
Al-Nahrain Journal for Engineering Sciences (NJES) Vol.20 No.5, 2017 pp.1047-1056

SDN-Based Load Balancing Scheme for Fat-Tree Data Center
Networks

Shavan Askar
Research Center

Duhok Polytechnic University
shavan.askar@dpu.edu.krd

Abstract— this paper proposes a new load
balancing algorithm for data center networks by
means of exploiting the characteristics of
Software Defined Networks. Mininet was utilized
as an emulation tool for the purpose of emulating
and evaluating the proposed design, Miniedit was
utilized as a GUI tool for the same purpose. In
order to obtain a realistic environment to the data
center network, Fat-Tree topology was utilized
with the following parameters; 4 pods, 16 edge
switches, 16 aggregation switches, 4 core
switches, and 16 hosts. Different scenarios and
traffic distributions were applied in order to cover
as much possible cases of the real traffic. POX
controller was chosen as an SDN controller.
 The suggested design showed outperformance
when compared to the traditional scheme in term
of throughput and loss rate for all the evaluated
scenarios. The first scenario assumes joining of
new hosts while in the second scenario; there was
an increase in the demand of the already
established connections. The proposed algorithm
showed a loss free performance in the first
scenarios, whereas, the traditional scheme
presented 15% to 31% loss rate for the same
scenario. In the second scenario, the proposed
algorithm recorded up to 81% improvement in the
loss rate when compared to the traditional scheme.
Moreover, the proposed algorithm showed a
superiority over the traditional scheme in term of
throughput, where it maintained the throughput
intact without any reduction in the first scenario in
contrast to the traditional scheme that underwent
from a considerable degradation in the throughput
value. The traditional scheme underwent from an
average throughput reduction of 5Mbps in the case
of joining of new hosts (first scenario). In the
second scenario, both schemes underwent from a
throughput reduction, however, the proposed
scheme always showed superiority over the
traditional scheme, whereas, it recorded up to
16.6% improvement in the throughput average
value.

Keywords: Software Defined Network; Data
center; POX controller; Fat-Tree; Mininet;
miniedit, Load Balancing, Datacenter.

I. Introduction
Data Center Networks (DCN) witnessed an

unprecedented development over the past few
years in an attempt to accommodate the huge
increase and requirements’ change in the traffic.
To handle such big data, special consideration has
to be taken for traffic monitoring and management
because any disruption in the service or presenting
undesirable QoS parameters would lead to massive
revenue loss [1, 2].

Traffic of networks is mainly comprises of
control plane traffic and data plane traffic. The
majority of load balancing schemes deal with the
data plane traffic as its percentage is far more than
the control plane traffic. In present, Data centers
deploy hierarchical network architecture with
multi-path characteristics such as Fat-Tree
topology. The existence of multi-path routes
facilitates having different routes to the same
destination and this will help having a better load
balancing options. Fat-Tree topology has been
implemented in many modern DCs such as [3, 4].
Figure 1 shows a Fat-Tree topology with four
pods.

Although there is more than one rout into a
particular destination in a Fat-Tree network,
however, the classical distance vector and link
state routing protocols cannot utilize this multi-
path property. Internet routing protocols usually
routes and forwards packets based on the
destination IP address. As a consequent, packets
with the same intended destination address will be
routed at the same path [5, 6].

Undoubtedly, there are some routing protocols

that have equal cost multipath (ECMP)
characteristic; however, they split traffic statically
depending on the information obtained from a
packet’s header. As a result, there will be no
consideration for traffic flow’s requirements in

Aggregation
 Layer

Figure 1. 4-Pod Fat-Tree topology

Edge Layer

Hosts

Core Layer

1047

mailto:shavan.askar@dpu.edu.krd

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

term of QoS parameters; in addition, the status of
the overall network load is not taken into
consideration. In other words, those kinds of
ECMP algorithms are merely capable of selecting
among multiple paths that have equal least cost [3,
6].

The main difference between routing of DC
traffic and internet traffic is that; internet routing
protocols often emphasize on selecting the shortest
path to reduce the delay. Whereas, DCs are
composed from servers that are usually located in
close distances, therefore, the concern is more than
just the latency; it is about balancing the huge
traffic. The pre-mentioned bandwidth balancing
function is not attainable in traditional DCNs
because of the nature of the traditional switches
utilized in those kinds of networks. The switches
that are deployed in traditional DCNs do not have
a global view on the entire network resources such
as the remaining link bandwidths and alternative
paths in a real time manner [7, 8, 9].

An SDN-Based load balancing DCN is
proposed in this paper by means of utilizing SDN
switches and controller. The main difference
between the SDN network structure and the
traditional network is that in SDN, the forwarding
process is conducted in a centralized manner by
means of a controller and forwarding switches and
this is considered as the main advantage for
conducting an efficient load balancing over the
traditional DCNs. Figure 2 shows a simple
architecture of the SDN network.

Figure 2: SDN Architecture

The SDN controller has a comprehensive

overview on the type of flows, links’ utilization,
and the available paths to the intended destination.

These kinds of information help in performing
more efficient load balancing algorithms than if it
is limited to distributed protocols for routing and
traffic monitoring as it is the case with the
traditional network architectures [10].

