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Abstract

The optimal spacing between finned tubes
cooled by free convection is studied
numerically. A row of isothermal finned tubes
are installed in a fixed volume and the spacing
between them is selected according to the
constructal theory (Bejan's theory). In this
theory the spacing between the tubes is chosen
such that the heat transfer density is
maximized. A finite volume method is
employed to solve the governing equations;
SIMPLE algorithm with collocated grid is
utilized for coupling between velocity and
pressure. The range of Rayleigh number is (10°
< Ra < 10°), the range of the tube position is
(0.25 £ 6<0.75), and the working fluid is air
(Pr =0.71). The results show that the optimal
spacing decreases as Rayleigh number
increases for all tube positions, and the
maximum density of heat transfer increases as
the Raleigh number increases for all tube
positions and for Ra=10" the highest value of
heat transfer density occurs at tube position (6
=0.75) while the lowest value occurs at tube
position (& =0.25). The results also show that
the optimal spacing remains constant with
change of the tube position at constant
Rayleigh number.
Keywords: Constructal theory, optimal
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Nomenclature

Position of the tube (m)
diameter of the tube = 2a(m)
Non-dimensional diameter of the tube
Gravity acceleration (m/s?)
Total height of fin and tube (m)
Dimensionless downstream extension
Dimensionless upstream extension
Thermal conductivity (W/m.k)
Total length of the domain (m)
Pressure (N/m?)
Non-dimensional pressure
Prandtl number
Heat transfer rate (W)
Dimensionless heat transfer density
Rayleigh number
Spacing between the tubes (m)
Dimensionless Spacing
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t Temperature (°C)

T Dimensionless temperature

Tw Wall temperature (°C)

T, Ambient temperature (°C)

u Horizontal velocity (m/s)

U Dimensionless horizontal velocity
v Vertical velocity (m/s)

\Y Dimensionless vertical velocity

v Volume (m®)

w Width (m)

X Horizontal Coordinate (m)

X Dimensionless Horizontal Coordinate
y Vertical coordinate (m)

Y Dimensionless vertical coordinate
Greek Symbols

a Thermal diffusivity (m?/s)

B Coefficient of thermal expansion (K™)
o Dimensionless position of tube

P Density (Kg/m®)

