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Abstract 
       In this paper, the derivation of H2 optimal 
control using state derivative feedback to obtain a 
new control approach is presented. A control 
approach similar to linear quadratic regulator 
(LQR) is applied to find the optimal gain matrices 
that achieve the desired performance. The 
effectiveness and robustness of the proposed 
controller can be shown using the uncertain and 
under-actuated overhead crane system. The 
results show that the proposed controller can 
robustly stabilize the system in the presence of 
system parameters uncertainty. Further, more 
desirable time response specifications can be 
obtained using state derivative feedback H2 
control in comparison to the state feedback H2 
control. 
 
Keywords: H2 control, robust control, optimal 
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1. Introduction 
       The state derivative feedback is very useful 
and necessary for satisfying the desired 
performance specifications in some control 
problems. In some practical cases such as 
suppression of vibration in mechanical systems, 
where the main sensors of vibration are 
accelerometers, the signals of states derivative are 
easier to obtain than the state signals [1, 2]. 
Moreover, several promising techniques that uses 
state derivative feedback for linear control 
systems have been developed by many 
researchers [1-6]. There are many approaches 
based on the state feedback theory have been 
extended to the area of state derivative feedback. 
Abdelaziz [4] presented the pole assignment 
control problem by using state derivative 
feedback for SISO LTI systems. Further, the state 
derivative feedback approach has been used in the 
control design of different systems, e.g. control of 
overhead cranes [6]; car wheel suspension 
systems [7] and control of cantilever beam [8]. 
Abdelaziz and Valasek [3] have used the state 
derivative feedback for the direct solution of the 
pole placement problem for single input linear 
systems. Abdelaziz [5] presented an approach to 
design a robust state derivative feedback 
controller for LTI multivariable systems. The 

sensitivity the closed loop system to uncertainty 
in the system and gain matrix was minimized. 
       On the other hand, the H2 optimal control is 
used in the design of state feedback control by 
minimizing a quadratic performance index of the 
system and attenuating the disturbances [9]. In 
addition, the H2 optimal control has been used to 
control various types of systems, e.g. two floor 
building [10], two wheeled inverted pendulum 
[11] and twin rotor system [12]. In this work, a 
new design of H2 optimal control using state 
derivative feedback is presented. A comparison 
between state feedback  H2 control and state 
derivative feedback H2 control is given for 
overhead crane system. 
       The structure of the paper is as follows: 
Section 2 presents the problem formulation. In 
section 3, the synthesis of the full state derivative 
feedback H2 control is provided. To show the 
effectiveness of the proposed controller, an 
illustrative example is given in section 4. Finally, 
the conclusion is presented in section 5.  
 
2. Problem Formulation 

Consider the linear time invariant control 
system expressed by [13]: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑥𝑥(𝑡𝑡) + 𝐵𝐵1𝑑𝑑(𝑡𝑡) + 𝐵𝐵2𝑢𝑢(𝑡𝑡)  

𝑒𝑒(𝑡𝑡) = 𝐶𝐶1�̇�𝑥(𝑡𝑡) + 𝐷𝐷12𝑢𝑢(𝑡𝑡)   

𝑧𝑧(𝑡𝑡) = �̇�𝑥(𝑡𝑡)                                                        (1)  

where x(t) ∈ 𝑅𝑅𝑛𝑛 represents vector of states, e(t) 
∈ 𝑅𝑅ℎ represents the controlled output vector,  z(t) 
∈ 𝑅𝑅𝑟𝑟  represents the output vector, u(t) ∈ 𝑅𝑅𝑚𝑚 
represents the control vector and d(t) ∈ 𝑅𝑅𝑙𝑙  
represents the exogenous input vector.  

The following assumptions are made [5]: 
1. The system matrix A is of full rank 
2. (A, 𝐵𝐵1) and (A, 𝐵𝐵2) are stabilizable. 
3. (𝐶𝐶1, A) is detectable. 
4. All state derivative measurements are 

possible. 

       The objective of this work is to obtain the 
scalar state derivative feedback control law 
described by: 
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𝑢𝑢(𝑡𝑡) = −𝐾𝐾�̇�𝑥(𝑡𝑡)                          (2) 

This control law assigns the eigenvalues for the 
closed loop system that stabilize the system and 
achieve the desirable specifications.  
 
