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Abstract

In this paper, the derivation of H, optimal
control using state derivative feedback to obtain a
new control approach is presented. A control
approach similar to linear quadratic regulator
(LQR) is applied to find the optimal gain matrices
that achieve the desired performance. The
effectiveness and robustness of the proposed
controller can be shown using the uncertain and
under-actuated overhead crane system. The
results show that the proposed controller can
robustly stabilize the system in the presence of
system parameters uncertainty. Further, more
desirable time response specifications can be
obtained using state derivative feedback H,
control in comparison to the state feedback H,
control.
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1. Introduction
The state derivative feedback is very useful

and necessary for satisfying the desired
performance specifications in some control
problems. In some practical cases such as

suppression of vibration in mechanical systems,
where the main sensors of vibration are
accelerometers, the signals of states derivative are
easier to obtain than the state signals [1, 2].
Moreover, several promising techniques that uses
state derivative feedback for linear control
systems have been developed by many
researchers [1-6]. There are many approaches
based on the state feedback theory have been
extended to the area of state derivative feedback.
Abdelaziz [4] presented the pole assignment
control problem by using state derivative
feedback for SISO LTI systems. Further, the state
derivative feedback approach has been used in the
control design of different systems, e.g. control of
overhead cranes [6]; car wheel suspension
systems [7] and control of cantilever beam [8].
Abdelaziz and Valasek [3] have used the state
derivative feedback for the direct solution of the
pole placement problem for single input linear
systems. Abdelaziz [5] presented an approach to
design a robust state derivative feedback
controller for LTI multivariable systems. The
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sensitivity the closed loop system to uncertainty
in the system and gain matrix was minimized.

On the other hand, the H, optimal control is
used in the design of state feedback control by
minimizing a quadratic performance index of the
system and attenuating the disturbances [9]. In
addition, the H, optimal control has been used to
control various types of systems, e.g. two floor
building [10], two wheeled inverted pendulum
[11] and twin rotor system [12]. In this work, a
new design of H, optimal control using state
derivative feedback is presented. A comparison
between state feedback H, control and state
derivative feedback H, control is given for
overhead crane system.

The structure of the paper is as follows:
Section 2 presents the problem formulation. In
section 3, the synthesis of the full state derivative
feedback H, control is provided. To show the
effectiveness of the proposed controller, an
illustrative example is given in section 4. Finally,
the conclusion is presented in section 5.

2. Problem Formulation
Consider the linear time invariant control
system expressed by [13]:

x(t) = Ax(t) + B;d(t) + Byu(t)
e(t) = Cx(t) + Diu(t)
z(t) = x(t) 1)

where x(t) € R™ represents vector of states, e(t)
€ R™ represents the controlled output vector, z(t)
€ R" represents the output vector, u(t) € R™
represents the control vector and d(f) € R
represents the exogenous input vector.

The following assumptions are made [5]:
1. The system matrix A is of full rank
2. (A, B;) and (A, B,) are stabilizable.
3. (Cq, A) is detectable.
4. All state derivative measurements are
possible.

The objective of this work is to obtain the
scalar state derivative feedback control law
described by:
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u(t) = —Kx(t) 2

This control law assigns the eigenvalues for the
closed loop system that stabilize the system and
achieve the desirable specifications.

3. Full State Derivative Feedback H,

Control Synthesis
Equation (1) can be formulated as an H,
problem as shown in Figure 1.

u Z=X
-K

Figure 1: Block diagram of H, state derivative

feedback [13].
where
M = Cl 0 D12 (3)
I 0 0

Assuming that d(t) is the white noise vector with
unit intensity, then [13]:
ITeallfi, = ECe" (e () (4)
where T,, represents the overall transfer function
from d(t) to e(t).

Substituting e(t) from equation (1) in equation (4),
yields:

eTe = J'CTC1TC13'C + ZXTC]TDIZu + uTszDlzu (5)

The minimization of ||T,, ||, is equivalent to the
solution of the stochastic regulator problem by
Setting Q = C:’{Cl,N = C:’LTD]_Z and R = Dirlez
then,

E(e"(e(®) =J(x(®),u(®)) =
Jy GT(®)Qx(®) + uT (DRu(t) +
2xT(E)Nu(t))dt (6)
where J((t),u(t)) represents the cost function
to be minimized, Q € Q™ ™ represents symmetric
positive semidefinite state weighting matrix, and
R € R™™ is a symmetric positive definite
control weighting matrix.