As shown in Figure 2, SDN networks consist
of three main layers; data layer, control layer, and
application\management layer. The data layer
comprise of network devices such as routers,
OpenFlow switches, wireless devices. The
operation of these devices differs from their
function at traditional networks; in SDN, they are
merely forwarding devices while the intelligence
unit that is responsible for making decisions is
located at the controller. The case is different with
traditional networks that come with network
devices with their software or control unit built
inside them. SDN allows network administrators
of configuring and managing network’s traffic
which contributes into better utilization for
network resources. The concept of SDN was
originally proposed by Stanford University [11].
SDN separates the control plane from the data
plane on its network devices; in addition, it allows
having an entire overview on the network
resources that supports making changes globally
not in a centralized manner as in traditional
networks. This new network technique is
implemented utilizing some open standards such as
OpenFlow. OpenFlow is one of the most important
protocols that are capable of configuring,
managing, and interoperability between different
network devices [12]. As shown in Figure 2, SDN
networks consist of two major elements which are
namely; the controller (control plane) and the
forwarding devices (data plane). The forwarding
device could be a switch or a router that is in
charge of forwarding packets only. On the other
hand, the controller is considered as brain of the
network, it is simply software operating on a
specific hardware platform. The controller is
communicated with the OpenFlow switches via a
secure channel that runs an OpenFlow protocol.
SDN controller inserts flow entries, modify flow
entries, query, and has an overview of the whole
network resources. OpenFlow forwarding switches
keep statistics of each flow and port such as the
total number of transferred bytes and the duration
time of each flow. The forwarding switches and
controller coordinate their work as follows; if the
path of the flow is already known (not the first
packet of the flow), then the forwarding switch
would not need to consult the controller and it can
forward packets on the fly. However, for first
packet case (the income packet does not match any
flow entries of the Ternary Content Addressable
Memory table), the switch needs to consult the
controller to find a suitable outgoing port [13, 14,
15].

Network
Application

Data Plane

Control Plane

Application & Management Plane

SDN
Controller

Northbound
APIs

Southbound
APsI

Open Flow
Switches

Routers

Infrastructure
Elements

Monitoring

Routing

TE

QoS

1048

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

The proposed scheme aims at adaptively
balancing the load by means of re-routing into an
alternative path based on information obtained
from the SDN controller.
The rest of this paper is organized as follows;
Section II gives a description for the previous
research on providing load balancing schemes for
data centers and some of the early attempts on
using SDN for this purpose. Section III describes
the proposed SDN-Based load balancing scheme
using SDN architecture. Section IV presents the
obtained results and analyzes them. Section V
concludes the paper.

II. Related Work
Load balancing problem is one of the major

issues in DCs in their different shapes, whether
they are physical DCs or virtual DCs. DCs usually
allow multiple paths routing for the purpose of
improving the tolerance to faults in addition to
increasing network’s throughput by means of
sorting out the problem of congestion. Layer 2 and
Layer 3 are capable of running multipath routing;
however, each layer deploys it based on its
protocols. For instance, spanning tree is utilized by
Layer 2; therefore, only one path would be
available for a pair of sender receiver nodes at a
time. There are some proposal to support multipath
with Layer 2 such as the one conducted by [16].
They proposed exploiting the redundant paths in
the network using an algorithm that calculate a set
of available paths and combine them into another
set of trees. On the other hand, at Layer 3, routers
support ECMP by implementing static load
separation between the available flows. Switches
that have their ECMP property enabled would
have more than one path in each subnet. Upon
receiving an incoming packet, switches utilize the
hash function (interpreting packet header) in order
to select one of the available paths for forwarding
purpose. However, ECMP does not take into
consideration the flow bandwidth when selecting
paths which may results in overloading links
unnecessarily where other links may already be
available as it is shown in Figure 3. In addition,
ECMP has a problem in its practical
implementation because the available paths for
selection are either 8 or 16 paths which is much
lower than the needed paths for the purpose of
providing bisection bandwidth, in particular, when
dealing with big data as it is the case with DCNs.

Figure 3 depicts a scenario where ECMP is
utilized and where it can’t utilize network’s links
in an efficient way because of the phenomena
mentioned above, that is not counting for flow
bandwidth. One of the major drawbacks of ECMP
is that long flows may contend on the same output
port based on their hash values, this would
consequently lead into bottleneck [17].

Figure 3: Scenario depicting ECMP problem

Figure 3 shows a scenario of Fat-Tree topology

in which all networks links are 10 Gbps. Flow 1
and Flow 2 sending traffic with 10 Gbps each,
because of the hashing, they contend at the
aggregation level (encircled with red colour) for
the same output port that routes to the core level.
This collision results in halving the throughput of
each of them. The other collision is happened
between Flow 3 and Flow 4 at the core level.
Obviously, their throughput is halved as the link
requires carrying their overall traffic which is
equal to double of the link capacity. A Fat-Tree
Topology with four pods as depicted in Figure 3
should allow for four different paths for each host,
however, an efficient algorithm that can utilize this
property is needed. This means that with an
existence of the right load balancing scheme, the
four flows would have transferred traffic in a rate
of 10Gbps instead of 5 Gbps. This could have been
happened if Flow 1 was directed into Core 2 and
Flow 3 into Core 4 [17, 18].

