
Al-Nahrain Journal for Engineering Sciences (NJES)          Vol.20 No.5, 2017 pp.1047-1056 
 

SDN-Based Load Balancing Scheme for Fat-Tree Data Center 
Networks  

Shavan Askar 
Research Center  

Duhok Polytechnic University   
shavan.askar@dpu.edu.krd  

 
Abstract— this paper proposes a new load 
balancing algorithm for data center networks by 
means of exploiting the characteristics of 
Software Defined Networks. Mininet was utilized 
as an emulation tool for the purpose of emulating 
and evaluating the proposed design, Miniedit was 
utilized as a GUI tool for the same purpose. In 
order to obtain a realistic environment to the data 
center network, Fat-Tree topology was utilized 
with the following parameters; 4 pods, 16 edge 
switches, 16 aggregation switches, 4 core 
switches, and 16 hosts. Different scenarios and 
traffic distributions were applied in order to cover 
as much possible cases of the real traffic. POX 
controller was chosen as an SDN controller.   
       The suggested design showed outperformance 
when compared to the traditional scheme in term 
of throughput and loss rate for all the evaluated 
scenarios. The first scenario assumes joining of 
new hosts while in the second scenario; there was 
an increase in the demand of the already 
established connections. The proposed algorithm 
showed a loss free performance in the first 
scenarios, whereas, the traditional scheme 
presented 15% to 31% loss rate for the same 
scenario. In the second scenario, the proposed 
algorithm recorded up to 81% improvement in the 
loss rate when compared to the traditional scheme.  
Moreover, the proposed algorithm showed a 
superiority over the traditional scheme in term of 
throughput, where it maintained the throughput 
intact without any reduction in the first scenario in 
contrast to the traditional scheme that underwent 
from a considerable degradation in the throughput 
value. The traditional scheme underwent from an 
average throughput reduction of 5Mbps in the case 
of joining of new hosts (first scenario). In the 
second scenario, both schemes underwent from a 
throughput reduction, however, the proposed 
scheme always showed superiority over the 
traditional scheme, whereas, it recorded up to 
16.6% improvement in the throughput average 
value.  
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I.  Introduction  
Data Center Networks (DCN) witnessed an 

unprecedented development over the past few 
years in an attempt to accommodate the huge 
increase and requirements’ change in the traffic. 
To handle such big data, special consideration has 
to be taken for traffic monitoring and management 
because any disruption in the service or presenting 
undesirable QoS parameters would lead to massive 
revenue loss [1, 2].    

Traffic of networks is mainly comprises of 
control plane traffic and data plane traffic. The 
majority of load balancing schemes deal with the 
data plane traffic as its percentage is far more than 
the control plane traffic. In present, Data centers 
deploy hierarchical network architecture with 
multi-path characteristics such as Fat-Tree 
topology. The existence of multi-path routes 
facilitates having different routes to the same 
destination and this will help having a better load 
balancing options. Fat-Tree topology has been 
implemented in many modern DCs such as [3, 4]. 
Figure 1 shows a Fat-Tree topology with four 
pods.   

Although there is more than one rout into a 
particular destination in a Fat-Tree network, 
however, the classical distance vector and link 
state routing protocols cannot utilize this multi-
path property. Internet routing protocols usually 
routes and forwards packets based on the 
destination IP address. As a consequent, packets 
with the same intended destination address will be 
routed at the same path [5, 6].  

 
Undoubtedly, there are some routing protocols 

that have equal cost multipath (ECMP) 
characteristic; however, they split traffic statically 
depending on the information obtained from a 
packet’s header. As a result, there will be no 
consideration for traffic flow’s requirements in 
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term of QoS parameters; in addition, the status of 
the overall network load is not taken into 
consideration. In other words, those kinds of 
ECMP algorithms are merely capable of selecting 
among multiple paths that have equal least cost [3, 
6].      

The main difference between routing of DC 
traffic and internet traffic is that; internet routing 
protocols often emphasize on selecting the shortest 
path to reduce the delay. Whereas, DCs are 
composed from servers that are usually located in 
close distances, therefore, the concern is more than 
just the latency; it is about balancing the huge 
traffic. The pre-mentioned bandwidth balancing 
function is not attainable in traditional DCNs 
because of the nature of the traditional switches 
utilized in those kinds of networks. The switches 
that are deployed in traditional DCNs do not have 
a global view on the entire network resources such 
as the remaining link bandwidths and alternative 
paths in a real time manner [7, 8, 9]. 

