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Abstract 

The optimal spacing between finned tubes 
cooled by free convection is studied 
numerically. A row of isothermal finned tubes 
are installed in a fixed volume and the spacing 
between them is selected according to the 
constructal theory (Bejan's theory). In this 
theory the spacing between the tubes is chosen 
such that the heat transfer density is 
maximized. A finite volume method is 
employed to solve the governing equations; 
SIMPLE algorithm with collocated grid is 
utilized for coupling between velocity and 
pressure. The range of Rayleigh number is (103 
≤ Ra ≤ 105), the range of the tube position is 
(0.25 ≤ δ ≤ 0.75), and the working fluid is air 
(Pr =0.71). The results show that the optimal 
spacing decreases as Rayleigh number 
increases for all tube positions, and the 
maximum density of heat transfer increases as 
the Raleigh number increases for all tube 
positions and for Ra=105 the highest value of 
heat transfer density occurs at tube position (δ 
=0.75) while the lowest value occurs at tube 
position (δ =0.25). The results also show that 
the optimal spacing remains constant with 
change of the tube position at constant 
Rayleigh number. 
Keywords: Constructal theory, optimal 
spacing, finned tubes, natural convection 

Nomenclature  
b             Position of the tube (m) 
d             diameter of the tube = 2a(m) 
D            Non-dimensional diameter of the tube 
g                Gravity acceleration (m/s2) 
h             Total height of fin and tube (m) 
Hd              Dimensionless downstream extension 
Hu                 Dimensionless upstream extension 
k                Thermal conductivity (W/m.k) 
L                    Total length of the domain (m) 

p          Pressure (N/m2) 
P             Non-dimensional pressure 
Pr           Prandtl number 
q             Heat transfer rate (W) 
Q            Dimensionless heat transfer density 
Ra           Rayleigh number 
s             Spacing between the tubes (m) 

S             Dimensionless Spacing  

t              Temperature (oC) 
T             Dimensionless temperature 
Tw          Wall temperature (oC) 
T∞           Ambient temperature (oC) 
u             Horizontal velocity (m/s) 
U             Dimensionless horizontal velocity 
v              Vertical velocity (m/s) 
V             Dimensionless vertical velocity 
V             Volume (m3) 
w             Width (m) 
x              Horizontal Coordinate (m) 
X             Dimensionless Horizontal Coordinate 
y              Vertical coordinate (m) 
Y             Dimensionless vertical coordinate 
 
Greek Symbols 
α           Thermal diffusivity (m2/s) 
β           Coefficient of thermal expansion (K-1) 
δ           Dimensionless position of tube 
ρ           Density (Kg/m3) 
ν           Kinematic viscosity (Pa.s) 
 
