [M] is the mass matrix, [C] is the
damping matrix and [K] is the equivalent stiffness
matrix. Finally, the eigenvalues and the natural
frequency (w,) can be calculated from equation

9).

7. Numerical results and discussion
In this part, numerical results for rotating
clamped-clamped multi-layered cylindrical shell
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is verified and compared with those found in the
literature in order to examine the efficiency and
accuracy of the differential quadrature method
(DQM).

The boundary conditions of the cylindrical
shell is clamped-clamped for both ends (x=0 ,
x=L). Most of the results in this paper are
presented as  non-dimensional  frequency
parameter (A) which is defined as follows:

f (1-v?)
A= wnR %

Convergence of the differential quadrature
method (DQM) has been verified as shown in
Table (3). It is clear that when using number of
grid points in the longitudinal direction more than
seventeen(N, > 17), there is no change in the
value of frequency parameter (A). In other words,
when using (N, = 17) the results are more
accurate.

The natural frequencies (Hz) of different
values of the circumferential wave number were
compared with other results in the literature to
determine the accuracy of the solution. Table (4)
shows the maximum percentage of error between
the present study and the results the literature [8]
is 3.3144%. This maximum error occurs, when
using circumferential wave number equals 2.

(10)

Table 3: Convergence of the frequency parameters (A) (Q=500 rad/sec. , L/R=2.5, m=1, p=1, R=1m.,

H/R=0.05 )
Grid point( N,) 11 12 13 17 24 25
M 0.0355 | 0.0023 0.0025 0.0019 0.0019 0.0019
Table 4: Comparison of natural frequencies (Hz) ( Q=0 rad/sec. , L/R=20, p=5 , R=Im. , H/R=0.002 )
Circumferential wave | Natural frequencies (Hz) | Shah et al. |Percentage of error
number m (present) [8] (%)
1 28.703 28.754 0.1773
2 9.364 9.685 3.3144
3 5.331 5.482 2.7544
4 6.357 6.272 1.3552
5) 9.143 9.312 1.8148

Table 5: Comparison of natural frequencies (Hz) ( Q=0 rad/sec. ,L/R=20, p=0.5, R=1m. , H/R=0.002 )

Circumferential wave | Natural frequencies (Hz) | Naeem et al. |Percentage of error
number m (present) [11] (%)
1 34.0303 34.6722 1.8513
2 12.5907 12.1477 3.6467
3 7.8552 7.2610 8.1834
4 9.0282 9.0512 0.2541

Another investigation of the accuracy is
introduced in Table (5), the natural frequencies
(Hz) of a cylindrical shell are compared with the
available data in the reference [11]. The
maximum difference between proposed approach
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and Naeem et al. [11] is 0.5942 Hz (percentage of
error is 8.1834%), that happens with using
circumferential wave number equals 3.

From both Tables (4, 5), It can be seen that a
good agreement and accuracy between the present
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study and natural frequencies those available in
the literature. After showing the convergence and
accuracy of the differential quadrature method
(DQM), several parameters were studied to find
their effect on the natural frequencies and
frequency parameters of the rotating clamped-
clamped multi-layered cylindrical shell with (FG)
layer at middle. Fig (2) illustrates the effect of
angular velocity on frequency parameters, it is
observed that the frequency parameters increase
with increasing angular velocity. In addition, the
relationship between the circumferential wave
number and the frequency parameter at a different
angular velocity was examined and introduced in
Fig (3), It is found that the frequency parameters
decrease by increasing the circumferential wave
number until the circumferential wave number
reaching to value (3), then the frequency
parameters increase with the increase of the
circumferential wave number. The effect of the
thickness to mean radius ratio (H/R) on the
frequency parameters at two different values of
angular velocity are presented in Fig (4). The
natural frequency of the cylindrical shell of the
two angular velocity (Q2=0 rad/sec. and Q=500
rad/sec.) increases with increasing the thickness to
mean radius ratio (H/R). Also, it is showed that
the natural frequency values when the cylindrical
shell under no rotation condition are higher than
that in the case of high rotational velocity. Fig (5)
shows the effect of the power law index on the
frequency parameters. The results showed that the
frequency parameters increase when the power
law index is 0.5, while there is a decrease in the
frequency parameters if the power index is more
than 0.5 under different angular velocity
condition. Finally, in Table (6) the effect of the
thickness of the functionally graded material
(FGM) layer on the frequency parameters is
presented for high and low rotational speed. It
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was observed that the frequency parameters
increases by increasing the thickness of the
functionally graded layer. This means that the
performance of the structure can be improved and
made more rigidity by increasing the thickness of
the functionally graded material layer.