An SDN-Based load balancing DCN is 
proposed in this paper by means of utilizing SDN 
switches and controller. The main difference 
between the SDN network structure and the 
traditional network is that in SDN, the forwarding 
process is conducted in a centralized manner by 
means of a controller and forwarding switches and 
this is considered as the main advantage for 
conducting an efficient load balancing over the 
traditional DCNs. Figure 2 shows a simple 
architecture of the SDN network.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2: SDN Architecture 

 
The SDN controller has a comprehensive 

overview on the type of flows, links’ utilization, 
and the available paths to the intended destination. 

These kinds of information help in performing 
more efficient load balancing algorithms than if it 
is limited to distributed protocols for routing and 
traffic monitoring as it is the case with the 
traditional network architectures [10].  

As shown in Figure 2, SDN networks consist 
of three main layers; data layer, control layer, and 
application\management layer. The data layer 
comprise of network devices such as routers, 
OpenFlow switches, wireless devices. The 
operation of these devices differs from their 
function at traditional networks; in SDN, they are 
merely forwarding devices while the intelligence 
unit that is responsible for making decisions is 
located at the controller. The case is different with 
traditional networks that come with network 
devices with their software or control unit built 
inside them. SDN allows network administrators 
of configuring and managing network’s traffic 
which contributes into better utilization for 
network resources.   The concept of SDN was 
originally proposed by Stanford University [11]. 
SDN separates the control plane from the data 
plane on its network devices; in addition, it allows 
having an entire overview on the network 
resources that supports making changes globally 
not in a centralized manner as in traditional 
networks. This new network technique is 
implemented utilizing some open standards such as 
OpenFlow. OpenFlow is one of the most important 
protocols that are capable of configuring, 
managing, and interoperability between different 
network devices [12]. As shown in Figure 2, SDN 
networks consist of two major elements which are 
namely; the controller (control plane) and the 
forwarding devices (data plane). The forwarding 
device could be a switch or a router that is in 
charge of forwarding packets only. On the other 
hand, the controller is considered as brain of the 
network, it is simply software operating on a 
specific hardware platform. The controller is 
communicated with the OpenFlow switches via a 
secure channel that runs an OpenFlow protocol. 
SDN controller inserts flow entries, modify flow 
entries, query, and has an overview of the whole 
network resources. OpenFlow forwarding switches 
keep statistics of each flow and port such as the 
total number of transferred bytes and the duration 
time of each flow. The forwarding switches and 
controller coordinate their work as follows; if the 
path of the flow is already known (not the first 
packet of the flow), then the forwarding switch 
would not need to consult the controller and it can 
forward packets on the fly. However, for first 
packet case (the income packet does not match any 
flow entries of the Ternary Content Addressable 
Memory table), the switch needs to consult the 
controller to find a suitable outgoing port [13, 14, 
15].    
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The proposed scheme aims at adaptively 
balancing the load by means of re-routing into an 
alternative path based on information obtained 
from the SDN controller.  
The rest of this paper is organized as follows; 
Section II gives a description for the previous 
research on providing load balancing schemes for 
data centers and some of the early attempts on 
using SDN for this purpose. Section III describes 
the proposed SDN-Based load balancing scheme 
using SDN architecture. Section IV presents the 
obtained results and analyzes them. Section V 
concludes the paper. 