A research is conducted in [19] to improve the
hash algorithm by distributing the data flow. A
detection algorithm is utilized to find out the
occupancy duration for the purpose of
identification weights of each load and their dense
points. Another research was conducted in [20] in
which a shared memory for network data flow was
proposed by means of multiprocessor model.
Priority and weight schemes were deployed in
order to evenly distribute network flows to the
processor. However, in addition to the lack of an
overview of flow bandwidth, one of the drawbacks
of the abovementioned algorithms is that their
systems are closed. In addition, their software and
hardware is tightly coupled, therefore they are not
suitable for the high development growth of
Internet.

III. SDN-BASED LOAD BALANCING SCHEME
In addition to the above mentioned issues with

ECMP, traditional load balancing techniques come
with a dedicated hardware that is in charge of
conducting the function of load balancing as
depicted in Figure 4.

 Flow 1 Flow 2 Flow 3 Flow 4

Core 1 Core 2 Core 3 Core 4

1049

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

When users try to access backend servers

shown in Figure 4, it would be the role of the load
balancer to check the list of backend servers out
and select an appropriate load balancing algorithm
for the purpose of distributing clients’ access into
the available servers. Therefore, the load balancer
should keep track of all the established sessions; in
addition, all the packets that have the same
TCP\UDP addresses would be forwarded into the
backend servers no matter to what flow they
belong. In this case, the load balancer should
has\and executes network address translation by
updating the source; port number, and the IP
addresses of the outgoing packets while
conducting an opposite job when receiving packets
by matching the destination; IP and port number
addresses for the incoming packets with its table
[21]. The dedicated load balancer has more
drawbacks than the above-mentions ones; it is an
expensive solution, not a flexible technique,
undergoes from the problem of having single point
of failure, and leads to bottleneck for whole system
[21, 22].

A generic overview of the proposed SDN-
Based load balancing system is shown in Figure 5.
The main difference between the proposed system
and the traditional one is that there is no dedicated
hardware for the purpose of load balancing.
Instead of a dedicated load balancer and traditional
switches, the proposed scheme utilizes OpenFlow
switches that could be programmed to work under
any needed function whether as a router, switch,
and hub. OpenFlow switches works under the
supervision of a controller that is connected to all
the switches and has an entire overview of the
whole network and its resources. The property of
the controller is exploited for the sake of having an
efficient load balancing scheme, this is conducted

by deploying the load balancing algorithm inside
the POX controller. The role of the controller of a
DCN is to manage requests received from clients
and forward them into a specific path to a
particular server based on the information of the
entire network that is already gathered by the
controller. SDN controller is capable to adaptively
add, delete, and modify entries of the flow table of
the OpenFlow switches for the sake of balancing
the load of the network.

The proposed architecture aims at adaptively
balancing the load of the DCN based on some
triggering parameters that could be set either
manually (DCN administrator) or dynamically
based on service requirements, in both cases, the
network status plays a major role in initiation the
load balancing algorithm. To meet a reliable
evaluation for the proposed scheme, two aspects
have been taken into consideration. First, is to
utilize exactly the same network topology that is
deployed by DCNs and that is, a Fat-Tree network
topology. Secondly, to utilize the most reliable
emulator for SDN network, that is Mininet
emulator [23, 24, 25].

 The proposed DCN scenario is evaluated by
means of a Fat-Tree network with k=4, the
proposed architecture is emulated utilising Mininet
emulator as shown in Figure 6 that represents a
snapshot of the emulated network. Fat-Tree
topology is built with K ports switches and it
consists of K-pods. Each pod has two layers,
aggregation and edge as indicated in Figure 1. The
available paths between any two hosts in a K-pods

Users

Internet

Firewall

L2/3 Switch

Load
Balancer

Web Servers

Application
Servers

Database

Figure 4. Traditional load balancer for DCN

Users

Internet

Firewall

SDN System

Web servers

Application
 servers

Database

Figure 5: Generic Architecture for the proposed SDN-Based
load balancing scheme.

SDN
Controller

OpenFlow
Switch

1050

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

Fat-Tree network is (K/2)2
, this means that there

are four routing paths between any two servers of
the network shown in Figure 6. In addition, the
entire K-pods should be connected into (K/2)2
Core switches (4 core switches) [26].

The proposed SDN-Based load balancing
algorithm is programmed inside a POX controller
that belongs to the SDN based DCN. The
triggering parameter for the proposed algorithm is
bandwidth and loss which are the two most
important factors when dealing with DCNs.
Accordingly, when a received throughput is
decreased under its expected value or in case there
is an increase in the loss value in one or couple of
the DCN links (throughput and loss are interrelated
and gives that same indication), then the proposed
algorithm takes action. The pre-mentioned
scenario is when there are already established
connections and there is an increase in the traffic
that leads to loss, however, if the connections
among servers and clients started with high
bandwidth requirements, then the algorithm will
find optimal path at the beginning of creating the
connections. The initiation starts with the
controller which has an entire overview on the
whole network resources as shown in red lines in
Figure 6. The controller exploits this facility and
finds alternative paths for the reduced throughput
traffic or for the traffic that undergoes of high loss
rate.