3. Full State Derivative Feedback 𝐇𝐇𝟐𝟐 
Control Synthesis 

Equation (1) can be formulated as an H2 
problem as shown in Figure 1. 

 

Figure 1: Block diagram of H2 state derivative 
feedback [13]. 

where 

 𝑀𝑀 = �
𝐴𝐴 𝐵𝐵1 𝐵𝐵2
𝐶𝐶1 0 𝐷𝐷12
𝐼𝐼 0 0

�                                         (3) 

Assuming that d(t) is the white noise vector with 
unit intensity, then [13]: 

‖𝑇𝑇𝑒𝑒𝑒𝑒‖𝐻𝐻2
2 = 𝐸𝐸(𝑒𝑒𝑇𝑇(𝑡𝑡)𝑒𝑒(𝑡𝑡))                                   (4) 

where 𝑇𝑇𝑒𝑒𝑒𝑒 represents the overall transfer function 
from d(t) to e(t). 

Substituting e(t) from equation (1) in equation (4), 
yields:   

𝑒𝑒𝑇𝑇𝑒𝑒 = �̇�𝑥𝑇𝑇𝐶𝐶1𝑇𝑇𝐶𝐶1�̇�𝑥 + 2�̇�𝑥𝑇𝑇𝐶𝐶1𝑇𝑇𝐷𝐷12𝑢𝑢 + 𝑢𝑢𝑇𝑇𝐷𝐷12𝑇𝑇 𝐷𝐷12𝑢𝑢  (5) 

The minimization of ‖𝑇𝑇𝑒𝑒𝑒𝑒‖𝐻𝐻2
2  is equivalent to the 

solution of the stochastic regulator problem by 
setting: 𝑄𝑄 = 𝐶𝐶1𝑇𝑇𝐶𝐶1,𝑁𝑁 = 𝐶𝐶1𝑇𝑇𝐷𝐷12 𝑎𝑎𝑎𝑎𝑑𝑑 𝑅𝑅 = 𝐷𝐷12𝑇𝑇 𝐷𝐷12 
then,  

𝐸𝐸(𝑒𝑒𝑇𝑇(𝑡𝑡)𝑒𝑒(𝑡𝑡)) = 𝐽𝐽��̇�𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� =
∫ (�̇�𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄�̇�𝑥(𝑡𝑡) + 𝑢𝑢𝑇𝑇(𝑡𝑡)𝑅𝑅𝑢𝑢(𝑡𝑡) +∞
0

2�̇�𝑥𝑇𝑇(𝑡𝑡)𝑁𝑁𝑢𝑢(𝑡𝑡))𝑑𝑑𝑡𝑡                                                (6) 

where 𝐽𝐽��̇�𝑥(𝑡𝑡),𝑢𝑢(𝑡𝑡)� represents the cost function 
to be minimized,  𝑄𝑄 ∈ 𝑄𝑄𝑛𝑛×𝑛𝑛 represents symmetric 
positive semidefinite state weighting matrix, and  
𝑅𝑅 ∈ 𝑅𝑅𝑚𝑚×𝑚𝑚 is a symmetric positive definite 
control weighting matrix.  

       To achieve the stabilizing control with the 
desired dynamic behavior, the objective function 
in equation (6) is to be minimized.  Since 

equation (6) is similar to the LQR objective 
function except the performance depends on state 
derivative instead of state, it can be rewritten as: 

𝐽𝐽(�̇�𝑥(𝑡𝑡), 𝑣𝑣(𝑡𝑡)) = ∫ (�̇�𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄𝑚𝑚�̇�𝑥(𝑡𝑡) +∞
0

𝑣𝑣𝑇𝑇(𝑡𝑡)𝑅𝑅𝑣𝑣(𝑡𝑡))𝑑𝑑𝑡𝑡                                                   (7) 

where 

 𝑄𝑄𝑚𝑚 = 𝑄𝑄 − 𝑁𝑁𝑅𝑅−1𝑁𝑁𝑇𝑇                                          (8) 

𝑣𝑣(𝑡𝑡) = 𝑢𝑢(𝑡𝑡) + 𝑅𝑅−1𝑁𝑁𝑇𝑇�̇�𝑥(𝑡𝑡)                               (9) 