II. Related Work 
Load balancing problem is one of the major 

issues in DCs in their different shapes, whether 
they are physical DCs or virtual DCs. DCs usually 
allow multiple paths routing for the purpose of 
improving the tolerance to faults in addition to 
increasing network’s throughput by means of 
sorting out the problem of congestion. Layer 2 and 
Layer 3 are capable of running multipath routing; 
however, each layer deploys it based on its 
protocols. For instance, spanning tree is utilized by 
Layer 2; therefore, only one path would be 
available for a pair of sender receiver nodes at a 
time. There are some proposal to support multipath 
with Layer 2 such as the one conducted by [16]. 
They proposed exploiting the redundant paths in 
the network using an algorithm that calculate a set 
of available paths and combine them into another 
set of trees. On the other hand, at Layer 3, routers 
support ECMP by implementing static load 
separation between the available flows. Switches 
that have their ECMP property enabled would 
have more than one path in each subnet. Upon 
receiving an incoming packet, switches utilize the 
hash function (interpreting packet header) in order 
to select one of the available paths for forwarding 
purpose. However, ECMP does not take into 
consideration the flow bandwidth when selecting 
paths which may results in overloading links 
unnecessarily where other links may already be 
available as it is shown in Figure 3. In addition, 
ECMP has a problem in its practical 
implementation because the available paths for 
selection are either 8 or 16 paths which is much 
lower than the needed paths for the purpose of 
providing bisection bandwidth, in particular, when 
dealing with big data as it is the case with DCNs.         

Figure 3 depicts a scenario where ECMP is 
utilized and where it can’t utilize network’s links 
in an efficient way because of the phenomena 
mentioned above, that is not counting for flow 
bandwidth. One of the major drawbacks of ECMP 
is that long flows may contend on the same output 
port based on their hash values, this would 
consequently lead into bottleneck [17]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
Figure 3: Scenario depicting ECMP problem 
  
Figure 3 shows a scenario of Fat-Tree topology 

in which all networks links are 10 Gbps. Flow 1 
and Flow 2 sending traffic with 10 Gbps each, 
because of the hashing, they contend at the 
aggregation level (encircled with red colour) for 
the same output port that routes to the core level. 
This collision results in halving the throughput of 
each of them. The other collision is happened 
between Flow 3 and Flow 4 at the core level. 
Obviously, their throughput is halved as the link 
requires carrying their overall traffic which is 
equal to double of the link capacity. A Fat-Tree 
Topology with four pods as depicted in Figure 3 
should allow for four different paths for each host, 
however, an efficient algorithm that can utilize this 
property is needed. This means that with an 
existence of the right load balancing scheme, the 
four flows would have transferred traffic in a rate 
of 10Gbps instead of 5 Gbps. This could have been 
happened if Flow 1 was directed into Core 2 and 
Flow 3 into Core 4 [17, 18]. 

A research is conducted in [19] to improve the 
hash algorithm by distributing the data flow. A 
detection algorithm is utilized to find out the 
occupancy duration for the purpose of 
identification weights of each load and their dense 
points. Another research was conducted in [20] in 
which a shared memory for network data flow was 
proposed by means of multiprocessor model. 
Priority and weight schemes were deployed in 
order to evenly distribute network flows to the 
processor. However, in addition to the lack of an 
overview of flow bandwidth, one of the drawbacks 
of the abovementioned algorithms is that their 
systems are closed. In addition, their software and 
hardware is tightly coupled, therefore they are not 
suitable for the high development growth of 
Internet.         

III. SDN-BASED LOAD BALANCING SCHEME 
In addition to the above mentioned issues with 

ECMP, traditional load balancing techniques come 
with a dedicated hardware that is in charge of 
conducting the function of load balancing as 
depicted in Figure 4.  
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When users try to access backend servers 

shown in Figure 4, it would be the role of the load 
balancer to check the list of backend servers out 
and select an appropriate load balancing algorithm 
for the purpose of distributing clients’ access into 
the available servers. Therefore, the load balancer 
should keep track of all the established sessions; in 
addition, all the packets that have the same 
TCP\UDP addresses would be forwarded into the 
backend servers no matter to what flow they 
belong. In this case, the load balancer should 
has\and executes network address translation by 
updating the source; port number, and the IP 
addresses of the outgoing packets while 
conducting an opposite job when receiving packets 
by matching the destination; IP and port number 
addresses for the incoming packets with its table 
[21]. The dedicated load balancer has more 
drawbacks than the above-mentions ones; it is an 
expensive solution, not a flexible technique, 
undergoes from the problem of having single point 
of failure, and leads to bottleneck for whole system 
[21, 22]. 