Figure 7 shows a flow chart of the proposed
SDN-Based load balancing algorithm. Two cases
are considered; the first case where there is a new
joining client, whereas, the second case is where
there is an already established connection between
two pairs and there is a demand to increase the
throughput which may affect other communication
parties. It is assumed that the proposed scheme
collect the throughput requirements for specific
applications and keep that information in the
controller. Once there is a contention in one of the

links, the throughput of those applications may go
lower than their pre-specified threshold value;
therefore, the algorithm will be initiated to conduct
load balancing in order to attain the original
required throughput. Because the Fat-Tree network
utilized in the proposal has 4 pods, there will be
four routes between any two hosts (servers).
Therefore, the controller will search for the rest of
three ((K/2)2-1) alternative paths to find out the
best one as described in Figure 7. The same
scenario is applied when there is an increase in a
demand between two already connected parties,
this increase in demand will be examined whether
it would lead to reducing the throughput below its
threshold value or if cause any increase in the loss
value. If any of the two pre-mentioned cases are
met, there will be a need to change into another
route.

Upon changing the path, the controller updates

the OpenFlow forwarding table of the OpenFlow
switches. Simultaneously, information about the
remaining bandwidth of the new and former links
is sent to the controller so that the controller will
be aware of the network resources in case of future
reservation for other parties. The controller

Figure 6: The Emulated Fat-Tree DCN

 Start

Yes

Established connection to
destination?

Increase loss or
throughput<threshold?

Yes

No

Client Request Access to
Servers

Join the
Connection

Free resources to
join?

Network
Monitoring

Find a route out of
((K/2)2-1) routes

No
Yes

No

Update OpenFlow
forwarding table

Send an update on
the remaining BW

to the controller

Join or establish a
connection

Increase demand or
new request?

No

Yes

Figure 7: The proposed Algorithm

1051

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

exploits the opportunity of having an overview of
the entire network; accordingly it performs two
kinds of tasks which are namely; network
monitoring and allocation of resources. Monitoring
is conducted by sending requests to all the
switches in a periodic manner. Up on receiving the
requests, an analysis is conducted for the reply
packets in order to determine the best route to the
intended destination. Monitoring would not add
much overhead because the request and reply
messages are too small; the request packet length
is 8 Bytes while the reply packet length is 104
Bytes [27].

IV. EMULATION AND RESULTS
This Section describes the emulation

environment, emulation tools, and the obtained
results. All experiments were conducted utilizing
HP ENVY dv6 PC with core i7 intel (R) processor
Core (TM) i7-3630QM CPU 2.40GHz, 6 GB
RAM, and 64-bit Windows 8 operating system.
Virtual Box Oracle VM version 5.0.16 was
utilized, in addition, the guest OS of the VM was
installed with Linux OS Ubunto 14.04 32-bit and
1GB RAM. Mininet 2.2.1 emulator was installed
on this VM, with POX 2.0 controller. The
emulated DCN is of Fat-Tree type with four pods,
8 aggregation OpenFlow switches, 8 edge
OpenFlow switches, 4 core OpenFlow switches,
and 16 hosts. In order to obtain more realistic and
reliable results; small packets and relatively small
link capacities bandwidth were utilized because the
performance of Open Virtual Switch (OVS) and
OpenFlow controller created by Mininet is effected
by underlying OS, available processor and the
allocated memory [2, 28]. Accordingly, all link
bandwidths have a capacity of 10Mbps. Mininet
was utilized as an emulation tool for the purpose of
designing and evaluating the proposed scheme. In
addition, Mininet was used in order to feed the
network with traffic and measure the throughput
via the command Iperf. Mininet is programmed
using Python programming language.

Traffic generation and throughput measurement

was conducted by means of Iperf tool which is a
network testing tool that can generate
Transmission Control Protocol (TCP) and User

Datagrams Protocol (UDP) packets in order to
measure the throughput of a network [29]. For the
purpose of evaluating the proposed scheme, two
scenarios were investigated. The first scenario
(Scenario A) is depicted in Figure 8 where at the
beginning, two hosts, namely H16 and H10 send
traffic with a rate of 8Mbps (Flow 2 in red colour)
and 7Mbps (Flow 4 in blow colour) to Hosts H8
and H1 respectively.

The emulation period is 20 seconds where loss,
throughput, and delay are recorded every second at
the receiver. At time 0 Sec, H16 and H10 start
sending their traffic to their intended destinations
(H16-H8, H10-H1). At time 5 Sec, Flow 3 starts
when H5 start sending traffic of 5Mbps rate to H4.
Relying on the hash way for routing and load
balancing, Flow 3 and Flow 4 contend for the same
outgoing port and accumulate an overall traffic of
12Mbps that leads to reducing the throughput and
increasing the loss rate. At time 10Sec, H13 starts
to send traffic of 5Mbps rate (Flow 1 in Green
colour) to H12 that would apparently contend with
Flow 2 and they together make traffic of 13Mbps.