Consequently, the system in equation (1) will be 
rewritten as: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑥𝑥(𝑡𝑡) + 𝐵𝐵2𝑣𝑣(𝑡𝑡) + 𝐵𝐵1𝑑𝑑(𝑡𝑡)                (10) 

where 𝐴𝐴𝑚𝑚 = 𝐴𝐴 − 𝐵𝐵2𝑅𝑅−1𝑁𝑁𝑇𝑇 

In term of v(t) and from equation (9), the control 
law is: 

𝑣𝑣(𝑡𝑡) = −𝐾𝐾𝑚𝑚�̇�𝑥(𝑡𝑡)                                  (11) 

where 𝐾𝐾𝑚𝑚 = 𝐾𝐾 − 𝑅𝑅−1𝑁𝑁𝑇𝑇 

By substituting equation (11) in equation (10), the 
system equation will be: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑥𝑥(𝑡𝑡) − 𝐵𝐵2𝐾𝐾𝑚𝑚�̇�𝑥(𝑡𝑡) + 𝐵𝐵1𝑑𝑑(𝑡𝑡) =
𝐴𝐴𝑛𝑛𝑥𝑥(𝑡𝑡) + 𝐵𝐵1𝑑𝑑(𝑡𝑡)                                             (12) 

where  

 𝐴𝐴𝑛𝑛 = (𝐼𝐼 + 𝐵𝐵2𝐾𝐾𝑚𝑚)−1𝐴𝐴𝑚𝑚, I is 𝑎𝑎 × 𝑎𝑎 identity 
matrix and the matrix (𝐼𝐼 + 𝐵𝐵2𝐾𝐾) is assumed of 
full rank. 

By substituting equation (11) in equation (7), the 
objective function will be:    

𝐽𝐽��̇�𝑥(𝑡𝑡), 𝑣𝑣(𝑡𝑡)� =
∫ ��̇�𝑥𝑇𝑇(𝑡𝑡)(𝑄𝑄𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑇𝑇𝑅𝑅𝐾𝐾𝑚𝑚)�̇�𝑥(𝑡𝑡)�𝑑𝑑𝑡𝑡∞
0                   (13) 

Suppose that a constant positive semidefinite 
symmetric matrix P that satisfy equation (13) can 
be obtained, 

�̇�𝑥𝑇𝑇(𝑡𝑡)(𝑄𝑄𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑇𝑇𝑅𝑅𝐾𝐾𝑚𝑚)�̇�𝑥(𝑡𝑡) =
− 𝑒𝑒

𝑒𝑒𝑑𝑑
�𝑥𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃𝑥𝑥(𝑡𝑡)� = −�̇�𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃𝑥𝑥(𝑡𝑡) −

𝑥𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃�̇�𝑥(𝑡𝑡)                                                      (14) 

Therefore, the performance index will be obtained 
as: 

𝐽𝐽��̇�𝑥(𝑡𝑡), 𝑣𝑣(𝑡𝑡)� = ∫ ��̇�𝑥𝑇𝑇(𝑡𝑡)𝑄𝑄𝑚𝑚�̇�𝑥(𝑡𝑡) +∞
0

�𝐾𝐾𝑚𝑚�̇�𝑥(𝑡𝑡)�𝑇𝑇𝑅𝑅(𝐾𝐾𝑚𝑚�̇�𝑥(𝑡𝑡))� 𝑑𝑑𝑡𝑡 = −𝑥𝑥𝑇𝑇(𝑡𝑡)𝑃𝑃𝑥𝑥(𝑡𝑡)|0∞ =
−𝑥𝑥𝑇𝑇(∞)𝑃𝑃𝑥𝑥(∞) + 𝑥𝑥𝑇𝑇(0)𝑃𝑃𝑥𝑥(0)                       (15) 

M 

-K 

𝑒𝑒 𝑑𝑑 
𝑢𝑢 𝑧𝑧= �̇�𝑥 
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Suppose that the closed loop system is 
asymptotically stable, then 𝑥𝑥(∞) → 0. Therefore 
the performance index is determined in terms of 
initial conditions and matrix P as: 

𝐽𝐽 = 𝑥𝑥𝑇𝑇(0)𝑃𝑃𝑥𝑥(0)                                               (16)    
From equation (12), the following relationship 
can be obtained: 