A generic overview of the proposed SDN-
Based load balancing system is shown in Figure 5. 
The main difference between the proposed system 
and the traditional one is that  there is no dedicated 
hardware for the purpose of load balancing. 
Instead of a dedicated load balancer and traditional 
switches, the proposed scheme utilizes OpenFlow 
switches that could be programmed to work under 
any needed function whether as a router, switch, 
and hub. OpenFlow switches works under the 
supervision of a controller that is connected to all 
the switches and has an entire overview of the 
whole network and its resources. The property of 
the controller is exploited for the sake of having an 
efficient load balancing scheme, this is conducted 

by deploying the load balancing algorithm inside 
the POX controller. The role of the controller of a 
DCN is to manage requests received from clients 
and forward them into a specific path to a 
particular server based on the information of the 
entire network that is already gathered by the 
controller. SDN controller is capable to adaptively 
add, delete, and modify entries of the flow table of 
the OpenFlow switches for the sake of balancing 
the load of the network.  

 

 
 
 
 

The proposed architecture aims at adaptively 
balancing the load of the DCN based on some 
triggering parameters that could be set either 
manually (DCN administrator) or dynamically 
based on service requirements, in both cases, the 
network status plays a major role in initiation the 
load balancing algorithm. To meet a reliable 
evaluation for the proposed scheme, two aspects 
have been taken into consideration. First, is to 
utilize exactly the same network topology that is 
deployed by DCNs and that is, a Fat-Tree network 
topology. Secondly, to utilize the most reliable 
emulator for SDN network, that is Mininet 
emulator [23, 24, 25]. 

  The proposed DCN scenario is evaluated by 
means of a Fat-Tree network with k=4, the 
proposed architecture is emulated utilising Mininet 
emulator as shown in Figure 6 that represents a 
snapshot of the emulated network. Fat-Tree 
topology is built with K ports switches and it 
consists of K-pods. Each pod has two layers, 
aggregation and edge as indicated in Figure 1. The 
available paths between any two hosts in a K-pods 
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Fat-Tree network is (K/2)2
, this means that there 

are four routing paths between any two servers of 
the network shown in Figure 6. In addition, the 
entire K-pods should be connected into (K/2)2 
Core switches (4 core switches) [26].      

The proposed SDN-Based load balancing 
algorithm is programmed inside a POX controller 
that belongs to the SDN based DCN.  The 
triggering parameter for the proposed algorithm is 
bandwidth and loss which are the two most 
important factors when dealing with DCNs. 
Accordingly, when a received throughput is 
decreased under its expected value or in case there 
is an increase in the loss value in one or couple of 
the DCN links (throughput and loss are interrelated 
and gives that same indication), then the proposed 
algorithm takes action. The pre-mentioned 
scenario is when there are already established 
connections and there is an increase in the traffic 
that leads to loss, however, if the connections 
among servers and clients started with high 
bandwidth requirements, then the algorithm will 
find optimal path at the beginning of creating the 
connections. The initiation starts with the 
controller which has an entire overview on the 
whole network resources as shown in red lines in 
Figure 6. The controller exploits this facility and 
finds alternative paths for the reduced throughput 
traffic or for the traffic that undergoes of high loss 
rate.  

 

Figure 7 shows a flow chart of the proposed 
SDN-Based load balancing algorithm. Two cases 
are considered; the first case where there is a new 
joining client, whereas, the second case is where 
there is an already established connection between 
two pairs and there is a demand to increase the 
throughput which may affect other communication 
parties. It is assumed that the proposed scheme 
collect the throughput requirements for specific 
applications and keep that information in the 
controller. Once there is a contention in one of the 

links, the throughput of those applications may go 
lower than their pre-specified threshold value; 
therefore, the algorithm will be initiated to conduct 
load balancing in order to attain the original 
required throughput. Because the Fat-Tree network 
utilized in the proposal has 4 pods, there will be 
four routes between any two hosts (servers). 
Therefore, the controller will search for the rest of 
three ((K/2)2-1) alternative paths to find out the 
best one as described in Figure 7. The same 
scenario is applied when there is an increase in a 
demand between two already connected parties, 
this increase in demand will be examined whether 
it would lead to reducing the throughput below its 
threshold value or if cause any increase in the loss 
value. If any of the two pre-mentioned cases are 
met, there will be a need to change into another 
route.    
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Upon changing the path, the controller updates 

the OpenFlow forwarding table of the OpenFlow 
switches. Simultaneously, information about the 
remaining bandwidth of the new and former links 
is sent to the controller so that the controller will 
be aware of the network resources in case of future 
reservation for other parties. The controller 