v Kinematic viscosity (Pa.s)
Subscripts

Max Maximum value

Opt  Optimum value

1. Introduction

In heat transfer, constructal theory (Bejan's
theory) is wused to generate the flow
configuration by optimizing the heat transfer
density under (space) volume constraint.
Constructal theory states that the flow
configuration is free to morph in the follow-up
of maximal global performance (objective
function) under global constraints, Bejan A.
and Lorente S., (2008), [1]. By depending on
constructal theory, the optimal spacing
between plates and cylinders cooled by natural
convection can be found, in each geometry, the
total volume is fixed and the objective is to
maximize the overall thermal conductance
between the tubes. Bejan A., (1984), [2] found
the optimal spacing between vertical plates
installed in a fixed volume by using the
intersecting of asymptotes method. The study
was employed for isothermal vertical plates
cooled by natural convection. He found that
the optimal spacing was proportional to the
Rayliegh number to the power of (-1/4). Bejan
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A. etal. (1995), [3] carried out a numerical and
experimental study of how to choose the
spacing among horizontal cylinders installed in
a fixed volume cooled by laminar free
convection. They maximized the total density
of heat transfer between the assembly and the
ambient. The Numerical and experimental
simulations cover the Rayleigh number range
of 10* < Ra < 107and Pr = 0.72. Ledezma G.
A. and Bejan A., (1997), [4] investigated
numerically and experimentally the free
convection from staggered vertical plates
installed in fixed space. They maximized the
density of heat transfer and they considered
three degrees of freedom; the horizontal
spacing between adjacent columns, the stagger
between columns and the plate dimensions.
Numerical and experimental simulations cover
the Rayleigh number range of 10* < Ra < 108,
and the working fluid was air with Pr=0.72.
The conclusion demonstrated numerically and
experimentally that it was possible to optimize
geometrically the internal architecture of a
fixed volume such that its global thermal
resistance was minimized. Da Silva and A.
Bejan,(2004),[5] studied numerically the free
convection in vertical converging or diverging
channel with optimized for density of heat
transfer. They considered three degrees of
freedom: the distribution of heat on the wall,
wall to wall spacing, and the angle between the
two walls. The optimization was performed in
the range of 10°< Ra < 107and Pr=0.7. The
walls were partially heated either at top of the
channel or at the bottom of the channel. They
proved that the density of heat transfer
increased by putting the unheated part at the
upper sections. They also showed that the best
angle among the walls was almost zero when
Ra number was high. Da Silva A. K. and Bejan
A., (2005), [6] designed numerically a multi-
scale plates geometry cooled by free
convection by using constructal theory. They
maximized the density of heat transfer rate.
They put small plates in the unused heat
transfer area between the large plates. They
used finite element method to discretize the
governing equation in the range of Rayleigh
number of 10°< Ra < 108, and Pr= 0.7. They
showed that the density of heat transfer
increased by putting the small plates between
the large plates. Da Silva A.K. et al. (2005), [7]
studied the free convection from discrete heat
sources placed in vertical open channel with
the constructal theory. They considered two
cases, the first was single heat source under
variable size, and the second was heat sources
with fixed size. They applied the constructal
theory to maximize the thermal conductance
between the cold air and the discrete heat
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sources or to minimize the hot spot on the hot
sources. Rayleigh number was in the range of
(102 < Ra < 10*) and Pr = 0.7. They showed
that for case one the thermal performance can
be maximized as the heat source not covering
the entire wall at Ra =10° and 10°. Bello-
Ochende T. and Bejan A., (2005), [8] designed
numerically a multi-scale cylinders geometry
cooled by free convection by using constructal
theory. They maximized the density of heat
transfer rate. They put small cylinders in the
unused heat transfer area between the large
cylinders. They used finite element method to
discretize the governing equation in the range
of Rayleigh number of 10°< Ra < 108, and Pr=
0.7. They showed that the density of heat
transfer increased by putting the small
cylinders between the large cylinders. Page L.
et al., (2011), [9] investigated numerically the
free convection from single scale rotating
cylinders. They used the constructal theory to
maximize the density of heat transfer rate. The
range of Rayleigh number was (10* < Ra <
10%), the range of rotating speed was (0< ®,
<10), and the fluid was air (Pr=0.7). They
found that the optimized spacing decreases as
Rayleigh number increases and the heat
transfer density increases. Page L. et al.
(2013), [10] investigated numerically the free
convection  from  multi-scales  rotating
cylinders. They used constructal theory in
order to find the optimal arrangement of the
geometry. The range of Rayleigh number was
(102 < Ra < 10*), the range of rotating speed
was (0 < @, < 10), and the fluid was air
(Pr=0.7). Small cylinders were put in the
unused regions of heat transfer. They found
that there were no effects of the rotating
cylinders on heat transfer density in compare
with the stationary cylinders except at high
speeds of rotation. It is obvious from the
literature that there is no attempt to find the
optimal spacing between finned tubes cooled
by free convection with constructal theory, so
that the present study uses the constructal
theory to find the optimal spacing numerically.

2. Mathematical Model

Consider a row of finned tubes installed in
a fixed volume per unit depth (h L) as shown in
figure (1). Longitudinal fins are attached to the
tubes and the total height of the tube and fin is
(h), the diameter of the tubes is half of the total
height (d=h/2). Three different vertical
positions of the tube with respect to the fin (b)
are considered as (b=0.25h, 0.5h, and 0.75h).
Fin thickness is negligible in compare with the
diameter of the tube. The position of the tube
as a ratio is defined as (8 =b/h). The tubes and
the fins are maintained at constant wall (hot)
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temperature of (T,), and the ambient
temperature is maintained at constant
temperature of (T, ). The objective is to find
the number of tubes or the tube — to — tube
spacing (s) for different tube positions (J) in
order to maximize the density of heat transfer.
In this geometry there are two degrees of
freedom, the first is the spacing between the
tubes (s) and the second is the tube position (&
). The dimensionless governing equations for
steady, laminar, two dimensional and
incompressible  flow  with  Boussinesq
approximation for the density in the buoyancy
term can be written as; Zhang Z. et al. (1991),
[11]
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The non-dimensional variables and groups
used are;
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Since the flow is symmetrical between the
tubes, only half of the flow channel between
two tubes can be used to find the spacing in the
numerical solution. Half of the flow channel is
shown in figure (2). The total height of the
channel is (H,+*H+ Hg), the upstream height
(Hy) and downstream (Hy) are added to avoid
the applying of incorrect velocity and
temperature at the inlet and outlet of the
channel, these extension (H,, Hg) are selected
according to accuracy tests as shown later.