Figure 9 shows the obtained results of
throughput when the traditional hashing method is
utilized, as it could be noticed, up to the fifth
Second of the emulation period, H16 and H10
were sending an average traffic rate of 8Mbps and
7Mbps to hosts H8 and H1 respectively. Then H5
joins with 5Mbps traffic rate so apart from its
intended receiver (H4), it affects H1 only because
it contends with the traffic sent by H10 at the core
level as depicted in Figure 8. Therefore, their
received throughputs are reduced as depicted in
Figure 9. At time 10 Seconds, H13 starts
transmitting traffic to H12 with 5Mbps rate. Again,
there will be a collision with the traffic of Flow 2
but this time it will occurred at the aggregation
level. This leads to dropping the throughput of
hosts H12 and H8 as shown in Figure 9.

When deploying the proposed SDN-Based load

balancing scheme to the same scenario and traffic
distribution, then neither the new joined hosts nor
the already transmitting hosts will be affected as
shown in Figure 10. The reason is that the load
balancer has a full overview over the entire

Core 1 Core 2 Core 3 Core 4

Figure 8: Emulation of the first Scenario

H1 H2 H5 H7 H3 H4 H6 H8 H9 H16 H10 H12 H13

Th
ro

ug
hp

ut
 (M

bp
s)

Time (Seconds)

Throughput vs Time (Traditional Scheme)

Figure 9: Throughput versus emulation time for
Scenario A when utilizing traditional hash load

balancing technique.

 Flow 1 Flow 2 Flow 3 Flow 4

1052

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

network and once it receives a packet that belongs
to a new flow, it allocates free resources for it
without undergoing any loss. The controller inserts
a new entry in the OpenFlow forwarding tables to
establish a connection of the new joined server.
However, the case may be different in the Second
Scenario when there is an increase in demands for
an already established connection, in this case,
there will be some affect that lasts very short time
as it will be depicted later.

Figure 11 shows the loss results when

traditional technique is deployed; obviously there
is not any loss in the case of the proposed SDN-
Based load balancing method. As indicated in
Figure 11, the loss rate starts gradually for hosts
H1 and H4 at time 5 Seconds when H5 joins by
sending traffic via the network and cause collision
at the core level. However, hosts H8 and H12 start
undergoing from loss at time 10 Seconds when
H13 joins the network that leads to congestion at
the aggregation level as depicted in Figure 8. As
mentioned earlier, the SDN controller can fully
control and prevent any loss in such a case because
H5 and H13 are new to the network and their flow
will be optimally allocated by the controller,
therefore, the loss rate is equal to 0% for such a
case when utilizing the proposed SDN-Based load
balancing scheme. Nevertheless, there would be
some loss if the connection is already established
as it will explain in the Second Scenario (Scenario
B).

For the sake of simplicity for the reader, the
same topology and sender-receiver pairs that are
shown in Figure 12 are assumed for Second
Scenario. However, the starting sending rate is
way lower than the First Scenario, where, H16 and
H13 send traffic rates of 5Mbps and 4Mbps
respectively, they utilizing the same route to their
intended destinations, H8 and H12 respectively.

It is also assumed that H5 and H10 send traffic
with 2Mbps and 6Mbps rates to H1 and H4
respectively. The main difference between the two
scenarios is that in the second Scenario, flows are
already established; therefore, in case that the

demand for capacity goes beyond link’s capacity,
the controller will call the SDN-Based load
balancing algorithm to conduct load balancing.
Whereas, in the first scenario, the flow were not
established when it was required to send traffic
higher than link’s capacities.

H5 (destination H4) increases its demand from
2Mbps to 6Mbps at time 5Sec as shown in Figure
13. For the case of the traditional scheme, there
will be a contention between Flow 3 and Flow 4
which leads to degrading the throughput and
increasing the loss rate for H4 and H1 as they
share the same route as it is depicted in Figure 13.
The expected throughput of H4 is supposed to be
6Mbps, however, as it is depicted in Figure 13
(green colour), it does not exceed the average of
4.3Mbps. In addition, the contention affect H1 by
reducing it is already established connection’s
throughput from 6Mbps into around 5.5 Mbps as
depicted in Figure 13 (blue colour). On the other
hand, when utilizing the SDN-Based load
balancing scheme, the contention triggers the
proposed algorithm to take an action as there is an
increase in the loss rate. The controller takes the
initiation and dictates OpenFlow switches to
change their forwarding table into a new route
based on the information that the controller has
about the entire network. Therefore, it re-route
Flow 3 into Path B as shown in Figure 12. In
addition, H13 (destination H12) increases its

Th
ro

ug
hp

ut
 (M

bp
s)

Time (Seconds)

Throughput vs Time (SDN Load Balancing)

Figure 10: Throughput vs Emulation time for
Scenario A when utilizing the proposed SDN-
Based load balancing algorithm.