Figure 6: The Emulated Fat-Tree DCN 
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exploits the opportunity of having an overview of 
the entire network; accordingly it performs two 
kinds of tasks which are namely; network 
monitoring and allocation of resources. Monitoring 
is conducted by sending requests to all the 
switches in a periodic manner. Up on receiving the 
requests, an analysis is conducted for the reply 
packets in order to determine the best route to the 
intended destination. Monitoring would not add 
much overhead because the request and reply 
messages are too small; the request packet length 
is 8 Bytes while the reply packet length is 104 
Bytes [27]. 

IV. EMULATION AND RESULTS 
This Section describes the emulation 

environment, emulation tools, and the obtained 
results. All experiments  were conducted utilizing 
HP ENVY dv6 PC with core i7 intel (R) processor 
Core (TM) i7-3630QM CPU 2.40GHz, 6 GB 
RAM, and 64-bit Windows 8 operating system. 
Virtual Box Oracle VM version 5.0.16 was 
utilized, in addition, the guest OS of the VM was 
installed with Linux OS Ubunto 14.04 32-bit and 
1GB RAM.  Mininet 2.2.1 emulator was installed 
on this VM, with POX 2.0 controller. The 
emulated DCN is of Fat-Tree type with four pods, 
8 aggregation OpenFlow switches, 8 edge 
OpenFlow switches, 4 core OpenFlow switches, 
and 16 hosts. In order to obtain more realistic and 
reliable results; small packets and relatively small 
link capacities bandwidth were utilized because the 
performance of Open Virtual Switch (OVS) and 
OpenFlow controller created by Mininet is effected 
by underlying OS, available processor and the 
allocated memory [2, 28]. Accordingly, all link 
bandwidths have a capacity of 10Mbps. Mininet 
was utilized as an emulation tool for the purpose of 
designing and evaluating the proposed scheme. In 
addition, Mininet was used in order to feed the 
network with traffic and measure the throughput 
via the command Iperf. Mininet is programmed 
using Python programming language. 

 
 
 
 
 
 
 
 
 
 
 
 
 
Traffic generation and throughput measurement 

was conducted by means of Iperf tool which is a 
network testing tool that can generate 
Transmission Control Protocol (TCP) and User 

Datagrams Protocol (UDP) packets in order to 
measure the throughput of a network [29]. For the 
purpose of evaluating the proposed scheme, two 
scenarios were investigated. The first scenario 
(Scenario A) is depicted in Figure 8 where at the 
beginning, two hosts, namely H16 and H10 send 
traffic with a rate of 8Mbps (Flow 2 in red colour) 
and 7Mbps (Flow 4 in blow colour) to Hosts H8 
and H1 respectively.  

The emulation period is 20 seconds where loss, 
throughput, and delay are recorded every second at 
the receiver. At time 0 Sec, H16 and H10 start 
sending their traffic to their intended destinations 
(H16-H8, H10-H1). At time 5 Sec, Flow 3 starts 
when H5 start sending traffic of 5Mbps rate to H4. 
Relying on the hash way for routing and load 
balancing, Flow 3 and Flow 4 contend for the same 
outgoing port and accumulate an overall traffic of 
12Mbps that leads to reducing the throughput and 
increasing the loss rate. At time 10Sec, H13 starts 
to send traffic of 5Mbps rate (Flow 1 in Green 
colour) to H12 that would apparently contend with 
Flow 2 and they together make traffic of 13Mbps.      

Figure 9 shows the obtained results of 
throughput when the traditional hashing method is 
utilized, as it could be noticed, up to the fifth 
Second of the emulation period, H16 and H10 
were sending an average traffic rate of 8Mbps and 
7Mbps to hosts H8 and H1 respectively. Then H5 
joins with 5Mbps traffic rate so apart from its 
intended receiver (H4), it affects H1 only because 
it contends with the traffic sent by H10 at the core 
level as depicted in Figure 8. Therefore, their 
received throughputs are reduced as depicted in 
Figure 9. At time 10 Seconds, H13 starts 
transmitting traffic to H12 with 5Mbps rate. Again, 
there will be a collision with the traffic of Flow 2 
but this time it will occurred at the aggregation 
level. This leads to dropping the throughput of 
hosts H12 and H8 as shown in Figure 9.      