The flow and thermal dimensionless
boundary conditions on the half channel are
shown in figure (2) and can be summarized as;

Tube and fin surfaces ( 0 <Y < H) (no slip
and no penetration and constant wall
temperature U =V =0,T =1)
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Channel inlet (0 <Xx< (“TD)) (U = Z—Z -

0,T=0,P=0)

Channel _exit (0 <X< (“TD)) (_"’“;':'” —

0,P=0)

Left and right sides of the upstream section

(—Hy, <Y <0) (free slip and no penetration
av ap T

U—Q—X—O,E—O,E—O) .

Left side of the downstream section (H <Y <

H + H;) (free slip and no penetration U =

v P aT
—=0,—=0,—=0
ox " ox "ax )

Right side of the downstream section

(H<Y<H-+H,;) (zero stress

P aT
0,22=0,2=0)

ovy) _

The right side of the downstream boundary
condition is applied to permit fluid to enter the
domain horizontally in order to avoid the
vertical acceleration which generated by
chimney effects, Bello-Ochende T. and Bejan
A.,(2005), [8].
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Figure (1): Physical Geometry of the Present
Problem

3. Optimization of Heat Transfer (Maximum Heat
Transfer Density) Based on Constructal Theory

The spacing between the tubes is to be
chosen such that the heat transfer density
(objective function) is maximized. The heat
transfer density is the heat transfer rate per unit
volume and given as;

!

I/I:g: q = q
T =y Grdw (+dh

(6)

Where g’ = Total heat transfer rate from one
tube per unit width.

The heat transfer density can be written in non-
dimensional form as;

0= ot ™

K (Ty—Too) (s+d)h
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o = kg _ o ggar ®)
k(Tyw—Too)(s+d) (540.5)

The objective function (heat transfer
density) subjected to the constraint that the
total volume per unit width is fixed. (This is
based on constructal law)
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Figure  (2):  Dimensionless  Boundary

Conditions on the Flow Channel

4. Numerical Procedure, Grid

Independence Test, and Validation

A FORTRAN program is written to solve
the algebraic equations which obtained by the
finite volume method. The general transport
equation is firstly transformed to curvilinear
coordinates and the convective term is
discretized by hybrid scheme while the
diffusion term is discretized by second order
central scheme. For coupling between the
pressure and velocity SIMPLE algorithm is
employed. To prevent the oscillation in the
pressure field the interpolation method of Rhie,
C. M., and Chow, W. L., (1983), [12], is used.
The solution algorithm can be summarized as;
1- Solve the discretized momentum equations
to find the velocity field.
2- Solve the pressure correction equation to
find the corrected pressure.
3- Correct the velocity field by using the
corrected pressure.

=0

o.u
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4- Solve the discretized energy equation to find
the temperature.

5- Repeat the steps (1-4) until convergence
attained.

6- Find the heat transfer density from equation
8.

The grid independence test is performed for
three grids for configuration at which (Ra =
10*, 5 =0.25, and S 0.3). The grid
independence test showed that the increasing
of the grid size decreases the error percentage,
and the minimum error occurs at 50x50
control volumes per (H). So this grid size is
used and adopted in all the numerical results.
Gird independence test is illustrated in table
(1). A generated grid for control volumes of
(175x50) in the whole domain is illustrated in
figure (3). To apply the correct velocity and
temperature at the inlet and outlet of the
channel, the upstream extension (H,) is added
at the inlet of the channel and downstream
extension (Hy) is added at the outlet of the
channel. It is observed from the table (2) for
(Ra = 10°, § =0.75, and S = 0.2) that the
increasing in downstream extension to (Hg
=3.5) and keeping the upstream at (H, =0.5)
leads to reduce the error in the heat transfer
density to 1.4%. Based on this test the value of
(H,=0.5) and (Hq =3.5) have been depended in
all numerical results.The numerical results are
validated by comparing the results of (Sp)
with the numerical results of Da Silva and
Bejan,(2004), [6] for natural convection
between vertical isothermal plates and with
Bello-Ochende and Bejan, (2005), [8] for
natural  convection between isothermal
cylinders. Both comparisons are carried out at
(Ra =10°). Good agreement can be shown in
table (3) for both cases.