Lo
ss

 R
at

e
(%

)

Time (Seconds)

Loss Rate vs Time (Traditional Scheme)

Figure 11: Loss Rate versus emulation time for
the traditional scheme

Core 1 Core 2 Core 3 Core 4

H1 H2 H5 H7 H3 H4 H6 H8 H9 H16 H10 H12 H13

Figure 12: Emulation of the Second Scenario

Path A Path B
 Flow 1 Flow 2 Flow 3 Flow 4

1053

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

sending rate from 4Mbps into 8Mbps at time
10Sec as depicted in Figure 14; this would have
consequences on Flow 1 and Flow 2. The
controller triggers the SDN-Based load balancing
algorithm to choose an alternative path from the
available three paths; it selects Path A to forward
the traffic of Flow 1 as depicted in Figure 12. The
algorithm re-routes the traffic sent by H13 into
Path A; similarly it changes the route of the traffic
sent by H5 into Path B as depicted in Figure 12. As
it is depicted in Figure 14, the increase in demands
would have an effect for a very short time;
afterwards, the expected throughput is attained as
depicted in blue and red coloured curves of the
same Figure. Figure 14 shows that in the case of a
traditional scheme, the increase of Flow 1 will
have a devastating effect on Flow 2 as shown in
blue and green coloured curved.

Figure 15 depicts the loss rate versus the
emulation time for the second Scenario (Scenario
B). It could be noticed how the throughput and loss
values are degraded only for very short times when
utilizing the SDN-Based scheme. The results
showed that the proposed algorithm has
considerable superiority over the traditional load
balancing algorithm and it remarkably improves
the performance of data centre networks.

The summary of improvement is depicted in Table
1 that records the average throughput, average loss
for the traditional and the proposed algorithm. In
addition, it shows the amount of improvements,
whereas, there was up to 81% improvement in the
loss rate. Throughput improvements hit 16% on
average (it is calculated from the time of joining a
new host until the end of the simulation time),
obviously, this percentage could be increased
remarkably by increasing the emulation time as the
throughput of the proposed algorithm will be
already reached a maximum (expected).

 H1 H4 H8 H12

Avg. Loss
Traditional (%)

6.031 23.8270 14.5763 25.785

Avg. Throughput
Traditional

(Mbps)

5.5818 4.45845 4.19199 5.6689

Avg. Loss SDN
(%)

1.8794 7.017 2.76798 10.659

Avg. Throughput
SDN (Mbps)

5.8265 5.34617 4.77856 6.64272

Loss
Improvement

(%)

68.84 70.548 81.010 58.658

Throughput
Improvement

(%)

4.2003 16.604 12.275 14.659

Th
ro

ug
hp

ut
 (M

bp
s)

Time (Seconds) Figure 14: Scenario B, throughput comparison
between the traditional scheme and the SDN-
Based load balancing scheme for for H8 and

Throughput vs Time (H8 & H12)

Throughput vs Time (H1 & H4)

Lo
ss

 R
at

e
(%

)

Loss Rate vs Time

Time (Seconds)
Figure 15: Scenario B, loss rate comparison
between the traditional scheme and the SDN-
Based load balancing scheme for H8 and H12.

Figure 16: Scenario B, loss rate comparison
between the traditional scheme and the SDN-
Based load balancing scheme for H1 and H4.

Time (Seconds)

Lo
ss

 R
at

e
(%

)

Loss Rate vs Time

Table 1:. Summary of loss and throughput results for Scenario B

Figure 13: Scenario B, throughput comparison
between the traditional scheme and the SDN-Based

load balancing scheme for for H1 and H4.

Time (Seconds)

Th
ro

ug
hp

ut
 (M

bp
s)

1054

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

V. Conclusion
This paper proposes a new mechanism to conduct
load balancing for data center networks in order to
improve their efficiency. To obtain realistic and
reliable results, specific kind of network topology
was chosen because it is the most utilized topology
in data centers that is called Fat-tree network
topology. Fat-Tree network topology was utilized
with 4 pods, 8 edge OpenFlow Switches, 8
aggregation OpenFlow switches, 16 hosts, 4 core
OpenFlow switches and a controller. The proposed
algorithm suggests utilizing SDN technique for the
purpose of load balancing in order to maintain a
minimum loss and maximum throughput. For
evaluation purpose, the most reliable SDN
emulator was utilized which is called Mininet
emulator with Miniedit GUI tool. Two scenarios
were emulated; the scenarios were chosen
carefully in order to cover all the expected cases,
in both of them, the proposed scheme showed a
remarkable improvement over the traditional
scheme. Whereas, for the first scenario, the
proposed scheme showed a loss free performance
compared to a loss rate that ranged from 15% into
34% when using the traditional scheme. In the
second scenario, the proposed scheme showed a
loss rate improvement that ranges between 58%
and 81% depending on the amount of contending
traffic and the additional traffic beyond links’
capacity.

In term of throughput, hosts utilizing the
proposed scheme maintained the same level of
throughput without any degradation when new
flows joined the network and added additional
traffic (first scenario). On the other hand, hosts that
utilizing the traditional scheme underwent from a
remarkable reduction in their throughput, the
overall reduction in the throughput recorded more
than 5Mbps. In the second scenario, the proposed
scheme outperforms the traditional mechanism,
whereas the improvement in throughput recorded
amounts that range between 4.2% and 16.6%.