To achieve the stabilizing control with the
desired dynamic behavior, the objective function
in equation (6) is to be minimized. Since
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equation (6) is similar to the LQR objective
function except the performance depends on state
derivative instead of state, it can be rewritten as:

J@E@®),v(®) = f;" @ () Qm#k () +

v (£)Rv(t))dt )
where

Qm=0Q— NRINT (8)
v(t) = u(t) + RTINTx(t) )

Consequently, the system in equation (1) will be
rewritten as:

x(t) = Apx(t) + Bou(t) + B1d(t) (10)
where A,, = A — B,R™INT

In term of v(t) and from equation (9), the control
law is:

v(t) = —Kpnx(0) (11)
where K,,, = K — R™INT

By substituting equation (11) in equation (10), the
system equation will be:

2(t) = A x(t) — ByKpi(t) + Byd(t) =

Anx(t) + B;d(t) (12)
where
A, = (I + ByKy) YA, | is  nxnidentity

matrix and the matrix (I + B,K) is assumed of
full rank.

By substituting equation (11) in equation (7), the
objective function will be:

J(x@©,v@®) =

I (T (Qm + KRRK)%(D))dt (13)

Suppose that a constant positive semidefinite
symmetric matrix P that satisfy equation (13) can
be obtained,

xT(t)(Qm + KLRK,)X(t) =

— = (xT(0)Px(t)) = =T (£)Px(t) —

xT(t)Px(t) (14)

Therefore, the performance index will be obtained
as:

J(@E(®),v(®) = f;7 (X7 (©)Qm() +

(Kn%(D) R(Kn(£))) dt = =2 (@)Px(D)] =
—xT(0)Px (o) + xT(0)Px(0) (15)
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Suppose that the closed loop system is
asymptotically stable, then x(c0) — 0. Therefore
the performance index is determined in terms of
initial conditions and matrix P as:

J =x"(0)Px(0) (16)
From equation (12), the following relationship
can be obtained:

x(t) = A71x(t) + B1d(t), Ayt = AL +
B;Km) (17)
then equation (14) can be rewritten as:

X7 () (Qm + KmRK)x(t) = —x" (t)(PA;" +
AFTPYX (L) (18)

By comparing the two sides of equation (18), we
obtain:

PALY + AP + K RKyy + Q@ = 0 (19)
According to the second method of Lyapunov, if
A;Y is stable matrix, there exists a positive
definite matrix P that satisfies equation (19).
Substituting equation (17) in equation (19), one
can obtain:

PIAEUI + ByK,)] + [Ant (I + B,K,)]TP +
KI'RK,+Q, =0 (20)
PA,Y + A;TP + PALB,K,, + KEBTA;TP +
KIRK,, + Qm =0 (21)
Since R is positive definite symmetric matrix,
then R =TTT, where T is nonsingular matrix.
Hence equation (21) will be rewritten as:

PAY + A;TP + PALIB,K,, + KT BTA, TP +
KITTTKy + Q=0 (22)

By reformulating equation (22), the following
equation can be obtained:

PA;L + AyTP + (TKy, + T TBY AT P)T(TK,, +
T-TBIA;TP) — PA;1B,R™*BTA;TP 4+ Q,, = 0 (23)

The minimization of the objective function
requires the minimization of the following term
with respect to K,,,:

xT(t)(TK,, + T""BYA;TP)T(TK,, +
T "Bl A, TP)x(t) (24)
The minimum of equation (24) occurs when it
equals to zero, then

TK,, + T"TBIA;TP =0 (25)
The optimal gain matrix K, is:
Ky =—T7'T"TBIATP = —R'BJA,TP  (26)
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Finally, the optimal stabilizing control is:
v(t) = —K,x(t) = R™1BIA; T Px(¢) 27