𝑥𝑥(𝑡𝑡) = 𝐴𝐴𝑛𝑛−1�̇�𝑥(𝑡𝑡) + 𝐵𝐵1𝑑𝑑(𝑡𝑡), 𝐴𝐴𝑛𝑛−1 = 𝐴𝐴𝑚𝑚−1(𝐼𝐼 +
𝐵𝐵2𝐾𝐾𝑚𝑚)                                                              (17) 

then equation (14) can be rewritten as: 

�̇�𝑥𝑇𝑇(𝑡𝑡)(𝑄𝑄𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑇𝑇𝑅𝑅𝐾𝐾𝑚𝑚)�̇�𝑥(𝑡𝑡) = −�̇�𝑥𝑇𝑇(𝑡𝑡)(𝑃𝑃𝐴𝐴𝑛𝑛−1 +
𝐴𝐴𝑛𝑛−𝑇𝑇𝑃𝑃)�̇�𝑥(𝑡𝑡)                                                        (18) 

By comparing the two sides of equation (18), we 
obtain: 

𝑃𝑃𝐴𝐴𝑛𝑛−1 + 𝐴𝐴𝑛𝑛−1𝑃𝑃 + 𝐾𝐾𝑚𝑚𝑇𝑇𝑅𝑅𝐾𝐾𝑚𝑚 + 𝑄𝑄𝑚𝑚 = 0   (19) 

According to the second method of Lyapunov, if 
𝐴𝐴𝑛𝑛−1 is stable matrix, there exists a positive 
definite matrix P that satisfies equation (19). 
Substituting equation (17) in equation (19), one 
can obtain: 

𝑃𝑃[𝐴𝐴𝑚𝑚−1(𝐼𝐼 + 𝐵𝐵2𝐾𝐾𝑚𝑚)] + [𝐴𝐴𝑚𝑚−1(𝐼𝐼 + 𝐵𝐵2𝐾𝐾𝑚𝑚)]𝑇𝑇𝑃𝑃 +
𝐾𝐾𝑚𝑚𝑇𝑇𝑅𝑅𝐾𝐾𝑚𝑚 + 𝑄𝑄𝑚𝑚 = 0                                           (20) 

𝑃𝑃𝐴𝐴𝑚𝑚−1 + 𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴𝑚𝑚−1𝐵𝐵2𝐾𝐾𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃 +
𝐾𝐾𝑚𝑚𝑇𝑇𝑅𝑅𝐾𝐾𝑚𝑚 + 𝑄𝑄𝑚𝑚 = 0                                           (21) 

Since R is positive definite symmetric matrix, 
then 𝑅𝑅 = 𝑇𝑇𝑇𝑇𝑇𝑇, where T is nonsingular matrix. 
Hence equation (21) will be rewritten as: 

 𝑃𝑃𝐴𝐴𝑚𝑚−1 + 𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃 + 𝑃𝑃𝐴𝐴𝑚𝑚−1𝐵𝐵2𝐾𝐾𝑚𝑚 + 𝐾𝐾𝑚𝑚𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃 +
𝐾𝐾𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝐾𝐾𝑚𝑚 + 𝑄𝑄𝑚𝑚 = 0                                      (22) 

By reformulating equation (22), the following 
equation can be obtained: 

𝑃𝑃𝐴𝐴𝑚𝑚−1 + 𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃 + (𝑇𝑇𝐾𝐾𝑚𝑚 + 𝑇𝑇−𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃)𝑇𝑇(𝑇𝑇𝐾𝐾𝑚𝑚 +
𝑇𝑇−𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃) − 𝑃𝑃𝐴𝐴𝑚𝑚−1𝐵𝐵2𝑅𝑅−1𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃 + 𝑄𝑄𝑚𝑚 = 0   (23) 

The minimization of the objective function 
requires the minimization of the following term 
with respect to 𝐾𝐾𝑚𝑚: 

�̇�𝑥𝑇𝑇(𝑡𝑡)(𝑇𝑇𝐾𝐾𝑚𝑚 + 𝑇𝑇−𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃)𝑇𝑇(𝑇𝑇𝐾𝐾𝑚𝑚 +
𝑇𝑇−𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃)�̇�𝑥(𝑡𝑡)                                   (24) 

The minimum of equation (24) occurs when it 
equals to zero, then 

𝑇𝑇𝐾𝐾𝑚𝑚 + 𝑇𝑇−𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃 = 0                                 (25) 

The optimal gain matrix 𝐾𝐾𝑚𝑚 is: 