In general, this paper suggests
utilizing\deploying SDN networks for designing
data center networks in order to improve their
performance. Taken into consideration that
OpenFlow devices are already widely available in
the market and many data center networks are
using it as a network switching fabric, therefore,
the proposed scheme is ready for implementation
in such networks. In addition, the proposed
algorithm is simple to implement and support more
flexibility to the data center network.
References
[1] Yang Peng, et. al., “Towards Comprehensive
Traffic Forecasting in Cloud Computing: Design
and Application”, IEEE/ACM Transactions on
Networking, Vol. 24, No. 4, pp. 2210-2222,
August 2016.

[2] Shavan Askar, Georgios Zervas, David K.
Hunter, Dimitra Simeonidou, “Evaluation of
Classified Cloning Scheme with Self-similar
Traffic”, 3rd International Conference on
Computer Science and Electronic Engineering
(CEEC 2011), pp. 23-28, 2011.
[3] Heller, B., S. Seetharaman, P. Mahadevan, Y.
Yiakoumis, P. Sharma, S. Banerjee, and N.
Mckeown. 2010.
[4] Mohammad Al-Fares, et. al., “Hedera:
Dynamic Flow Scheduling for Data Center
Networks”, Networked Systems Design and
Implementation (NSDI 2010) Symposium., 2010.
[5] Shubhi Prashant Shukla, “Comparative
Analysis of Distance Vector Routing & Link State
Protocols”, International Journal of Innovative
Research in Computer and Communication
Engineering, Vol. 3, No. 10, pp. 9533-9539,
October 2015.
[6] James F. Kurose, Keith W. Ross, “Computer
Networking: A Top-Down Approach”, 6th Edition,
Pearson, 2012.
[7] Dan Li, Yunfei Shang, Wu He, and Congjie
Chen, “Greening Data Center Network with
Software Defined Exclusive Routing”, IEEE
Transaction on Computers, Vol. 64, No. 9, pp.
2534-2544, 2015.
[8] Liming Wang, and Gang Lu, "The dynamic
sub-topology load balancing algorithm for data
center networks", International Conference on
Information Networking (ICOIN 2016), Kota
Kinabalu, pp. 268-273, 2016.
[9] Feilong Tang, Laurence T. Yang, Cang Tang,
Jie Li, Minyi Guo, "A Dynamical and Load-
Balanced Flow Scheduling Approach for Big Data
Centers in Clouds”, IEEE Transactions on Cloud
Computing , Vol. 99, pp.1-14, 2016.
[10] Zhaogang Shu; et. al, “Traffic Engineering in
Software-Defined-Networking: Measurement and
Management”, IEEE Access, Vol. 4, pp. 3246-
3256, 2016.
[11] Sixto Ortiz, “Software-defined networking:
On the verge of a breakthrough?”, IEEE Computer
Society, Vol. 46, No. 7, pp. 10-12, July 2013.
[12] ONF TS-025, “OpenFlow Switch
Specification”, Open Networking Foundation,
Version 1.5.1, March 2015.
[13] Xuan-Nam Nguyen, Damien Saucez, Chadi
Barakat, and Thierry Turletti, "Rules Placement
Problem in OpenFlow Networks: A Survey," IEEE
Communications Surveys & Tutorials, Vol. 18,
No. 2, pp. 1273-1286, Secondquarter 2016.
[14] Andreas Blenk, Arsany Basta, Martin
Reisslein, Wolfgang Kellerer, “Survey on Network
Virtualization Hypervisors for Software Defined
Networking", IEEE Communications Surveys &
Tutorials, vol. 18, no. 1, pp. 655-685, Firstquarter
2016.
[15] Ian F. Akyildiz, Ahyoung Lee, Pu Wang, Min
Luo, Wu Chou, "Research challenges for traffic

1055

NJES Vol.20 No.5, 2017 Askar, pp.1047-1056

engineering in software defined networks", IEEE
Network, vol. 30, no. 3, pp. 52-58, May-June 2016.
[16] Jayaram Mudigonda, Praveen Yalagandula,
Mohammad Al-Fres, Jeffrey Mogul, “SPAIN:
COTS data-center ethernet for multipathing over
arbitrary topologies”, 7th USENIX Symposium on
Networked Systems Design and Implementation,
2010.
[17] Wei Wang, Yi Sun, Kave Salamatian, and
Zhongcheng Li, “Adaptive Path Isolation for
Elephant and Mice Flows by Exploiting Path
Diversity in Datacenters”, IEEE Transaction on
Network and Service Management, Vol. 13, No. 1,
pp. 5-18, March 2016.
[18] Zhiyang Guo, and Yuanyuan Yang, “On
Nonblocking Multicast Fat-Tree Data Center
Networks with Server Redundancy”, IEEE
Transactions on Computers, Vol. 64, No. 4, pp.
1058-1073, April 2015.
[19] WANG Yong, T. Xiaoling, H. Qian and K.
Yuwen, “A Dynamic Load Balancing Method of
Cloud-Center Based on SDN”. in China
Communications, vol. 13, no. 2, pp. 130-137, Feb.
2016.
[20] G. Kornaros, T. Orphanoudakis and N.
Zervos, “An efficient implementation of fair load
balancing over multi-CPU SOC architectures”,
Symposium on Digital System Design, pp. 197-
203, Belek-Antalya, Turkey, 2003.
[21] Senthil Ganesh N, and Ranjani S., “Dynamic
Load Balancing using Software Defined
Networks”, International Journal of Computer
Applications (0975-8887), 2015.