Subscripts  
Max     Maximum value 
Opt      Optimum value 
 
1. Introduction 

In heat transfer, constructal theory (Bejan's 
theory) is used to generate the flow 
configuration by optimizing the heat transfer 
density under (space) volume constraint. 
Constructal theory states that the flow 
configuration is free to morph in the follow-up 
of maximal global performance (objective 
function) under global constraints, Bejan A. 
and Lorente S., (2008), [1]. By depending on 
constructal theory, the optimal spacing 
between plates and cylinders cooled by natural 
convection can be found, in each geometry, the 
total volume is fixed and the objective is to 
maximize the overall thermal conductance 
between the tubes. Bejan A., (1984), [2] found 
the optimal spacing between vertical plates 
installed in a fixed volume by using the 
intersecting of asymptotes method. The study 
was employed for isothermal vertical plates 
cooled by natural convection. He found that 
the optimal spacing was proportional to the 
Rayliegh number to the power of (-1/4). Bejan 
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A. et al. (1995), [3] carried out a numerical and 
experimental study of how to choose the 
spacing among horizontal cylinders installed in 
a fixed volume cooled by laminar free 
convection. They maximized the total density 
of heat transfer between the assembly and the 
ambient. The Numerical and experimental 
simulations cover the Rayleigh number range 
of 10⁴ ≤ Ra ≤ 10⁷and Pr = 0.72. Ledezma G. 
A. and Bejan A., (1997), [4] investigated 
numerically and experimentally the free 
convection from staggered vertical plates 
installed in fixed space. They maximized the 
density of heat transfer and they considered 
three degrees of freedom; the horizontal 
spacing between adjacent columns, the stagger 
between columns and the plate dimensions. 
Numerical and experimental simulations cover 
the Rayleigh number range of 10³ ≤ Ra ≤ 10⁶, 
and the working fluid was air with Pr=0.72. 
The conclusion demonstrated numerically and 
experimentally that it was possible to optimize 
geometrically the internal architecture of a 
fixed volume such that its global thermal 
resistance was minimized. Da Silva and A. 
Bejan,(2004),[5] studied numerically the free 
convection in vertical converging or diverging 
channel with optimized for density of heat 
transfer. They considered three degrees of 
freedom: the distribution of heat on the wall, 
wall to wall spacing, and the angle between the 
two walls. The optimization was performed in 
the range of 10⁵≤ Ra ≤ 10⁷and Pr=0.7. The 
walls were partially heated either at top of the 
channel or at the bottom of the channel. They 
proved that the density of heat transfer 
increased by putting the unheated part at the 
upper sections. They also showed that the best 
angle among the walls was almost zero when 
Ra number was high. Da Silva A. K. and Bejan 
A., (2005), [6] designed numerically a multi-
scale plates geometry cooled by free 
convection by using constructal theory. They 
maximized the density of heat transfer rate. 
They put small plates in the unused heat 
transfer area between the large plates. They 
used finite element method to discretize the 
governing equation in the range of Rayleigh 
number of 10⁵≤ Ra ≤ 10⁸, and Pr= 0.7. They 
showed that the density of heat transfer 
increased by putting the small plates between 
the large plates. Da Silva A.K. et al. (2005), [7] 
studied the free convection from discrete heat 
sources placed in vertical open channel with 
the constructal theory. They considered two 
cases, the first was single heat source under 
variable size, and the second was heat sources 
with fixed size. They applied the constructal 
theory to maximize the thermal conductance 
between the cold air and the discrete heat 

sources or to minimize the hot spot on the hot 
sources. Rayleigh number was in the range of 
(10² ≤ Ra ≤ 10⁴) and Pr = 0.7. They showed 
that for case one the thermal performance can 
be maximized as the heat source not covering 
the entire wall at Ra =102 and 103. Bello-
Ochende T. and Bejan A., (2005), [8] designed 
numerically a multi-scale cylinders geometry 
cooled by free convection by using constructal 
theory. They maximized the density of heat 
transfer rate. They put small cylinders in the 
unused heat transfer area between the large 
cylinders. They used finite element method to 
discretize the governing equation in the range 
of Rayleigh number of 10⁵≤ Ra ≤ 10⁸, and Pr= 
0.7. They showed that the density of heat 
transfer increased by putting the small 
cylinders between the large cylinders. Page L. 
et al., (2011), [9] investigated numerically the 
free convection from single scale rotating 
cylinders. They used the constructal theory to 
maximize the density of heat transfer rate. The 
range of Rayleigh number was (101 ≤ Ra ≤ 
10⁴), the range of rotating speed was (0≤ ω̃o  
≤10), and the fluid was air (Pr=0.7). They 
found that the optimized spacing decreases as 
Rayleigh number increases and the heat 
transfer density increases. Page L. et al. 
(2013), [10] investigated numerically the free 
convection from multi-scales rotating 
cylinders. They used constructal theory in 
order to find the optimal arrangement of the 
geometry. The range of Rayleigh number was 
(10² ≤ Ra ≤ 10⁴), the range of rotating speed 
was (0 ≤ ω̃o  ≤ 10), and the fluid was air 
(Pr=0.7). Small cylinders were put in the 
unused regions of heat transfer. They found 
that there were no effects of the rotating 
cylinders on heat transfer density in compare 
with the stationary cylinders except at high 
speeds of rotation. It is obvious from the 
literature that there is no attempt to find the 
optimal spacing between finned tubes cooled 
by free convection with constructal theory, so 
that the present study uses the constructal 
theory to find the optimal spacing numerically. 
 