𝐾𝐾𝑚𝑚 = −𝑇𝑇−1𝑇𝑇−𝑇𝑇𝐵𝐵2𝑇𝑇𝐴𝐴−𝑇𝑇𝑃𝑃 = −𝑅𝑅−1𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃     (26) 

Finally, the optimal stabilizing control is: 

𝑣𝑣(𝑡𝑡) = −𝐾𝐾𝑚𝑚�̇�𝑥(𝑡𝑡) = 𝑅𝑅−1𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃�̇�𝑥(𝑡𝑡)             (27) 

Substituting equation (27) in equation (9) yields: 

𝑢𝑢(𝑡𝑡) = 𝑅𝑅−1𝐵𝐵2𝑇𝑇𝐴𝐴𝑚𝑚−𝑇𝑇𝑃𝑃�̇�𝑥(𝑡𝑡) − 𝑅𝑅−1𝑁𝑁𝑇𝑇�̇�𝑥(𝑡𝑡)          (28)  

then 

 𝐾𝐾 = −𝑅𝑅−1[𝐵𝐵2𝑇𝑇(𝐴𝐴 − 𝐵𝐵2𝑅𝑅−1𝑁𝑁𝑇𝑇)−𝑇𝑇𝑃𝑃 − 𝑁𝑁𝑇𝑇]     (29) 

For closed loop system, the state derivative 
feedback H2 control is: 

�̇�𝑥(𝑡𝑡) = 𝐴𝐴𝑐𝑐𝑥𝑥(𝑡𝑡) + 𝐵𝐵𝑐𝑐𝑟𝑟(𝑡𝑡) + 𝐵𝐵1𝑑𝑑(𝑡𝑡) 

𝑦𝑦(𝑡𝑡) = 𝐶𝐶𝑥𝑥(𝑡𝑡)                                                   (30) 

where 

 𝐴𝐴𝑐𝑐 = (𝐼𝐼 + 𝐵𝐵2𝐾𝐾)−1(𝐴𝐴 − 𝐵𝐵2𝐶𝐶), 

 𝐵𝐵𝑐𝑐 = (𝐼𝐼 + 𝐵𝐵2𝐾𝐾)−1𝐵𝐵2 and C represents the output 
matrix. 

The steps for the design can be summarized as 
follows: 
1. Check the system rank (The system matrix A 

must be of full rank). 
2. Check the system stabilizablity and 

detectability. 
3. Check the possibility of state derivative 

measurements. 
4. Apply equation (29) to find the gain matrix. 
5. Find the system response using equation 

(30). 

4. Illustrative Example 
To show the effectiveness of the proposed 

controller, the overhead crane system shown in 
Figure 2 is considered. This system is inherently 
nonlinear, unstable, non-minimum phase and an 
under-actuated mechanical system (two degrees 
of freedom must be controlled by only one control 
signal) [14, 15].  
       The crane system is described by the 
following state space model: 
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�             (31) 

where  𝑥𝑥1(𝑡𝑡) = 𝑥𝑥 (trolley position), 𝑥𝑥2(𝑡𝑡) =
�̇�𝑥 (trolley velocity), 𝑥𝑥3(𝑡𝑡) = 𝜃𝜃(𝑡𝑡)(swing angle) 
and 𝑥𝑥4(𝑡𝑡) = �̇�𝜃(𝑡𝑡)(swing velocity).    

The nominal system parameters are taken as 
follows [15]: g (gravitational acceleration)= 10 𝑚𝑚

𝑠𝑠2
, 

l (pendulum length)=0.4 m, 𝑚𝑚𝑑𝑑 (trolley mass)=2.4 
kg, 𝑚𝑚𝑙𝑙 (load mass)=0.23 kg, 𝑏𝑏1 (cart friction 
coefficient)=0.05 Ns/m, 𝑏𝑏2 (load reaction friction 
coefficient)=0.005 Ns/m, 𝜇𝜇1 (cart coulomb 
friction force)=1.6 N, 𝜇𝜇2 (load reaction coulomb 
torque)=0.1 Nm, 𝑘𝑘𝑢𝑢 (motor constant)=8 N/volt. 
Figure 3 shows the system states trajectories when 
state feedback H2 control and state derivative 
feedback H2 control are applied. Suppose that the 
system initial conditions are x(0)=[1 0.5 0.2 0.1]. 
It shows that the response obtained using state 
derivative feedback H2 control is fast with small 
oscillation amplitudes in comparison to that 
obtained using state feedback H2 control. At the 
same time, a low control effort can be obtained 
using state derivative H2 control as shown in 
Figure 4. The resulting feedback gain matrices in 
cases, state feedback H2 control and state 
derivative feedback H2 control respectively are: 

K= [1.4076    0.7387    0.0073   -0.0140] and,  

K= [1.1489    1.0707    0.2806   -0.0718]. 