 
 
 
 
When deploying the proposed SDN-Based load 

balancing scheme to the same scenario and traffic 
distribution, then neither the new joined hosts nor 
the already transmitting hosts will be affected as 
shown in Figure 10. The reason is that the load 
balancer has a full overview over the entire 
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Figure 8: Emulation of the first Scenario 
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Scenario A when utilizing traditional hash load 
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network and once it receives a packet that belongs 
to a new flow, it allocates free resources for it 
without undergoing any loss. The controller inserts 
a new entry in the OpenFlow forwarding tables to 
establish a connection of the new joined server. 
However, the case may be different in the Second 
Scenario when there is an increase in demands for 
an already established connection, in this case, 
there will be some affect that lasts very short time 
as it will be depicted later.  

 
 
 
 
 
Figure 11 shows the loss results when 

traditional technique is deployed; obviously there 
is not any loss in the case of the proposed SDN-
Based load balancing method. As indicated in 
Figure 11, the loss rate starts gradually for hosts 
H1 and H4 at time 5 Seconds when H5 joins by 
sending traffic via the network and cause collision 
at the core level. However, hosts H8 and H12 start 
undergoing from loss at time 10 Seconds when 
H13 joins the network that leads to congestion at 
the aggregation level as depicted in Figure 8. As 
mentioned earlier, the SDN controller can fully 
control and prevent any loss in such a case because 
H5 and H13 are new to the network and their flow 
will be optimally allocated by the controller, 
therefore, the loss rate is equal to 0% for such a 
case when utilizing the proposed SDN-Based load 
balancing scheme. Nevertheless, there would be 
some loss if the connection is already established 
as it will explain in the Second Scenario (Scenario 
B).  

For the sake of simplicity for the reader, the 
same topology and sender-receiver pairs that are 
shown in Figure 12 are assumed for Second 
Scenario. However, the starting sending rate is 
way lower than the First Scenario, where, H16 and 
H13 send traffic rates of 5Mbps and 4Mbps 
respectively, they utilizing the same route to their 
intended destinations, H8 and H12 respectively. 

It is also assumed that H5 and H10 send traffic 
with 2Mbps and 6Mbps rates to H1 and H4 
respectively. The main difference between the two 
scenarios is that in the second Scenario, flows are 
already established; therefore, in case that the 

demand for capacity goes beyond link’s capacity, 
the controller will call the SDN-Based load 
balancing algorithm to conduct load balancing. 
Whereas, in the first scenario, the flow were not 
established when it was required to send traffic 
higher than link’s capacities.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

H5 (destination H4) increases its demand from 
2Mbps to 6Mbps at time 5Sec as shown in Figure 
13. For the case of the traditional scheme, there 
will be a contention between Flow 3 and Flow 4 
which leads to degrading the throughput and 
increasing the loss rate for H4 and H1 as they 
share the same route as it is depicted in Figure 13. 
The expected throughput of H4 is supposed to be 
6Mbps, however, as it is depicted in Figure 13 
(green colour), it does not exceed the average of 
4.3Mbps. In addition, the contention affect H1 by 
reducing it is already established connection’s 
throughput from 6Mbps into around 5.5 Mbps as 
depicted in Figure 13 (blue colour). On the other 
hand, when utilizing the SDN-Based load 
balancing scheme, the contention triggers the 
proposed algorithm to take an action as there is an 
increase in the loss rate. The controller takes the 
initiation and dictates OpenFlow switches to 
change their forwarding table into a new route 
based on the information that the controller has 
about the entire network. Therefore, it re-route 
Flow 3 into Path B as shown in Figure 12. In 
addition, H13 (destination H12) increases its 
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Figure 10: Throughput vs Emulation time for 
Scenario A when utilizing the proposed SDN-
Based load balancing algorithm.  
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Figure 11: Loss Rate versus emulation time for 
the traditional scheme 
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Figure 12: Emulation of the Second Scenario  
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sending rate from 4Mbps into 8Mbps at time 
10Sec as depicted in Figure 14; this would have 
consequences on Flow 1 and Flow 2. The 
controller triggers the SDN-Based load balancing 
algorithm to choose an alternative path from the 
available three paths; it selects Path A to forward 
the traffic of Flow 1 as depicted in Figure 12. The 
algorithm re-routes the traffic sent by H13 into 
Path A; similarly it changes the route of the traffic 
sent by H5 into Path B as depicted in Figure 12. As 
it is depicted in Figure 14, the increase in demands 
would have an effect for a very short time; 
afterwards, the expected throughput is attained as 
depicted in blue and red coloured curves of the 
same Figure. Figure 14 shows that in the case of a 
traditional scheme, the increase of Flow 1 will 
have a devastating effect on Flow 2 as shown in 
blue and green coloured curved. 