2. Mathematical Model 

Consider a row of finned tubes installed in 
a fixed volume per unit depth (h L) as shown in 
figure (1). Longitudinal fins are attached to the 
tubes and the total height of the tube and fin is 
(h), the diameter of the tubes is half of the total 
height (d=h/2). Three different vertical 
positions of the tube with respect to the fin (b) 
are considered as (b=0.25h, 0.5h, and 0.75h). 
Fin thickness is negligible in compare with the 
diameter of the tube. The position of the tube 
as a ratio is defined as (δ =b/h). The tubes and 
the fins are maintained at constant wall (hot) 
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temperature of (Tw), and the ambient 
temperature is maintained at constant 
temperature of ( 𝑇𝑇∞ ). The objective is to find 
the number of tubes or the tube – to – tube 
spacing (s) for different tube positions (δ ) in 
order to maximize the density of heat transfer. 
In this geometry there are two degrees of 
freedom, the first is the spacing between the 
tubes (s) and the second is the tube position (δ 
). The dimensionless governing equations for 
steady, laminar, two dimensional and 
incompressible flow with Boussinesq 
approximation for the density in the buoyancy 
term can be written as;  Zhang Z. et al. (1991), 
[11] 
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Since the flow is symmetrical between the 
tubes, only half of the flow channel between 
two tubes can be used to find the spacing in the 
numerical solution. Half of the flow channel is 
shown in figure (2). The total height of the 
channel is (Hu+H+ Hd), the upstream height 
(Hu) and downstream (Hd) are added to avoid 
the applying of incorrect velocity and 
temperature at the inlet and outlet of the 
channel, these extension (Hu, Hd) are selected 
according to accuracy tests as shown later.  

The flow and thermal dimensionless 
boundary conditions on the half channel are 
shown in figure (2) and can be summarized as; 
 
Tube and fin surfaces ( 0 ≤ 𝑌𝑌 ≤ 𝐻𝐻) (no slip 
and no penetration and constant wall 
temperature 𝑈𝑈 = 𝑉𝑉 = 0 ,𝑇𝑇 = 1 ) 
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Left and right sides of the upstream section 
(−𝐻𝐻𝑢𝑢 ≤ 𝑌𝑌 ≤ 0 ) (free slip and no   penetration 
𝑈𝑈 = 𝜕𝜕𝜕𝜕

𝜕𝜕𝑋𝑋
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= 0 ) 

Left side of the downstream section ( 𝐻𝐻 ≤ 𝑌𝑌 ≤
𝐻𝐻 + 𝐻𝐻𝑑𝑑) (free slip and no penetration  𝑈𝑈 =
𝜕𝜕𝜕𝜕
𝜕𝜕𝑋𝑋
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𝜕𝜕𝑋𝑋
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= 0 )     
Right side of the downstream section 
 ( 𝐻𝐻 ≤ 𝑌𝑌 ≤ 𝐻𝐻 + 𝐻𝐻𝑑𝑑)      (zero stress    𝜕𝜕(𝜕𝜕,𝑈𝑈)

𝜕𝜕𝑋𝑋
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= 0 )     
 
The right side of the downstream boundary 
condition is applied to permit fluid to enter the 
domain horizontally in order to avoid the 
vertical acceleration which generated by 
chimney effects, Bello-Ochende T. and Bejan  
A.,(2005), [8].   
 