On the other hand, to show the 
effectiveness of H2 state feedback controller and 
the proposed state derivative H2 control in 
tracking control, a step input has been applied to 
the system.    Figure 5 shows the time response 
for the system with H2 state feedback controller. 
It shows that the trolley position reaches the 
steady state in about 4 sec.. and the swing angle 
deviates between -0.18 and 0.12 degree. Further, a 
low control effort has been obtained. In case of  

H2 state derivative feedback controller, it is 
shown that the trolley position reaches the steady 
state in about 4 sec.. with a deviation in the swing 
angle between -0.08 and 0.02 degree as shown in 
Figure 6. This means that a small deviation was 
obtained using state derivative H2 controller. 
Also, a low control effort can be obtained. 

       To validate the robustness of the proposed 
control, a 50% variation in system parameters l 
(pendulum length), 𝑚𝑚𝑑𝑑 (trolley mass) and 𝑚𝑚𝑙𝑙 
(load mass)) has been considered. Figure 7 shows 
the system time response when the system 
parameters are changed. It is clear that the 
proposed control can robustly stabilize the 
system.  

 

Figure 2: Overhead Crane equivalent [14]. 

 
 
5. Conclusion 
       The H2 optimal control using state derivative 
feedback has been derived in this work. To 
validate the effectiveness of the proposed control, 
an overhead crane which is an underactuated and 
uncertain mechanical system was considered. It 
was shown that the proposed control could 
robustly stabilize the system in the presence of 
system parameters uncertainty. Moreover, a more 
desirable time response specification has been 
achieved with low control effort in comparison to 
the state feedback H2 control. 
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(a) 𝑥𝑥1(𝑡𝑡) 

 
(b) 𝑥𝑥2(𝑡𝑡) 

 
(c) 𝑥𝑥3(𝑡𝑡) 

 
(d) 𝑥𝑥4(𝑡𝑡) 

Figure 3: System state trajectories using state 
feedback H2 control (dotted line) and state 
derivative feedback H2 control (solid line). 

 
 

Figure 4: System control signal with state 
feedback H2 control (dotted line) and state 
derivative feedback H2 control (solid line) 

 

 
(a) Trolley position 

 
 

 
(b) Swing angle 

 
 

 
 

(c) Control signal 
 

Figure 5: System time response with state feedback 
H2 control. 
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(a) Trolley position 

 
 

 
(b) Swing angle 

 
 

 
(c) Control signal 

 
Figure 6: System time response with state derivative 

feedback H2 control. 
 
 

 
(a) Trolley position 

 
(b) Swing angle 

Figure 7: System time response with 50% variation 
in system parameters using state derivative feedback 

H2 control. 
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 باستخدام مشتقة حالات التغذیة الراجعة H2تصمیم المسیطر الأمثل 
 ا.م.د. حازم ابراھیم علي
 قسم ھندسة السیطرة والنظم

 الجامعة التكنولوجیة
 بغداد -العراق 

 خلاصة

) المستخدم LQR). طریقة السیطرة مشابھھ الى (state derivative feedbackاستخدام () بH2المثلى ( ةسیطرھذا البحث یقدم تصمیم لل
ذو لایجاد القیم المثلى للمصفوفات والتي تحقق المواصفات المطلوبة. لاظھار فعالیة ومتانة المسیطر المقترح تم تطبیقھ على نظام المرفاع 

استقراریة النظام بوجود التغیرات في معاملات النظام. على المتینة المسیطر المقترح في السیطرة  فعالیة  نتائجبینت الالمعاملات المتغیرة. 
 state feedback) بالمقارنة مع (derivative feedback H2 controlبالاضافة الى ذلك یمك الحصول على مواصفات افضل باستخدام (

H2 control( 
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