Table 1 Grid Independence Test for the Case (Ra =
10%, 5=0.25, and S =0.3)

Numher of Control Q Error%
Volumes Per i
30x 30 13925020  —-ee- —
40 x40 14.071420 1.04
50 x 50 14.149130 0.554

Table 2 Downstream Extension Test for the Case
(Ra=10°% 6=0.75, H, =0.5 and $ =0.2)

Hy Q Error %
2 23406150 eeemmeeeen
25 23.877630 1.9
3 24271650 1.6
3.5 24.630340 14

Table 3 Comparison of the Numerical Results for
(Sopy) With the Previous Results for Case Ra =10° for
flat plate and circular tube.

Flat Plate

Da Silva ALK, and Bejan A, (2004) [6] Present

0.129 0.13
Circular Tube )
Bello- Ochende T., and Bejan A., (2005) [8] | Present
0.104 0.12




NJES Vol.20, No.4, 2017

Figure (3) Generated Grid for CVs (175X50)

5. Results and Discussion

The numerical results are presented in this
section for, temperature contours, optimal
spacing, and density of heat transfer for
different values of tube position (0.25 < 6 <
0.75). The range of Rayleigh number is (10° <
Ra < 10°) and the working fluid is air with (Pr
=0.71).

Figure (4) shows the temperature contour
as a function of the spacing between the tubes
(S) for (Ra =10 and tube position (& = 0.25).
For small spacing (S < 0.25) the downstream
region is occupied by hot fluid at temperature
same as the wall temperature (red region), this
is due to that the small spacing between the
tubes prevents the cold air to flow downstream
and the air there still hot (overworked fluid).
As the spacing between the tubes increases (S
> 0.25) the downstream temperature begins to
decrease and become less than the wall
temperature and this is clear from the
appearance of the (orange, yellow and green)
regions. At some spacing the thermal boundary
layers from both sides are merged at the
downstream region (the channel is fitted with
the convective flow body) , at this spacing the
heat transfer density becomes maximum and
the spacing represents the optimal spacing, in
this case (Sepx = 0.35). Further increasing in
spacing between the tubes leads to a cold fluid
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region to appear in the downstream as seen in
the blue region (underworked fluid) for (S >
1), this large spacing permits the ambient
(cold) fluid to flow downstream and leads to
decrease the heat transfer density since the
thermal conductance between the tubes
decreased.

S§=0.15 025

Figure (4) Temperature contour with

various spacing between the tube for (Ra=10°,
Pr =0.7, and tube position &=0.25)

0.35 045 0.65 0.8 1

As Rayleigh number increases to (Ra =10°)
same behavior of the temperature contour to
that of (Ra =10°) can be observed in figure (5)
except that the optimal spacing here becomes
smaller, note that (Se, = 0.35 at Ra=10°%) while
(Sopt = 0.1 at Ra =10°), so as Rayleigh number
increases the optimal spacing decreases
because the thermal boundary layer thickness
decreases with increasing of Rayleigh number.

4

§=0.05 0.1

with
various spacing between the tube for (Ra=10°,
Pr =0.7, and tube position &=0.25)

Figure (5) Temperature contour

Figures (6, and 7) illustrate the temperature
contours at (8 = 0. 5) for Rayleigh numbers
(10%, and 10°), respectively. In can be seen
from both figures that the thermal boundary
layer thickness on the lower fin is thinner than
the thermal boundary layer on the upper fin
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due to the presence on the tube in the mid
position (6 = 0. 5).