 
Figure (1): Physical Geometry of the Present 
Problem 
 
3. Optimization of Heat Transfer (Maximum Heat 
Transfer Density) Based on Constructal Theory 

The spacing between the tubes is to be 
chosen such that the heat transfer density 
(objective function) is maximized. The heat 
transfer density is the heat transfer rate per unit 
volume and given as;  
 

𝑞𝑞‴ =  
𝑞𝑞
𝑉𝑉

=
𝑞𝑞

(𝑠𝑠 + 𝑑𝑑)ℎ𝑤𝑤
=

𝑞𝑞′
(𝑠𝑠 + 𝑑𝑑)ℎ

               (6) 

Where q′ = Total heat transfer rate from one 
tube per unit width. 
The heat transfer density can be written in non-
dimensional form as; 

𝑄𝑄 = 𝑞𝑞′ ℎ2

𝑘𝑘 (𝑇𝑇𝑤𝑤−𝑇𝑇∞)(𝑠𝑠+𝑑𝑑)ℎ
              (7) 
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The objective function (heat transfer 
density) subjected to the constraint that the 
total volume per unit width is fixed. (This is 
based on constructal law) 

∴ ( ℎ 𝐿𝐿) = Constant                          (9) 

 
Figure (2): Dimensionless Boundary 
Conditions on the Flow Channel    
                                            
4. Numerical Procedure, Grid 
Independence Test, and Validation 

A FORTRAN program is written to solve 
the algebraic equations which obtained by the 
finite volume method. The general transport 
equation is firstly transformed to curvilinear 
coordinates and the convective term is 
discretized by hybrid scheme while the 
diffusion term is discretized by second order 
central scheme. For coupling between the 
pressure and velocity SIMPLE algorithm is 
employed. To prevent the oscillation in the 
pressure field the interpolation method of Rhie, 
C. M., and Chow, W. L., (1983), [12], is used. 
The solution algorithm can be summarized as; 
1- Solve the discretized momentum equations 
to find the velocity field. 
2- Solve the pressure correction equation to 
find the corrected pressure. 
3- Correct the velocity field by using the 
corrected pressure. 

4- Solve the discretized energy equation to find 
the temperature. 
5- Repeat the steps (1-4) until convergence 
attained. 
6- Find the heat transfer density from equation 
8. 

The grid independence test is performed for 
three grids for configuration at which (Ra = 
104, δ =0.25, and S = 0.3). The grid 
independence test showed that the increasing 
of the grid size decreases the error percentage, 
and the minimum error occurs at 50×50 
control volumes per (H). So this grid size is 
used and adopted in all the numerical results. 
Gird independence test is illustrated in table 
(1). A generated grid for control volumes of 
(175x50) in the whole domain is illustrated in 
figure (3). To apply the correct velocity and 
temperature at the inlet and outlet of the 
channel, the upstream extension (Hu) is added 
at the inlet of the channel and downstream 
extension (Hd) is added at the outlet of the 
channel. It is observed from the table (2) for 
(Ra = 105, δ =0.75, and S = 0.2) that the 
increasing in downstream extension to (Hd 
=3.5) and keeping the upstream at (Hu =0.5) 
leads to reduce the error in the heat transfer 
density to 1.4%. Based on this test the value of 
(Hu=0.5) and (Hd =3.5) have been depended in 
all numerical results.The numerical results are 
validated by comparing the results of (Sopt) 
with the numerical results of Da Silva and 
Bejan,(2004), [6] for natural convection 
between vertical isothermal plates  and with  
Bello-Ochende and Bejan, (2005), [8] for 
natural convection between isothermal 
cylinders. Both comparisons are carried out at 
(Ra =105). Good agreement can be shown in 
table (3) for both cases. 
 
Table 1 Grid Independence Test for the Case (Ra = 
104, δ =0.25, and S =0.3) 

 
Table 2 Downstream Extension Test for the Case 
(Ra = 105, δ =0.75, Hu =0.5 and S =0.2) 

 
Table 3 Comparison of the Numerical Results for 
(Sopt) with the Previous Results for Case Ra =105 for 
flat plate and circular tube. 
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Figure (3) Generated Grid for CVs (175X50) 
 
5. Results and Discussion   

The numerical results are presented in this 
section for, temperature contours, optimal 
spacing, and density of heat transfer for 
different values of tube position (0.25 ≤ δ ≤ 
0.75). The range of Rayleigh number is (103 ≤ 
Ra ≤ 105) and the working fluid is air with (Pr 
=0.71).  