Figure 15 depicts the loss rate versus the 
emulation time for the second Scenario (Scenario 
B). It could be noticed how the throughput and loss 
values are degraded only for very short times when 
utilizing the SDN-Based scheme. The results 
showed that the proposed algorithm has 
considerable superiority over the traditional load 
balancing algorithm and it remarkably improves 
the performance of data centre networks.  

 

 
 
 
 
 
 

 
 

  
 

 

 

The summary of improvement is depicted in Table 
1 that records the average throughput, average loss 
for the traditional and the proposed algorithm. In 
addition, it shows the amount of improvements, 
whereas, there was up to 81% improvement in the 
loss rate. Throughput improvements hit 16% on 
average (it is calculated from the time of joining a 
new host until the end of the simulation time), 
obviously, this percentage could be increased 
remarkably by increasing the emulation time as the 
throughput of the proposed algorithm will be 
already reached a maximum (expected).  

 
 

 

 

 

 H1 H4 H8 H12 

Avg. Loss  
Traditional (%) 

6.031 23.8270 14.5763 25.785 

Avg. Throughput 
Traditional 

(Mbps) 

5.5818 4.45845 4.19199 5.6689 

Avg. Loss SDN 
(%) 

1.8794 7.017 2.76798 10.659 

Avg. Throughput 
SDN (Mbps) 

5.8265 5.34617 4.77856 6.64272 

Loss 
Improvement 

(%) 

68.84 70.548 81.010 58.658 

Throughput 
Improvement 

(%) 

4.2003 16.604 12.275 14.659 
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between the traditional scheme and the SDN-
Based load balancing scheme for for H8 and 
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Figure 15: Scenario B, loss rate comparison 
between the traditional scheme and the SDN-
Based load balancing scheme for H8 and H12.  

Figure 16: Scenario B, loss rate comparison 
between the traditional scheme and the SDN-
Based load balancing scheme for H1 and H4.  
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Table 1:. Summary of loss and throughput results for Scenario B 

 

Figure 13: Scenario B, throughput comparison 
between the traditional scheme and the SDN-Based 

load balancing scheme for for H1 and H4. 
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V.  Conclusion  
This paper proposes a new mechanism to conduct 
load balancing for data center networks in order to 
improve their efficiency. To obtain realistic and 
reliable results, specific kind of network topology 
was chosen because it is the most utilized topology 
in data centers that is called Fat-tree network 
topology. Fat-Tree network topology was utilized 
with 4 pods, 8 edge OpenFlow Switches, 8 
aggregation OpenFlow switches, 16 hosts, 4 core 
OpenFlow switches and a controller. The proposed 
algorithm suggests utilizing SDN technique for the 
purpose of load balancing in order to maintain a 
minimum loss and maximum throughput. For 
evaluation purpose, the most reliable SDN 
emulator was utilized which is called Mininet 
emulator with Miniedit GUI tool. Two scenarios 
were emulated; the scenarios were chosen 
carefully in order to cover all the expected cases, 
in both of them, the proposed scheme showed a 
remarkable improvement over the traditional 
scheme. Whereas, for the first scenario, the 
proposed scheme showed a loss free performance 
compared to a loss rate that ranged from 15% into 
34% when using the traditional scheme. In the 
second scenario, the proposed scheme showed a 
loss rate improvement that ranges between 58% 
and 81% depending on the amount of contending 
traffic and the additional traffic beyond links’ 
capacity.  