§=0.15 025 0.35 0.45 0.55 0.8 1

Figure (6) Temperature contour with
various spacing between the tube for (Ra=10°,
Pr=0.7,

and tube position §=0.5)

Figures (8, and 9) illustrate the temperature
contours at (¢ = 0. 75) for Rayleigh numbers
(10%, and 10°), respectively. It is interesting to
note that as the tube moves from the position
(6=10.25) to the position (6= 0.75) the thermal
boundary layer thickness on the fin surface
becomes thicker as shown in figures (8, and 9)
in compare with figures (5, and 6).

/

0.15 0.2

§=0.05 0.1 0.25 0.3 0.35 045

Figure (7) Temperature contour with
various spacing between the tube for (Ra=10°,
Pr =0.7, and tube position 6=0.25)

0.4
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§=0.15 0.25 0.35 0.45 0.55 0.8 1 1.2

Figure (8) Temperature contour with
various spacing between the tube for (Ra=10°,
Pr =0.7, and tube position 6=0.75)

0.3 0.35 0.4 0.45 0.5

Figure (9) Temperature contour with
various spacing between the tube for (Ra=10°,
Pr =0.7, and tube position 6=0.75)

§=005 01 015

02 025

Figures (10 and 11) show the
dimensionless heat transfer density as a
function of the spacing at different Rayleigh
numbers and for tube positions (8 =0.25, and
0.75) respectively. These figures show that
there is optimal value of spacing for each
Rayleigh number. At this value of spacing the
heat transfer density reaches its maximum
value (tops of the curves).

35

30 -
25 - %
N
20 - los
o
15 1
Ra= 104
10 4
s
o T T T T .
1] 02 04 06 0.8 1 12
S

Figure (10) Heat Transfer Density with
spacing at different Rayleigh numbers for tube
position (5 =0.25)
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40
35
30 4

25 4

o 20

Figure (11) Heat Transfer Density with
spacing at different Rayleigh numbers for tube
position (6 =0.75)

Figure (12) shows the optimal spacing
(Sopt ) versus Rayleigh number at tube
position (6 = 0,25), it is interesting to note
that the optimal spacing decreases as
Rayleigh number increases, as mentioned
above the increasing of Rayleigh number
reduces the thermal boundary layer thickness
and thus the optimal spacing decreased.

Figure (13) shows the maximum heat
transfer density versus Rayleigh number at
various tube position (&), it can be noted that
the maximum heat transfer density increases as
Rayleigh number increases for all values of
(0), the increasing of Rayleigh number leads to
increase the buoyancy force and thus increase
the maximum heat transfer density. It also can
be seen that at (Ra=10°) the highest value of
the maximum heat transfer density occurs at (¢
= 0.75) and the lowest value occurs at (&
=0.25). This can be explained as the tube
moves upward to (6 = 0.75) the temperature
gradient near the lower fin increases and thus
the maximum heat transfer density increases.

14

Qinar

10000

Ra
Figure (12) Optimal spacing with Rayleigh
number for for tube position (5 =0.25)

100000
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10000
Ra

Figure (13) Maximum heat transfer density
with Rayleigh number for different tube
positions

Figure (14) shows the optimal spacing
versus the tube position of the tube at different
Rayleigh numbers. The optimal spacing is
constant for all values of the tube position.
Since the optimal spacing is constant for all
(), the number of tubes installed in a fixed
volume is the same for all tube positions ().

0.4

Ra= 10°
0.35

0.3

0.25
Ra= 10*
0.2

Sop

0.15

e 5
] Ra= 10

0.05

0.2 0.3 0.4

5
Figure (14) Optimal spacing with different
axis ratios for Rayleigh number

05 0.6

6. Conclusions

The conclusions for optimal spacing between
finned tubes cooled by free convection can be
summarized as:-

1- The optimal spacing decreases as
Rayleigh number increases for all tube
positions.

The maximum heat transfer density
increases as Rayleigh number increases
for all tube positions.

At Ra=10°, the highest value of the
maximum heat transfer density occurs at
tube position (8 = 0.75) and lowest value
occurs at tube position (8 = 0.5).

The optimal spacing remains constant as
the tube position increases at constant
Rayleigh number.

The number of finned tubes installed in a
fixed volume is the same for all tube
positions.

2-

07

0.8
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