Figure (4) shows the temperature contour 
as a function of the spacing between the tubes 
(S) for (Ra =103) and tube position (δ = 0.25). 
For small spacing (𝑆𝑆 < 0.25) the downstream 
region is occupied by hot fluid at temperature 
same as the wall temperature (red region), this 
is due to that the small spacing between the 
tubes prevents the cold air to flow downstream 
and the air there still hot (overworked fluid). 
As the spacing between the tubes increases (S 
> 0.25) the downstream temperature begins to 
decrease and become less than the wall 
temperature and this is clear from the 
appearance of the (orange, yellow and green) 
regions. At some spacing the thermal boundary 
layers from both sides are merged at the 
downstream region (the channel is fitted with 
the convective flow body) , at this spacing the 
heat transfer density becomes maximum and 
the spacing represents the optimal spacing, in 
this case (Sopt = 0.35). Further increasing in 
spacing between the tubes leads to a cold fluid 

region to appear in the downstream as seen in 
the blue region (underworked fluid)  for (S ≥ 
1), this large spacing permits the ambient 
(cold) fluid to flow downstream and leads to 
decrease the heat transfer density since the 
thermal conductance between the tubes 
decreased. 

 
Figure (4) Temperature contour with 

various spacing between the tube for (Ra=103, 
Pr =0.7, and tube position  δ =0.25) 

As Rayleigh number increases to (Ra =105) 
same behavior of the temperature contour to 
that of (Ra =103) can be observed in figure (5) 
except that the optimal spacing here becomes 
smaller, note that (Sopt = 0.35 at Ra=103) while 
(Sopt = 0.1 at Ra =105), so as Rayleigh number 
increases the optimal spacing decreases 
because the thermal boundary layer thickness 
decreases with increasing of Rayleigh number. 

 

 

Figure (5) Temperature contour with 
various spacing between the tube for (Ra=105, 
Pr =0.7, and tube position  δ =0.25) 

 
Figures (6, and 7) illustrate the temperature 

contours at (δ = 0. 5) for Rayleigh numbers 
(103, and 105), respectively. In can be seen 
from both figures that the thermal boundary 
layer thickness on the lower fin is  thinner than 
the thermal boundary layer on the upper fin 
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due to the presence on the tube in the mid 
position (δ = 0. 5). 

 
Figure (6) Temperature contour with 

various spacing between the tube for (Ra=103, 
Pr =0.7,  

and tube position  δ =0.5) 
 
Figures (8, and 9) illustrate the temperature 

contours at (δ = 0. 75) for Rayleigh numbers 
(103, and 105), respectively. It is interesting to 
note that as the tube moves from the position 
(δ = 0.25) to the position (δ = 0.75) the thermal 
boundary layer thickness on the fin surface 
becomes thicker as shown in figures (8, and 9) 
in compare with figures (5, and 6).  

 

 
Figure (7) Temperature contour with 

various spacing between the tube for (Ra=105, 
Pr =0.7, and tube position  δ =0.25) 

 
Figure (8) Temperature contour with 

various spacing between the tube for (Ra=103, 
Pr =0.7, and tube position  δ =0.75) 

 
Figure (9) Temperature contour with 

various spacing between the tube for (Ra=105, 
Pr =0.7, and tube position  δ =0.75) 

 
Figures (10 and 11) show the 

dimensionless heat transfer density as a 
function of the spacing at different Rayleigh 
numbers and for tube positions (δ =0.25, and 
0.75) respectively. These figures show that 
there is optimal value of spacing for each 
Rayleigh number. At this value of spacing the 
heat transfer density reaches its maximum 
value (tops of the curves). 