[22] M. Qilin and S. Weikang, “A Load Balancing
Method Based on SDN, ” IEEE International
Conference on Measuring Technology and
Mechatronics Automation, China, 2015.
[23] Mininet. http://mininet.org. Accessed in
August 2016
[24] Faris Keti and Shavan Askar “Emulation of
Software Defined Networks Using Mininet in
Different Simulation Environments. ” IEEE
International Conference on Intelligent Systems,
Modelling and Simulation, Malizia, 2015.
[25] Faris Keti and Shavan Askar “An
Investigation of Mininet Emulator for Evaluating
Software Defined Networks Performance”, Journal
of Duhok University, Vol. 18, No. 1, 2016.
[26] Jun Duan, Yuanyuan Yang, “Placement and
performance Analysis of Virtual Multicast
Networks in Fat-Tree Data Center Networks”,
IEEE Transactions on Parallel and Distributed
Systems, Vol. 99 , No. 1, pp. 1-14, Janurary 2016.
[27] Y. Lei and et. al , “Multipath Routing in
SDN-based Data Center Networks, ” IEEE
European Conference on Networks and
Communications , Paris, 2015.
[28] A. Craig and et. al “Load Balancing for
Multicast Traffic in SDN using Real-Time Link
Cost Modification, ” IEEE ICC-Next Generation
Network Symposium, 2015.
[29] Iperf, https://iperf.fr/. Accessed in August
2016

نظام موازنة الحمل بألاعتماد على الشبكات المعرفة برمجیا لشبكات الفات تري لمراكز
 البیانات

 د.شفان كمال عسكر
 جامعة بولیتكنك دھوك - مركز البحوث العلمیة

 دھوك/العراق
 الخلاصة

المعرفة بالبرمجیات. تم استخدام بكات بالاستفادة من خصائص الشلشبكات مراكز البیانات ھذا البحث یقترح خوارزمیة جدیدة لموازنة الحمل
مینینیت لغرض محاكاة وتقییم التصمیم المقترح, میني ادت استخدم كواجھة المستخدم الرسومیة لنفس الغرض. لغرض استحصال بیئة مشابھة

 16مفتاح جوھري, و 4یع, مفتاح تجم 16مفتاح طرفي, 16لمركز البیانات, بنیة فات تري استخدمت مع المواصفات التالیة: اربعة قرون,
مضیف. تم تطبیق سیناریوھات وتوزیع احمال مختلفة لغرض تغطیة اكبر عدد ممكن من الاحتمالات للأحمال الحقیقیة. المسیطر بوكس استخدم

 كمسیطر للشبكة المعرفة برمجیا وبأمتلاك المعلومات على كل الشبكة, تم انجاز موازنة الحمل بشكل كفوء.
رح ابدى اداءا متفوقا عند مقارنتھ مع الطریقة التقلیدیة من ناحیة الانتاجیة والخسائر لكل السیناریوھات المقیمة. في السیناریو التصمیم المقت

نتائج الاول, تم افتراض التحاق مضائف جدیدة بینما في السیناریو الثاني تم زیادة الحمل للقنوات المنشئة اصلا. الخوارزمیة المقترحة اظھرت
% لنفس السیناریو. في 31% الى 15ة من ایة خسائر في السیناریو الاول في حین ان الطریقة التقلیدیة ادت الى اظھار خسائر تتراوح بین خالی

% لدى مقارنتھا بالطریقة التقلیدیة. علاوة على ذلك, 81السیناریو الثاني, الخوارزمیة المقترحة سجلت تحسین في نسبة الخسائر تصل الى
میة المصممة اظھرت تفوقا بالاداء على الطریقة التقلیدیة من ناحیة الانتاجیة, حیث انھا حافظت على معدل الانتاجیة كما ھو بدون ایة الخوارز

خفیض خسائر في السیناریو الاول بالضد للطریقة التقلیدیة التي عانت من تخفیض ملحوظ في قیمة الانتاجیة. الطریقة التقلیدیة عانت من معدل ت
میكا بت في الثانیة عند التحاق مضائف جدیدة (السیناریو الاول) . في السیناریو الثاني, كلتا الطریقتین عانتا من انخفاض في قیمة 5متھ قی

 %. 16.6الانتاجیة, ولكن الطریقة المقترحة دائما اظھرت تفوقا على الطریقة التقلیدیة حیث انھا سجلت تحسین في قیمة الانتاجیة تصل الى
.لكلمات المفتاحیة: الشبكة المعرفة برمجیا, مركز البیانات, المسیطر بوكس, شبكة فات تري, میني نیت, میني ایدت, موازنة الحملا

1056

	I. Introduction
	II. Related Work
	III. SDN-Based Load Balancing Scheme
	IV. Emulation and Results
	V. Conclusion
	References