Substituting equation (27) in equation (9) yields:

u(t) = R'BTA;TPx(t) — R™INTx(t) (28)
then
K=-R'[BY(A—B,RINT) TP —NT] (29)

For closed loop system, the state derivative
feedback H, control is:

x(t) = Agx(t) + B,r(t) + Byd(t)
y(t) = Cx(¢t)

where

(30)

AC = (I + BzK)_l(A - Bzc),

B. = (I + B,K)™'B, and C represents the output
matrix.

The steps for the design can be summarized as

follows:

1. Check the system rank (The system matrix A
must be of full rank).

2. Check the system
detectability.

3. Check the possibility of state derivative
measurements.

4. Apply equation (29) to find the gain matrix.

5. Find the system response using equation
(30).

stabilizablity and

4. lllustrative Example

To show the effectiveness of the proposed
controller, the overhead crane system shown in
Figure 2 is considered. This system is inherently
nonlinear, unstable, non-minimum phase and an
under-actuated mechanical system (two degrees
of freedom must be controlled by only one control
signal) [14, 15].

The crane system is described by the
following state space model:
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where x,(t) = x (trolley position), x,(t) =

x (trolley velocity), x3(t) = 0(t)(swing angle)
and x,(t) = 6(t)(swing velocity).

The nominal system parameters are taken as
follows [15]: g (gravitational acceleration)= 10 ﬂz
S

I (pendulum length)=0.4 m, m, (trolley mass)=2.4
kg, m; (load mass)=0.23 kg, b; (cart friction
coefficient)=0.05 Ns/m, b, (load reaction friction
coefficient)=0.005 Ns/m, u,; (cart coulomb
friction force)=1.6 N, u, (load reaction coulomb
torque)=0.1 Nm, k, (motor constant)=8 N/volt.
Figure 3 shows the system states trajectories when
state feedback H, control and state derivative
feedback H, control are applied. Suppose that the
system initial conditions are x(0)=[1 0.5 0.2 0.1].
It shows that the response obtained using state
derivative feedback H, control is fast with small
oscillation amplitudes in comparison to that
obtained using state feedback H, control. At the
same time, a low control effort can be obtained
using state derivative H, control as shown in
Figure 4. The resulting feedback gain matrices in
cases, state feedback H, control and state
derivative feedback H, control respectively are:

K=[1.4076 0.7387 0.0073 -0.0140] and,
K=[1.1489 1.0707 0.2806 -0.0718].

On the other hand, to show the
effectiveness of H, state feedback controller and
the proposed state derivative H, control in
tracking control, a step input has been applied to
the system.  Figure 5 shows the time response
for the system with H, state feedback controller.
It shows that the trolley position reaches the
steady state in about 4 sec.. and the swing angle
deviates between -0.18 and 0.12 degree. Further, a
low control effort has been obtained. In case of
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H, state derivative feedback controller, it is
shown that the trolley position reaches the steady
state in about 4 sec.. with a deviation in the swing
angle between -0.08 and 0.02 degree as shown in
Figure 6. This means that a small deviation was
obtained using state derivative H, controller.
Also, a low control effort can be obtained.

To validate the robustness of the proposed
control, a 50% variation in system parameters |
(pendulum length), m, (trolley mass) and m,
(load mass)) has been considered. Figure 7 shows
the system time response when the system
parameters are changed. It is clear that the
proposed control can robustly stabilize the
system.

y — direction

f
>
me
x — direction
6
1 Vi
X1 J
x m

Figure 2: Overhead Crane equivalent [14].

5. Conclusion

The H, optimal control using state derivative
feedback has been derived in this work. To
validate the effectiveness of the proposed control,
an overhead crane which is an underactuated and
uncertain mechanical system was considered. It
was shown that the proposed control could
robustly stabilize the system in the presence of
system parameters uncertainty. Moreover, a more
desirable time response specification has been
achieved with low control effort in comparison to
the state feedback H, control.
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Figure 3: System state trajectories using state
feedback H, control (dotted line) and state
derivative feedback H, control (solid line).
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Figure 6: System time response with state derivative
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