Table 6: Variation of frequency parameters ()
together with different values of thickness of (FG)
layer , where (L/R=2.5, p=1, m=1, R=1Im ,
H/R=0.1).

Thickness of (FG)| A; at (=50 | A at (2=1000
layer h (m) rad/sec.) rad/sec.)
0.01 0.7583 1.9295
0.015 3.6927 1.9391
0.02 4.1640 4.453

8. Conclusion

According to the first order shear deformation
theory (FSDT) the free vibration analysis of
rotating multi-layered cylindrical shell contains
functionally graded material (FGM) in the middle
was investigated. The effect of the initial
mechanical stresses generated by the rotation of
the cylindrical shell was taken into account in this
study. Several parameters were studied to
demonstrate their effect on the natural frequency.
The increase in the thickness of the FG layer leads
to an increase in the frequency parameters. Also,
the increase of angular velocity may lead to an
increase or decrease in frequency parameter
depending on the geometrical and material
parameters. On the other hand, the power law
index has a significant effect on the frequency
parameters especially in high rotational speed, the
highest value of the frequency parameters can be
obtained at the lowest value of the power law
index.

=0—\1

0.8

e \)

0.6
0.4

A3

A ( frequency parameter)
=

-

0 200 400

600
angular velocity Q (rad/sec.)

800 1000

Figure 2 : Variation of frequency parameters (1) with the angular velocity , Where (p=1, L/R=2.5, m=1,
R=1m, H/R=0.05).
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Figure 3: Variation of frequency parameters () with the circumferential wave number(m), Where (p=1 ,
L/R=2.5 ,R=1m, H/R=0.05).
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Figure 4: Variation of natural frequencies (Hz) together with (H/R) ratios , Where (p=0.5, L/R=2.5, m=4 ,
R=1m).
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Figure 5: Variation of frequency parameters (1) for different values of the power law index (p), Where
(L/R=2.5, m=1, R=1m, H/R=0.05).
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Equations of motion derived
according to FSDT

VA

< MATLAB software >
Section 1 > Materials & geometry parameters

Sampling grid points
Section 2
Weighting coefficients
AV
Section 3 Load ( rotational velocity Q)
Section 4 >

Terms which do not involve

Governing
equations

Terms which involve derivatives

derivatives
Boundary condition
\Z
Section 5 Build stiffness matrix [K]
Section 6 [M1{d} + [€]{d} + [K]{d} = {0}
Section 7 Natural frequency w,,

Figure 6: Flowchart illustrates solution algorithm in DQM
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Appendix A
The nonlinear strain relations in the cylindrical
coordinate system are [14] :

u 1 [rou\? v\ 2 aw\ 2
fxx—at[(a) +(G3) + () ]
1 ov 1 ow 2
€06 = (riz) (£+ W) t w02 [(5_ v) +
ov 2 a2
G+w) + (%) ]
ow 1 [/ou)? v\ 2 aw\2
fzz—aﬁ[(a) +(3) +(5) ]
v 1 ow 1 ow [dw
Yoz =5, T Gen (E N v) t & [E (E N
ov (ov du du
o)+ 5 (5 +w) + 55
Sy T pegon )
Yx0 = 5 T R 20 ' (R+2) Lox \ a0
v [dv du du
Gatw)+ o+ 5l
—0w_ du dudu  Gvdv A dwiw
Vaz = dx 9z 0dxdz 0xdz 9x 9z
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