In term of throughput, hosts utilizing the 
proposed scheme maintained the same level of 
throughput without any degradation when new 
flows joined the network and added additional 
traffic (first scenario). On the other hand, hosts that 
utilizing the traditional scheme underwent from a 
remarkable reduction in their throughput, the 
overall reduction in the throughput recorded more 
than 5Mbps. In the second scenario, the proposed 
scheme outperforms the traditional mechanism, 
whereas the improvement in throughput recorded 
amounts that range between 4.2% and 16.6%.  

In general, this paper suggests 
utilizing\deploying SDN networks for designing 
data center networks in order to improve their 
performance. Taken into consideration that 
OpenFlow devices are already widely available in 
the market and many data center networks are 
using it as a network switching fabric, therefore, 
the proposed scheme is ready for implementation 
in such networks. In addition, the proposed 
algorithm is simple to implement and support more 
flexibility to the data center network.    
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نظام موازنة الحمل بألاعتماد على الشبكات المعرفة برمجیا لشبكات الفات تري لمراكز 
 البیانات

 د.شفان كمال عسكر
 جامعة بولیتكنك دھوك - مركز البحوث العلمیة

 دھوك/العراق
 الخلاصة

المعرفة بالبرمجیات. تم استخدام بكات بالاستفادة من خصائص الشلشبكات مراكز البیانات ھذا البحث یقترح خوارزمیة جدیدة لموازنة الحمل  
مینینیت لغرض محاكاة وتقییم التصمیم المقترح, میني ادت استخدم كواجھة المستخدم الرسومیة لنفس الغرض. لغرض استحصال بیئة مشابھة 

 16مفتاح جوھري, و  4یع, مفتاح تجم 16مفتاح طرفي,  16لمركز البیانات, بنیة فات تري استخدمت مع المواصفات التالیة: اربعة قرون, 
مضیف. تم تطبیق سیناریوھات وتوزیع احمال مختلفة لغرض تغطیة اكبر عدد ممكن من الاحتمالات للأحمال الحقیقیة. المسیطر بوكس استخدم 

 كمسیطر للشبكة المعرفة برمجیا وبأمتلاك المعلومات على كل الشبكة, تم انجاز موازنة الحمل بشكل كفوء.
رح ابدى اداءا متفوقا عند مقارنتھ مع الطریقة التقلیدیة من ناحیة الانتاجیة والخسائر لكل السیناریوھات المقیمة. في السیناریو التصمیم المقت

نتائج الاول, تم افتراض التحاق مضائف جدیدة بینما في السیناریو الثاني تم زیادة الحمل للقنوات المنشئة اصلا. الخوارزمیة المقترحة اظھرت 
% لنفس السیناریو. في 31% الى 15ة من ایة خسائر في السیناریو الاول في حین ان الطریقة التقلیدیة ادت الى اظھار خسائر تتراوح بین خالی

% لدى مقارنتھا بالطریقة التقلیدیة. علاوة على ذلك, 81السیناریو الثاني, الخوارزمیة المقترحة سجلت تحسین في نسبة الخسائر تصل الى 
میة المصممة اظھرت تفوقا بالاداء على الطریقة التقلیدیة من ناحیة الانتاجیة, حیث انھا حافظت على معدل الانتاجیة كما ھو بدون ایة الخوارز

خفیض خسائر في السیناریو الاول بالضد للطریقة التقلیدیة التي عانت من تخفیض ملحوظ في قیمة الانتاجیة. الطریقة التقلیدیة عانت من معدل ت
میكا بت في الثانیة عند التحاق مضائف جدیدة (السیناریو الاول) . في السیناریو الثاني, كلتا الطریقتین عانتا من انخفاض في قیمة  5متھ قی

 %. 16.6الانتاجیة, ولكن الطریقة المقترحة دائما اظھرت تفوقا على الطریقة التقلیدیة حیث انھا سجلت تحسین في قیمة الانتاجیة تصل الى 
.لكلمات المفتاحیة: الشبكة المعرفة برمجیا, مركز البیانات, المسیطر بوكس, شبكة فات تري, میني نیت, میني ایدت, موازنة الحملا  
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