 
Figure (10) Heat Transfer Density with 

spacing at different Rayleigh numbers for tube 
position (δ =0.25) 
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Figure (11) Heat Transfer Density with 

spacing at different Rayleigh numbers for tube 
position (δ =0.75) 

 
Figure  (12) shows the optimal spacing 

(Sopt ) versus Rayleigh number at tube 
position (δ = 0,25), it is interesting to note 
that  the optimal spacing decreases as 
Rayleigh number increases, as mentioned 
above the increasing of Rayleigh number 
reduces the thermal boundary layer thickness 
and thus the optimal spacing decreased.    

Figure (13) shows the maximum heat 
transfer density versus Rayleigh number at 
various tube position (δ ), it can be noted that  
the maximum heat transfer density increases as 
Rayleigh number increases for all values of 
(δ), the increasing of Rayleigh number leads to 
increase the buoyancy force and thus increase 
the maximum heat transfer density. It also can 
be seen that at (Ra=105) the highest value of 
the maximum heat transfer density occurs at (δ  
= 0.75) and the lowest value occurs at (δ 
=0.25). This can be explained as the tube 
moves upward to (δ  = 0.75)  the temperature 
gradient near the lower fin increases and thus 
the maximum heat transfer density increases. 

 

 
Figure (12) Optimal spacing with Rayleigh 

number for for tube position (δ =0.25) 

 
Figure (13) Maximum heat transfer density 

with Rayleigh number for different tube 
positions  

Figure (14) shows the optimal spacing 
versus the tube position of the tube at different 
Rayleigh numbers. The optimal spacing is 
constant for all values of the tube position. 
Since the optimal spacing is constant for all 
(δ), the number of tubes installed in a fixed 
volume is the same for all tube positions (δ). 

 

 
Figure (14) Optimal spacing with different 

axis ratios for Rayleigh number  
 

6. Conclusions 
The conclusions for optimal spacing between 
finned tubes cooled by free convection can be 
summarized as:- 
1- The optimal spacing decreases as 

Rayleigh number increases for all tube 
positions. 

2- The maximum heat transfer density 
increases as Rayleigh number increases 
for all tube positions. 

3- At Ra=105, the highest value of the 
maximum heat transfer density occurs at 
tube position (δ = 0.75) and lowest value 
occurs at tube position (δ = 0.5). 

4- The optimal spacing remains constant as 
the tube position increases at constant 
Rayleigh number.  

5- The number of finned tubes installed in a 
fixed volume is the same for all tube 
positions. 
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 باستخدام نظریة التشیید مبردة بالحمل الحر مزعنفةالبعد الامثل بین انابیب 

 
 میس منیر اسماعیل                                 أحمد وحید مصطفى                             

 كلیة الھندسة –جامعة النھرین                           كلیة الھندسة                  –جامعة النھرین 
 المیكانیكیة                                                       قسم الھندسة المیكانیكیةقسم الھندسة 

 
 الخلاصة

د الامثل بین انابیب مزعنفة مبردة بالحمل الحر درس عددیا. صف من الانابیب المزعنفة ثابتة درجة الحرارة نصبت في حجم البع
محدد والبعد بینھم اختیر بموجب نظریة التشیید (نظریة بیجان). في ھذة النظریة البعد اختیر بحیث تكون كثافة انتقال الحرارة اقصى 

مع شبكة متحدة الموقع استخدمت للربط بین  SIMPLEمحدد استخدمت لحل المعادلات الحاكمة, خوارزمیة ما یمكن. طریقة الحجم ال
ومائع التشغیل ھو الھواء  (δ ≤ 0.75 ≥ 0.25)مدى موقع الانبوب  , (Ra ≤ 105 ≥ 103)السرعة والضغط. مدى رقم رایلي  

(Pr=0.7)ایلي لكل مواقع الانبوب وعند . بینت النتائج ان البعد الامثل یقل مع زیادة رقم ر  Ra=105 القیمة العلیا لكثافة انتقال
.بینت النتائج ایضا ان (δ=0.25)وقیمتھا السفلى تحدث عند موقع الانبوب  , (δ=0.75)الحرارة العظمى تحدث عند موقع الانبوب 

 البعد الامثل یبقى ثابت مع تغیر موقع الانبوب عند رقم رایلي ثابت.
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